1
|
Mohammadbagherlou S, Samari E, Sagharyan M, Zargar M, Chen M, Ghorbani A. Hydrogen sulfide mechanism of action in plants; from interaction with regulatory molecules to persulfidation of proteins. Nitric Oxide 2025; 156:27-41. [PMID: 40024432 DOI: 10.1016/j.niox.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/23/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Hydrogen sulfide (H2S), previously known as a toxic gas, is currently considered one of the most important gaseous transmitters in plants. This novel signaling molecule has been determined to play notable roles in plant growth, development, and maturation. In addition, pharmacological and genetic evidence indicated that this regulatory molecule effectively ameliorates various plant stress conditions. H2S is involved in these processes by changing gene expression, enzyme activities, and metabolite concentrations. During its regulatory function, H2S interacts with other signaling pathways such as hydrogen peroxide (H2O2), nitric oxide (NO), Ca2+, carbon monoxide (CO), phosphatidic acid (PA), phytohormones, etc. The H2S mechanism of action may depend on the persulfidation post-translational modification (PTM), which attacks the cysteine (Cys) residues on the target proteins and changes their structure and activities. This review summarized H2S biosynthesis pathways, its role in sulfide state, and its donors in plant biology. We also discuss recent progress in the research on the interactions of H2S with other signaling molecules, as well as the role of persulfidation in modulating various plant reactions.
Collapse
Affiliation(s)
- Shirin Mohammadbagherlou
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Samari
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mostafa Sagharyan
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
De Brasi-Velasco S, Aroca A, Romero LC, Gotor C, Sevilla F, Jiménez A. New role for thioredoxins in plants: Implication of TRXo1 in protein depersulfidation. Redox Biol 2025; 82:103627. [PMID: 40220625 PMCID: PMC12018006 DOI: 10.1016/j.redox.2025.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Persulfidation, a posttranslational modification of cysteines to persulfides, is the best characterized molecular mechanism of H2S signaling. This study is focused on new functions for thioredoxins (TRXs) in plants beyond those of thiol disulfide (S-S) exchange, including the regulation of protein persulfidation as it has been described in animal systems. To elucidate the impact of TRXo1 deficiency on the protein persulfidation pattern in plants of Arabidopsis thaliana L. wild type (WT) and two Attrxo1 T-DNA insertion mutants grown under non stress conditions, a quantitative proteomic approach was performed. The proteomic analysis revealed a higher number of proteins that were more persulfidated in the mutants compared to WT plants, suggesting a role for TRXo1 in protein depersulfidation. Interestingly, most of the differentially persulfidated proteins were located in the chloroplast, implying a coordination between chloroplast H2S-dependent persulfidation and mitochondrial TRXo1 depersulfidation. Among the differentially persulfidated proteins located in mitochondria, the antioxidant enzymes sAPX, DHAR1 and MDAR6 were selected for further studies. The effect of H2S-dependent persulfidation on their enzymatic activities and its reversibility by the NADPH/thioredoxin reductase (NTRB)/TRXo1 system was analyzed, as well as their persulfidation levels were quantified. Sulfide treatment brought about increases in the activity levels of the enzymes, that match with a raise on the persulfidation levels. Interestingly, both activations declining after treatment with the thioredoxin system, indicate the regulation of their persulfidation by TRXo1. These results point to a positive effect of persulfidation on the enzymatic activities and also to a new depersulfidase activity for TRXo1. All together these results give a new insight of the mechanism of elimination of -SSH groups in plants exerted by TRXo1, and the involvement of a redox regulation on the protein persulfidation.
Collapse
Affiliation(s)
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-US), Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-US), Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-US), Sevilla, Spain.
| | - Francisca Sevilla
- Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Ana Jiménez
- Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain.
| |
Collapse
|
3
|
Guo Y, Gong J, Hu R, Shi M, Bao Z, Cao S, Zhu K, Deng X, Cheng Y, Wang P. Autophagy positively regulates ethylene-induced colouration in citrus fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70114. [PMID: 40162746 DOI: 10.1111/tpj.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/11/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Autophagy is an evolutionarily conserved process in eukaryotes that regulates metabolic reprogramming and organelle recycling in response to various environmental signals and developmental cues. However, little is known about its regulatory mechanism during fruit colouration and ripening, which also undergo dramatic metabolic and cellular alterations. Here, we demonstrate that the autophagy pathway is activated during citrus fruit colouration, and the colour transition of citrus fruit is significantly delayed when autophagy is blocked. Furthermore, we revealed that ethylene, a plant hormone crucial for citrus fruit colouration, activates the autophagy pathway through the ethylene-responsive factor, CsERF061. Further analysis revealed that CsERF061 directly binds to the promoter of CsATG8h and activates its expression, thereby promoting autophagy and fruit colouration, suggesting autophagy is a key determinant of citrus fruit colouration in response to ethylene. These findings enhance our understanding of fruit colouration and offer a potential method to improve citrus fruit colour and quality for future applications.
Collapse
Affiliation(s)
- Ye Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinli Gong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Ran Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meiyan Shi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiru Bao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Resource Utilization and Quality Control of Characteristic Crops,College of Life Science and Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Saiyu Cao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaijie Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National R&D Center for Citrus Postharvest Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Carrillo R, Moreno I, Romero LC, Aroca A, Gotor C. Hydrogen sulfide-induced barley resilience to drought and salinity through protein persulfidation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109644. [PMID: 39965413 DOI: 10.1016/j.plaphy.2025.109644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/15/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Barley (Hordeum vulgare) is a widely cultivated cereal crops, and its production is increasingly threatened by environmental stresses such as drought and salinity. Hydrogen sulfide is established as a signaling molecule that promotes tolerance to plant stress throught persulfidation, a post-translational modification of cysteine residues in proteins. The purpose of this study is to explore the impact of NaHS (sulfide donor) pretreatment on barley plants in enhancing tolerance to drought and salinity stresses, and determine if persulfidation is involved. In pretreated-plants, phenotypical traits and pigment contents showed an improvement in the survival of the plants under stress conditions. Quantification of stress-markers such as anthocyanin, proline, and reactive oxygen species also showed significant decreased contents in pretreated compared to untreated plants. In addition, the accumulation of amino acids under drought stress was significantly reduced when plants were pretreated with NaHS. Similarly, the increase of ABA content as a typical drought response was reduced in the pretreated plants. When plants are exposed to salt stress, the Na+/K+ ratio was maintained low in NaHS-pretreated plants, by increasing K+ levels. The sulfide ameliorative effect to salt was also observed during germination in previously NaHS-soaked seeds. Our findings suggest that sulfide pretreatment prepares barely plants to better deal with drought and salinity. Moreover, persulfidation was analyzed under all conditions, exhibiting enhanced levels under stress when plants were pretreated with NaHS. Our findings indicate that sulfide pretreatment induces a previous state in barley to respond more efficiently to stress and propose persulfidation is the underlying mechanism.
Collapse
Affiliation(s)
- Reyes Carrillo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - Inmaculada Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain.
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
5
|
Jaiswal S, Singh SP, Singh S, Gupta R, Tripathi DK, Corpas FJ, Singh VP. Hydrogen Sulphide: A Key Player in Plant Development and Stress Resilience. PLANT, CELL & ENVIRONMENT 2025; 48:2445-2459. [PMID: 39623674 DOI: 10.1111/pce.15309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 02/04/2025]
Abstract
Based on the research conducted so far, hydrogen sulphide (H2S) plays a crucial role in the development and stress resilience of plants. H2S, which acts as a signalling molecule, responds to different stresses such as heavy metals, drought, and salinity, and it regulates various aspects of plant growth and development including seed germination, root development, stomatal movement, flowering, and fruit ripening. Additionally, H2S is involved in mediating legume-Rhizobium symbiosis signalling. It modulates plant responses to external environmental stimuli by interacting with other signalling molecules like phytohormones, nitric oxide, and reactive oxygen species. Furthermore, H2S exerts these regulations since it can modify protein functions through a reversible thiol-based oxidative posttranslational modification called persulfidation, particularly in stress response and developmental processes. As a result, H2S is recognised as an important emerging signalling molecule with multiple roles in plants. Research in this field holds promise for engineering stress tolerance in crops and may lead to potential biotechnological applications in agriculture and environmental management.
Collapse
Affiliation(s)
- Saumya Jaiswal
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Samiksha Singh
- Department of Botany, S.N. Sen B.V. Post Graduate College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Ravi Gupta
- Plant Stress Physiology and Proteomics Laboratory, College of General Education, Kookmin University, Seoul, South Korea
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, India
| |
Collapse
|
6
|
Hu K, Geng M, Ma L, Yao G, Zhang M, Zhang H. The H2S-responsive transcription factor ERF.D3 regulates tomato abscisic acid metabolism, leaf senescence, and fruit ripening. PLANT PHYSIOLOGY 2025; 197:kiae560. [PMID: 39431534 DOI: 10.1093/plphys/kiae560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
Hydrogen sulfide (H2S) is a signaling molecule that regulates plant senescence. In this study, we found that H2S delays dark-induced senescence in tomato (Solanum lycopersicum) leaves. Transcriptome and reverse transcription quantitative PCR (RT-qPCR) analyses revealed an ethylene response factor ERF.D3 is quickly induced by H2S. H2S also persulfidated ERF.D3 at amino acid residues C115 and C118. CRISPR/Cas9-mediated gene editing, and gene overexpression analyses showed that ERF.D3 negatively regulates leaf senescence and fruit ripening. Abscisic acid (ABA) levels were reduced by ERF.D3 overexpression, suggesting ERF.D3 might regulate ABA metabolism. Additionally, the ABA 8'-hydroxylase-encoding gene CYP707A2, which is required for ABA degradation, was identified as an ERF.D3 target gene through transcriptome data, RT-qPCR, dual-luciferase reporter assays, and electrophoretic mobility shift assays. ERF.D3 persulfidation enhanced its transcriptional activity toward CYP707A2. Moreover, the E3 ligase RNF217 ubiquitinated ERF.D3, which may accelerate fruit ripening during the late stage of fruit development. Overall, our study provides valuable insights into the roles of a H2S-responsive ERF.D3 and its persulfidation state in delaying leaf senescence and fruit ripening and provides a link between H2S and ABA degradation.
Collapse
Affiliation(s)
- Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Meihui Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lin Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Min Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
7
|
Liu T, Chen H, Luo S, Xue S. Hydrogen sulphide alleviates root growth inhibition induced by phosphate starvation. PLANT, CELL & ENVIRONMENT 2024; 47:5265-5279. [PMID: 39175420 DOI: 10.1111/pce.15110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Phosphorus (P) has crucial roles in plant growth and development. Hydrogen sulphide (H2S) has multiple functions in plants, particularly having the ability to promote tolerance to a variety of adversity stresses. However, it is unclear whether H2S has a function when plants suffer Pi-deficiency stress. DES1, encoding L-cysteine desulfhydrase1, is a crucial source of H2S in Arabidopsis thaliana by catalysing the substrate L-cysteine. Under phosphate starvation, the des1 mutant had a significantly shorter primary root length than the wild-type Col-0, and exogenous application of H2S donor NaHS could compensate for the root growth-sensitive phenotype. In contrast, the transgenic lines DES1ox overexpressing DES1 exhibited less sensitivity to phosphate starvation in terms of longer roots compared to the Col-0. These results demonstrate that H2S is involved in the regulation of Arabidopsis root growth under phosphate starvation. Moreover, using quantitative real-time polymerase chain reaction experiments to analyse the changes in genes induced by phosphate starvation in des1 mutant and Col-0, we screened to find that the expression of the Sulfoquinovosyl diacylglycerol 1 (SQD1) gene was significantly downregulated in the des1 mutant. Consistently, exogenous H2S significantly promoted SQD1 expression levels in roots of Col-0. Taken together, we demonstrate that DES1-mediated H2S participates in alleviating root growth inhibition by promoting the expression of SQD1 under Pi starvation.
Collapse
Affiliation(s)
- Tong Liu
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sheng Luo
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shaowu Xue
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Moseler A, Wagner S, Meyer AJ. Protein persulfidation in plants: mechanisms and functions beyond a simple stress response. Biol Chem 2024:hsz-2024-0038. [PMID: 39303198 DOI: 10.1515/hsz-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Posttranslational modifications (PTMs) can modulate the activity, localization and interactions of proteins and (re)define their biological function. Understanding how changing environments can alter cellular processes thus requires detailed knowledge about the dynamics of PTMs in time and space. A PTM that gained increasing attention in the last decades is protein persulfidation, where a cysteine thiol (-SH) is covalently bound to sulfane sulfur to form a persulfide (-SSH). The precise cellular mechanisms underlying the presumed persulfide signaling in plants are, however, only beginning to emerge. In the mitochondrial matrix, strict regulation of persulfidation and H2S homeostasis is of prime importance for maintaining mitochondrial bioenergetic processes because H2S is a highly potent poison for cytochrome c oxidase. This review summarizes the current knowledge about protein persulfidation and corresponding processes in mitochondria of the model plant Arabidopsis. These processes will be compared to the respective processes in non-plant models to underpin similarities or highlight apparent differences. We provide an overview of mitochondrial pathways that contribute to H2S and protein persulfide generation and mechanisms for H2S fixation and de-persulfidation. Based on current proteomic data, we compile a plant mitochondrial persulfidome and discuss how persulfidation may regulate protein function.
Collapse
Affiliation(s)
- Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
9
|
Li M, Xiao L, Sun K, Qiu T, Lai S, Chen G, Geng L, Huang S, Xie Y. Insights from Structure-Based Simulations into the Persulfidation of Uridine Diphosphate-Glycosyltransferase71c5 Facilitating the Reversible Inactivation of Abscisic Acid. Int J Mol Sci 2024; 25:9679. [PMID: 39273626 PMCID: PMC11395816 DOI: 10.3390/ijms25179679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The action of abscisic acid (ABA) is closely related to its level in plant tissues. Uridine diphosphate-glycosyltransferase71c5 (UGT71C5) was characterized as a major UGT enzyme to catalyze the formation of the ABA-glucose ester (ABA-GE), a reversible inactive form of free ABA in Arabidopsis thaliana (thale cress). UGTs function in a mode where the catalytic base deprotonates an acceptor to allow a nucleophilic attack at the anomeric center of the donor, achieving the transfer of a glucose moiety. The proteomic data revealed that UGT71C5 can be persulfidated. Herein, an experimental method was employed to detect the persulfidation site of UGT71C5, and the computational methods were further used to identify the yet unknown molecular basis of ABA glycosylation as well as the regulatory role of persulfidation in this process. Our results suggest that the linker and the U-shaped loop are regulatory structural elements: the linker is associated with the binding of uridine diphosphate glucose (UPG) and the U-shaped loop is involved in binding both UPG and ABA.It was also found that it is through tuning the dynamics of the U-shaped loop that is accompanied by the movement of tyrosine (Y388) that the persulfidation of cysteine (C311) leads to the catalytic residue histidine (H16) being in place, preparing for the deprotonation of ABA, and then reorientates UPG and deprotonated ABA closer to the 'Michaelis' complex, facilitating the transfer of a glucose moiety. Ultimately, the persulfidation of UGT71C5 is in favor of ABA glycosylation. Our results provide insights into the molecular details of UGT71C5 recognizing substrates and insights concerning persulfidation as a possible mechanism for hydrogen sulfide (H2S) to modulate the content of ABA, which helps us understand how modulating ABA level strengthens plant tolerance.
Collapse
Affiliation(s)
- Miaomiao Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (L.X.); (L.G.)
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences (IBFC, CAAS), Changsha 410221, China
| | - Lihui Xiao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (L.X.); (L.G.)
| | - Ke Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (L.X.); (L.G.)
| | - Taotao Qiu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (L.X.); (L.G.)
| | - Sisong Lai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (L.X.); (L.G.)
| | - Guojing Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (L.X.); (L.G.)
| | - Lingxi Geng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (L.X.); (L.G.)
| | - Siqi Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences (IBFC, CAAS), Changsha 410221, China
| | - Yanjie Xie
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (L.X.); (L.G.)
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences (IBFC, CAAS), Changsha 410221, China
| |
Collapse
|
10
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
11
|
Kopriva S, Rahimzadeh Karvansara P, Takahashi H. Adaptive modifications in plant sulfur metabolism over evolutionary time. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4697-4711. [PMID: 38841807 PMCID: PMC11350084 DOI: 10.1093/jxb/erae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Sulfur (S) is an essential element for life on Earth. Plants are able to take up and utilize sulfate (SO42-), the most oxidized inorganic form of S compounds on Earth, through the reductive S assimilatory pathway that couples with photosynthetic energy conversion. Organic S compounds are subsequently synthesized in plants and made accessible to animals, primarily as the amino acid methionine. Thus, plant S metabolism clearly has nutritional importance in the global food chain. S metabolites may be part of redox regulation and drivers of essential metabolic pathways as cofactors and prosthetic groups, such as Fe-S centers, CoA, thiamine, and lipoic acid. The evolution of the S metabolic pathways and enzymes reflects the critical importance of functional innovation and diversifications. Here we review the major evolutionary alterations that took place in S metabolism across different scales and outline research directions that may take advantage of understanding the evolutionary adaptations.
Collapse
Affiliation(s)
- Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Parisa Rahimzadeh Karvansara
- Institute of Molecular Photosynthesis, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Zhang J, Aroca A, Hervás M, Navarro JA, Moreno I, Xie Y, Romero LC, Gotor C. Analysis of sulfide signaling in rice highlights specific drought responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5130-5145. [PMID: 38808567 PMCID: PMC11349868 DOI: 10.1093/jxb/erae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 05/30/2024]
Abstract
Hydrogen sulfide regulates essential plant processes, including adaptation responses to stress situations, and the best characterized mechanism of action of sulfide consists of the post-translational modification of persulfidation. In this study, we reveal the first persulfidation proteome described in rice including 3443 different persulfidated proteins that participate in a broad range of biological processes and metabolic pathways. In addition, comparative proteomics revealed specific proteins involved in sulfide signaling during drought responses. Several proteins are involved in the maintenance of cellular redox homeostasis, the tricarboxylic acid cycle and energy-related pathways, and ion transmembrane transport and cellular water homeostasis, with the aquaporin family showing the highest differential levels of persulfidation. We revealed that water transport activity is regulated by sulfide which correlates with an increasing level of persulfidation of aquaporins. Our findings emphasize the impact of persulfidation on total ATP levels, fatty acid composition, levels of reactive oxygen species, antioxidant enzymatic activities, and relative water content. Interestingly, the role of persulfidation in aquaporin transport activity as an adaptation response in rice differs from current knowledge of Arabidopsis, which highlights the distinct role of sulfide in improving rice tolerance to drought.
Collapse
Affiliation(s)
- Jing Zhang
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - José A Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Inmaculada Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| |
Collapse
|
13
|
Ye T, Ma T, Chen Y, Liu C, Jiao Z, Wang X, Xue H. The role of redox-active small molecules and oxidative protein post-translational modifications in seed aging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108810. [PMID: 38857563 DOI: 10.1016/j.plaphy.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Seed vigor is a crucial indicator of seed quality. Variations in seed vigor are closely associated with seed properties and storage conditions. The vigor of mature seeds progressively declines during storage, which is called seed deterioration or aging. Seed aging induces a cascade of cellular damage, including impaired subcellular structures and macromolecules, such as lipids, proteins, and DNA. Reactive oxygen species (ROS) act as signaling molecules during seed aging causing oxidative damage and triggering programmed cell death (PCD). Mitochondria are the main site of ROS production and change morphology and function before other organelles during aging. The roles of other small redox-active molecules in regulating cell and seed vigor, such as nitric oxide (NO) and hydrogen sulfide (H2S), were identified later. ROS, NO, and H2S typically regulate protein function through post-translational modifications (PTMs), including carbonylation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. These signaling molecules as well as the PTMs they induce interact to regulate cell fate and seed vigor. This review was conducted to describe the physiological changes and underlying molecular mechanisms that in seed aging and provides a comprehensive view of how ROS, NO, and H2S affect cell death and seed vigor.
Collapse
Affiliation(s)
- Tiantian Ye
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Tianxiao Ma
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Yang Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Chang Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Zhiyuan Jiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Xiaofeng Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Hua Xue
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Bhadwal SS, Verma S, Hassan S, Kaur S. Unraveling the potential of hydrogen sulfide as a signaling molecule for plant development and environmental stress responses: A state-of-the-art review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108730. [PMID: 38763004 DOI: 10.1016/j.plaphy.2024.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Over the past decade, a plethora of research has illuminated the multifaceted roles of hydrogen sulfide (H2S) in plant physiology. This gaseous molecule, endowed with signaling properties, plays a pivotal role in mitigating metal-induced oxidative stress and strengthening the plant's ability to withstand harsh environmental conditions. It fulfils several functions in regulating plant development while ameliorating the adverse impacts of environmental stressors. The intricate connections among nitric oxide (NO), hydrogen peroxide (H2O2), and hydrogen sulfide in plant signaling, along with their involvement in direct chemical processes, are contributory in facilitating post-translational modifications (PTMs) of proteins that target cysteine residues. Therefore, the present review offers a comprehensive overview of sulfur metabolic pathways regulated by hydrogen sulfide, alongside the advancements in understanding its biological activities in plant growth and development. Specifically, it centres on the physiological roles of H2S in responding to environmental stressors to explore the crucial significance of different exogenously administered hydrogen sulfide donors in mitigating the toxicity associated with heavy metals (HMs). These donors are of utmost importance in facilitating the plant development, stabilization of physiological and biochemical processes, and augmentation of anti-oxidative metabolic pathways. Furthermore, the review delves into the interaction between different growth regulators and endogenous hydrogen sulfide and their contributions to mitigating metal-induced phytotoxicity.
Collapse
Affiliation(s)
- Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shagun Verma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
15
|
Muñoz-Vargas MA, González-Gordo S, Aroca A, Romero LC, Gotor C, Palma JM, Corpas FJ. Persulfidome of Sweet Pepper Fruits during Ripening: The Case Study of Leucine Aminopeptidase That Is Positively Modulated by H 2S. Antioxidants (Basel) 2024; 13:719. [PMID: 38929158 PMCID: PMC11200738 DOI: 10.3390/antiox13060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Protein persulfidation is a thiol-based oxidative posttranslational modification (oxiPTM) that involves the modification of susceptible cysteine thiol groups present in peptides and proteins through hydrogen sulfide (H2S), thus affecting their function. Using sweet pepper (Capsicum annuum L.) fruits as a model material at different stages of ripening (immature green and ripe red), endogenous persulfidated proteins (persulfidome) were labeled using the dimedone switch method and identified using liquid chromatography and mass spectrometry analysis (LC-MS/MS). A total of 891 persulfidated proteins were found in pepper fruits, either immature green or ripe red. Among these, 370 proteins were exclusively present in green pepper, 237 proteins were exclusively present in red pepper, and 284 proteins were shared between both stages of ripening. A comparative analysis of the pepper persulfidome with that described in Arabidopsis leaves allowed the identification of 25% of common proteins. Among these proteins, glutathione reductase (GR) and leucine aminopeptidase (LAP) were selected to evaluate the effect of persulfidation using an in vitro approach. GR activity was unaffected, whereas LAP activity increased by 3-fold after persulfidation. Furthermore, this effect was reverted through treatment with dithiothreitol (DTT). To our knowledge, this is the first persulfidome described in fruits, which opens new avenues to study H2S metabolism. Additionally, the results obtained lead us to hypothesize that LAP could be involved in glutathione (GSH) recycling in pepper fruits.
Collapse
Affiliation(s)
- María A. Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.M.P.)
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.M.P.)
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain; (A.A.); (L.C.R.); (C.G.)
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain; (A.A.); (L.C.R.); (C.G.)
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain; (A.A.); (L.C.R.); (C.G.)
| | - José M. Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.M.P.)
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.M.P.)
| |
Collapse
|
16
|
Liu Z, Liu Y, Liao W. Hydrogen Sulfide in the Oxidative Stress Response of Plants: Crosstalk with Reactive Oxygen Species. Int J Mol Sci 2024; 25:1935. [PMID: 38339212 PMCID: PMC10856001 DOI: 10.3390/ijms25031935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Growing evidence suggests that exposure of plants to unfavorable environments leads to the accumulation of hydrogen sulfide (H2S) and reactive oxygen species (ROS). H2S interacts with the ROS-mediated oxidative stress response network at multiple levels. Therefore, it is essential to elucidate the mechanisms by which H2S and ROS interact. The molecular mechanism of action by H2S relies on the post-translational modification of the cysteine sulfur group (-SH), known as persulfidation. H2S cannot react directly with -SH, but it can react with oxidized cysteine residues, and this oxidation process is induced by H2O2. Evidently, ROS is involved in the signaling pathway of H2S and plays a significant role. In this review, we summarize the role of H2S-mediated post-translational modification mechanisms in oxidative stress responses. Moreover, the mechanism of interaction between H2S and ROS in the regulation of redox reactions is focused upon, and the positive cooperative role of H2S and ROS is elucidated. Subsequently, based on the existing evidence and clues, we propose some potential problems and new clues to be explored, which are crucial for the development of the crosstalk mechanism of H2S and ROS in plants.
Collapse
Affiliation(s)
| | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China; (Z.L.); (Y.L.)
| |
Collapse
|
17
|
Xiang W, Guo Z, Han J, Gao Y, Ma F, Gong X. The apple autophagy-related gene MdATG10 improves drought tolerance and water use efficiency in transgenic apple plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108214. [PMID: 38016369 DOI: 10.1016/j.plaphy.2023.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
The Loess Plateau is the main apple production area in China; low precipitation is one of the most important factors limiting apple production here. Autophagy is a conserved process in eukaryotes that recycles cell contents or damaged macromolecules. Previously, we identified an autophagy-related gene MdATG10 from apple plants, which was involved in the responses to stressed conditions. In this study, we found that MdATG10 improved the drought tolerance and water use efficiency (WUE) of transgenic apple plants. MdATG10-overexpressing (OE) apple plants were more tolerant of short-term drought stress, as evidenced by their fewer drought-related injuries, compared with wild-type (WT) apple plants. In addition, the WUE of OE plants was higher than that of WT plants under long-term moderate water deficit conditions. The growth rate, biomass accumulation, photosynthetic efficiency, and stomatal aperture were higher in OE plants than in WT plants under long-term moderate drought conditions. During the process of adapting to drought, the expressions of genes involved in the abscisic acid (ABA) pathway were reduced in OE plants to decrease the synthesis of ABA, which helped maintain the stomatal opening for gas exchange. Furthermore, autophagic activity was higher in OE plants than in WT plants, as evidenced by the higher expressions of ATG genes and the greater number of autophagy bodies. In sum, our results suggested that overexpression of MdATG10 improved drought tolerance and WUE in apple plants, possibly by regulating stomatal movement and enhancing autophagic activity, which then enhanced the photosynthetic efficiency and reduced damage, as well as the reactive oxygen species (ROS) accumulation in apple plants.
Collapse
Affiliation(s)
- Weijia Xiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zijian Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jifa Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiran Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaoqing Gong
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
18
|
Mallén-Ponce MJ, Pérez-Pérez ME. Redox-mediated activation of ATG3 promotes ATG8 lipidation and autophagy progression in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2023; 194:359-375. [PMID: 37772945 PMCID: PMC10756753 DOI: 10.1093/plphys/kiad520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Autophagy is one of the main degradative pathways used by eukaryotic organisms to eliminate useless or damaged intracellular material to maintain cellular homeostasis under stress conditions. Mounting evidence indicates a strong interplay between the generation of reactive oxygen species and the activation of autophagy. Although a tight redox regulation of autophagy has been shown in several organisms, including microalgae, the molecular mechanisms underlying this control remain poorly understood. In this study, we have performed an in-depth in vitro and in vivo redox characterization of ATG3, an E2-activating enzyme involved in ATG8 lipidation and autophagosome formation, from 2 evolutionary distant unicellular model organisms: the green microalga Chlamydomonas (Chlamydomonas reinhardtii) and the budding yeast Saccharomyces cerevisiae. Our results indicated that ATG3 activity from both organisms is subjected to redox regulation since these proteins require reducing equivalents to transfer ATG8 to the phospholipid phosphatidylethanolamine. We established the catalytic Cys of ATG3 as a redox target in algal and yeast proteins and showed that the oxidoreductase thioredoxin efficiently reduces ATG3. Moreover, in vivo studies revealed that the redox state of ATG3 from Chlamydomonas undergoes profound changes under autophagy-activating stress conditions, such as the absence of photoprotective carotenoids, the inhibition of fatty acid synthesis, or high light irradiance. Thus, our results indicate that the redox-mediated activation of ATG3 regulates ATG8 lipidation under oxidative stress conditions in this model microalga.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Sevilla, Sevilla 41092, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Sevilla, Sevilla 41092, Spain
| |
Collapse
|
19
|
Qi H, Wang Y, Bao Y, Bassham DC, Chen L, Chen QF, Hou S, Hwang I, Huang L, Lai Z, Li F, Liu Y, Qiu R, Wang H, Wang P, Xie Q, Zeng Y, Zhuang X, Gao C, Jiang L, Xiao S. Studying plant autophagy: challenges and recommended methodologies. ADVANCED BIOTECHNOLOGY 2023; 1:2. [PMID: 39883189 PMCID: PMC11727600 DOI: 10.1007/s44307-023-00002-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 01/31/2025]
Abstract
In plants, autophagy is a conserved process by which intracellular materials, including damaged proteins, aggregates, and entire organelles, are trafficked to the vacuole for degradation, thus maintaining cellular homeostasis. The past few decades have seen extensive research into the core components of the central autophagy machinery and their physiological roles in plant growth and development as well as responses to biotic and abiotic stresses. Moreover, several methods have been established for monitoring autophagic activities in plants, and these have greatly facilitated plant autophagy research. However, some of the methodologies are prone to misuse or misinterpretation, sometimes casting doubt on the reliability of the conclusions being drawn about plant autophagy. Here, we summarize the methods that are widely used for monitoring plant autophagy at the physiological, microscopic, and biochemical levels, including discussions of their advantages and limitations, to provide a guide for studying this important process.
Collapse
Affiliation(s)
- Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yao Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yan Bao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Liang Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology and Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Li Huang
- Institute of Plant and Food Science, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Pengwei Wang
- MOE Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Shatin Hong Kong, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Shatin Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Shatin Hong Kong, China.
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
20
|
Agbemafle W, Wong MM, Bassham DC. Transcriptional and post-translational regulation of plant autophagy. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6006-6022. [PMID: 37358252 PMCID: PMC10575704 DOI: 10.1093/jxb/erad211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
In response to changing environmental conditions, plants activate cellular responses to enable them to adapt. One such response is autophagy, in which cellular components, for example proteins and organelles, are delivered to the vacuole for degradation. Autophagy is activated by a wide range of conditions, and the regulatory pathways controlling this activation are now being elucidated. However, key aspects of how these factors may function together to properly modulate autophagy in response to specific internal or external signals are yet to be discovered. In this review we discuss mechanisms for regulation of autophagy in response to environmental stress and disruptions in cell homeostasis. These pathways include post-translational modification of proteins required for autophagy activation and progression, control of protein stability of the autophagy machinery, and transcriptional regulation, resulting in changes in transcription of genes involved in autophagy. In particular, we highlight potential connections between the roles of key regulators and explore gaps in research, the filling of which can further our understanding of the autophagy regulatory network in plants.
Collapse
Affiliation(s)
- William Agbemafle
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Min May Wong
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
21
|
Aroca A, García-Díaz I, García-Calderón M, Gotor C, Márquez AJ, Betti M. Photorespiration: regulation and new insights on the potential role of persulfidation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6023-6039. [PMID: 37486799 PMCID: PMC10575701 DOI: 10.1093/jxb/erad291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Photorespiration has been considered a 'futile' cycle in C3 plants, necessary to detoxify and recycle the metabolites generated by the oxygenating activity of Rubisco. However, several reports indicate that this metabolic route plays a fundamental role in plant metabolism and constitutes a very interesting research topic. Many open questions still remain with regard to photorespiration. One of these questions is how the photorespiratory process is regulated in plants and what factors contribute to this regulation. In this review, we summarize recent advances in the regulation of the photorespiratory pathway with a special focus on the transcriptional and post-translational regulation of photorespiration and the interconnections of this process with nitrogen and sulfur metabolism. Recent findings on sulfide signaling and protein persulfidation are also described.
Collapse
Affiliation(s)
- Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092 Sevilla, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Inmaculada García-Díaz
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
22
|
Zhou Y, Zheng T, Cai M, Feng L, Chi X, Shen P, Wang X, Wan Z, Yuan C, Zhang M, Han Y, Wang J, Pan H, Cheng T, Zhang Q. Genome assembly and resequencing analyses provide new insights into the evolution, domestication and ornamental traits of crape myrtle. HORTICULTURE RESEARCH 2023; 10:uhad146. [PMID: 37701453 PMCID: PMC10493637 DOI: 10.1093/hr/uhad146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/15/2023] [Indexed: 09/14/2023]
Abstract
Crape myrtle (Lagerstroemia indica) is a globally used ornamental woody plant and is the representative species of Lagerstroemia. However, studies on the evolution and genomic breeding of L. indica have been hindered by the lack of a reference genome. Here we assembled the first high-quality genome of L. indica using PacBio combined with Hi-C scaffolding to anchor the 329.14-Mb genome assembly into 24 pseudochromosomes. We detected a previously undescribed independent whole-genome triplication event occurring 35.5 million years ago in L. indica following its divergence from Punica granatum. After resequencing 73 accessions of Lagerstroemia, the main parents of modern crape myrtle cultivars were found to be L. indica and L. fauriei. During the process of domestication, genetic diversity tended to decrease in many plants, but this was not observed in L. indica. We constructed a high-density genetic linkage map with an average map distance of 0.33 cM. Furthermore, we integrated the results of quantitative trait locus (QTL) using genetic mapping and bulk segregant analysis (BSA), revealing that the major-effect interval controlling internode length (IL) is located on chr1, which contains CDL15, CRG98, and GID1b1 associated with the phytohormone pathways. Analysis of gene expression of the red, purple, and white flower-colour flavonoid pathways revealed that differential expression of multiple genes determined the flower colour of L. indica, with white flowers having the lowest gene expression. In addition, BSA of purple- and green-leaved individuals of populations of L. indica was performed, and the leaf colour loci were mapped to chr12 and chr17. Within these intervals, we identified MYB35, NCED, and KAS1. Our genome assembly provided a foundation for investigating the evolution, population structure, and differentiation of Myrtaceae species and accelerating the molecular breeding of L. indica.
Collapse
Affiliation(s)
- Yang Zhou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Ming Cai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Lu Feng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xiufeng Chi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Ping Shen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xin Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Zhiting Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
23
|
Luo M, Law KC, He Y, Chung KK, Po MK, Feng L, Chung KP, Gao C, Zhuang X, Jiang L. Arabidopsis AUTOPHAGY-RELATED2 is essential for ATG18a and ATG9 trafficking during autophagosome closure. PLANT PHYSIOLOGY 2023; 193:304-321. [PMID: 37195145 DOI: 10.1093/plphys/kiad287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
As a fundamental metabolic pathway, autophagy plays important roles in plant growth and development, particularly under stress conditions. A set of autophagy-related (ATG) proteins is recruited for the formation of a double-membrane autophagosome. Among them, the essential roles of ATG2, ATG18, and ATG9 have been well established in plant autophagy via genetic analysis; however, the underlying molecular mechanism for ATG2 in plant autophagosome formation remains poorly understood. In this study, we focused on the specific role of ATG2 in the trafficking of ATG18a and ATG9 during autophagy in Arabidopsis (Arabidopsis thaliana). Under normal conditions, YFP-ATG18a proteins are partially localized on late endosomes and translocated to ATG8e-labeled autophagosomes upon autophagic induction. Real-time imaging analysis revealed sequential recruitment of ATG18a on the phagophore membrane, showing that ATG18a specifically decorated the closing edges and finally disassociated from the completed autophagosome. However, in the absence of ATG2, most of the YFP-ATG18a proteins are arrested on autophagosomal membranes. Ultrastructural and 3D tomography analysis showed that unclosed autophagosome structures are accumulated in the atg2 mutant, displaying direct connections with the endoplasmic reticulum membrane and vesicular structures. Dynamic analysis of ATG9 vesicles suggested that ATG2 depletion also affects the association between ATG9 vesicles and the autophagosomal membrane. Furthermore, using interaction and recruitment analysis, we mapped the interaction relationship between ATG2 and ATG18a, implying a possible role of ATG18a in recruiting ATG2 and ATG9 to the membrane. Our findings unveil a specific role of ATG2 in coordinating ATG18a and ATG9 trafficking to mediate autophagosome closure in Arabidopsis.
Collapse
Affiliation(s)
- Mengqian Luo
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai Ching Law
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yilin He
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Kit Chung
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Muk Kuen Po
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lanlan Feng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin Pan Chung
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaohong Zhuang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Jurado-Flores A, Aroca A, Romero LC, Gotor C. Sulfide promotes tolerance to drought through protein persulfidation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4654-4669. [PMID: 37148339 PMCID: PMC10433926 DOI: 10.1093/jxb/erad165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Hydrogen sulfide (H2S) is a signaling molecule that regulates essential plant processes. In this study, the role of H2S during drought was analysed, focusing on the underlying mechanism. Pretreatments with H2S before imposing drought on plants substantially improved the characteristic stressed phenotypes under drought and decreased the levels of typical biochemical stress markers such as anthocyanin, proline, and hydrogen peroxide. H2S also regulated drought-responsive genes and amino acid metabolism, and repressed drought-induced bulk autophagy and protein ubiquitination, demonstrating the protective effects of H2S pretreatment. Quantitative proteomic analysis identified 887 significantly different persulfidated proteins between control and drought stress plants. Bioinformatic analyses of the proteins more persulfidated in drought revealed that the most enriched biological processes were cellular response to oxidative stress and hydrogen peroxide catabolism. Protein degradation, abiotic stress responses, and the phenylpropanoid pathway were also highlighted, suggesting the importance of persulfidation in coping with drought-induced stress. Our findings emphasize the role of H2S as a promoter of enhanced tolerance to drought, enabling plants to respond more rapidly and efficiently. Furthermore, the main role of protein persulfidation in alleviating reactive oxygen species accumulation and balancing redox homeostasis under drought stress is highlighted.
Collapse
Affiliation(s)
- Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
25
|
Li M, Wu T, Wang S, Duan T, Huang S, Xie Y. The Modulation of Sucrose Nonfermenting 1-Related Protein Kinase 2.6 State by Persulfidation and Phosphorylation: Insights from Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:11512. [PMID: 37511271 PMCID: PMC10380758 DOI: 10.3390/ijms241411512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
SnRK2.6 (SUCROSE NONFERMENTING 1-RELATED PROTEIN KINASE2.6) has been characterized as a molecular switch for the intracellular abscisic acid (ABA) signal-transduction pathway. Normally, SnRK2.6 is kept in an "off" state, forming a binary complex with protein phosphatase type 2Cs (PP2Cs). Upon stressful conditions, SnRK2.6 turns into an "on" state by its release from PP2Cs and then phosphorylation at Ser175. However, how the "on" and "off" states for SnRK2.6 are fine-tuned, thereby controlling the initiation and braking processes of ABA signaling, is still largely unclear. SnRK2.6 activity was tightly regulated through protein post-translational modifications (PTM), such as persulfidation and phosphorylation. Taking advantage of molecular dynamics simulations, our results showed that Cys131/137 persulfidation on SnRK2.6 induces destabilized binding and weakened interactions between SnRK2.6 and HAB1 (HYPERSENSITIVE TO ABA1), an important PP2C family protein. This unfavorable effect on the association of the SnRK2.6-HAB1 complex suggests that persulfidation functions are a positive regulator of ABA signaling initiation. In addition, Ser267 phosphorylation in persulfidated SnRK2.6 renders a stable physical association between SnRK2.6 and HAB1, a key characterization for SnRK2.6 inhibition. Rather than Ser175, HAB1 cannot dephosphorylate Ser267 in SnRK2.6, which implies that the retained phosphorylation status of Ser267 could ensure that the activated SnRK2.6 reforms the binary complex to cease ABA signaling. Taken together, our findings expand current knowledge concerning the regulation of persulfidation and phosphorylation on the state transition of SnRK2.6 and provide insights into the fine-tuned mechanism of ABA signaling.
Collapse
Affiliation(s)
- Miaomiao Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuhan Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianqi Duan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Siqi Huang
- Institute of Bast Fiber Crops (IBFC), Chinese Academy of Agricultural Sciences (CAAS), Changsha 410205, China
| | - Yanjie Xie
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Bast Fiber Crops (IBFC), Chinese Academy of Agricultural Sciences (CAAS), Changsha 410205, China
| |
Collapse
|
26
|
Yao G, Gou S, Zhong T, Wei S, An X, Sun H, Sun C, Hu K, Zhang H. Persulfidation of transcription factor MYB10 inhibits anthocyanin synthesis in red-skinned pear. PLANT PHYSIOLOGY 2023; 192:2185-2202. [PMID: 36797801 PMCID: PMC10315305 DOI: 10.1093/plphys/kiad100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that delays color change during fruit ripening. Whether H2S affects anthocyanin biosynthesis in red-skinned pears (Pyrus L.) remains unclear. Here, we found that H2S substantially inhibits anthocyanin accumulation in red-skinned pears and the expression of several genes encoding transcription factors is affected in response to H2S signaling. For example, PyMYB10 and PyMYB73 were down-regulated, whereas PyMYB114 and PyMYB6 were up-regulated. Bioinformatics analysis showed that PyMYB73 and PyMYB6, each containing an EAR motif, may negatively regulate anthocyanin accumulation. Transient expression analysis showed that PyMYB73 substantially promotes anthocyanin biosynthesis by co-transforming with PyMYB10/PyMYB114 + PybHLH3; however, PyMYB6 inhibited anthocyanin biosynthesis in strawberry (Fragaria vesca) receptacles and pear fruits, and PyMYB73 interacted with PyMYB10 and PyMYB6 but not PyMYB114 or PybHLH3. Further investigation showed that Cys194 and Cys218 of PyMYB10 were modified by persulfidation and that PyMYB10Cys218Ala substantially increased anthocyanin accumulation by a transient transformation system. Co-transformation of PyMYB10Cys218Ala + PyMYB73/PyMYB6 also promoted anthocyanin accumulation in pear fruits. Yeast two-hybrid assays showed that the mutation of PyMYB10 did not affect the interaction between PyMYB10 and PyMYB73, but it inhibited interaction with PyMYB6. Moreover, H2S weakened the interaction between PyMYB10 and PyMYB73 but enhanced the interaction with PyMYB6. Thus, we provided a model in which PyMYB10 undergoes persulfidation at Cys218, enhancing the interaction with PyMYB6 and reducing the interaction with PyMYB73. These subsequently results in lower expression of the anthocyanin biosynthesis-related genes Pyrus dihydroflavonol 4-reductase (PyDFR), Pyrus anthocyanidin synthase (PyANS), Pyrus UDP-glucose: flavonoid 3-glucosyl transferase (PyUFGT) and Pyrus glutathione S-transferase (PyGST), thereby inhibiting anthocyanin accumulation in red-skinned pears. Our findings provided a molecular mechanism for H2S-mediated anthocyanin biosynthesis in red-skinned pears.
Collapse
Affiliation(s)
- Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shasha Gou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tingying Zhong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuwei Wei
- Shandong Institute of Pomology, Tai’an 271000, China
| | - Xin An
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hongye Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chen Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
27
|
Sun C, Yao GF, Li LX, Li TT, Zhao YQ, Hu KD, Zhang C, Zhang H. E3 ligase BRG3 persulfidation delays tomato ripening by reducing ubiquitination of the repressor WRKY71. PLANT PHYSIOLOGY 2023; 192:616-632. [PMID: 36732924 PMCID: PMC10152667 DOI: 10.1093/plphys/kiad070] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 05/03/2023]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule reported to play multiple roles in fruit ripening. However, the molecular mechanisms underlying H2S-mediated delay in fruit ripening remain to be established. Here, the gene encoding a WRKY transcription factor, WRKY71, was identified as substantially upregulated in H2S-treated tomato (Solanum lycopersicum) via transcriptome profiling. The expression of WRKY71 was negatively associated with that of CYANOALANINE SYNTHASE1 (CAS1). Transient and stable genetic modification experiments disclosed that WRKY71 acts as a repressor of the tomato ripening process. CAS1 appears to play an opposite role, based on the finding that the ripening process was delayed in the cas1 mutant and accelerated in CAS1-OE tomatoes. Dual-luciferase reporter assay, yeast one-hybrid, electrophoretic mobility shift assay, and transient transformation experiments showed that WRKY71 bound to the CAS1 promoter and suppressed its activation. Moreover, the persulfidation of WRKY71 enhanced its binding ability to the CAS1 promoter. Data from luciferase complementation and Y2H assays confirmed that WRKY71 interacts with a BOI-related E3 ubiquitin-protein ligase 3 (BRG3) and is ubiquitinated in vitro. Further experiments showed that modification of BRG3 via persulfidation at Cys206 and Cys212 led to reduced ubiquitination activity. Our findings support a model whereby BRG3 undergoes persulfidation at Cys206 and Cys212, leading to reduced ubiquitination activity and decreased interactions with the WRKY71 transcript, with a subsequent increase in binding activity of the persulfidated WRKY71 to the CAS1 promoter, resulting in its transcriptional inhibition and thereby delayed ripening of tomatoes. Our collective findings provide insights into a mechanism of H2S-mediated regulation of tomato fruit ripening.
Collapse
Affiliation(s)
- Chen Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Gai-fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li-xia Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ting-ting Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu-qi Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kang-di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Conghe Zhang
- Department of Agriculture Sciences, Winall Hi-Tech Seed Co., Ltd, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
28
|
Mallén-Ponce MJ, Gámez-Arcas S, Pérez-Pérez ME. Redox partner interactions in the ATG8 lipidation system in microalgae. Free Radic Biol Med 2023; 203:58-68. [PMID: 37028463 DOI: 10.1016/j.freeradbiomed.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
Autophagy is a catabolic pathway that functions as a degradative and recycling process to maintain cellular homeostasis in most eukaryotic cells, including photosynthetic organisms such as microalgae. This process involves the formation of double-membrane vesicles called autophagosomes, which engulf the material to be degraded and recycled in lytic compartments. Autophagy is mediated by a set of highly conserved autophagy-related (ATG) proteins that play a fundamental role in the formation of the autophagosome. The ATG8 ubiquitin-like system catalyzes the conjugation of ATG8 to the lipid phosphatidylethanolamine, an essential reaction in the autophagy process. Several studies identified the ATG8 system and other core ATG proteins in photosynthetic eukaryotes. However, how ATG8 lipidation is driven and regulated in these organisms is not fully understood yet. A detailed analysis of representative genomes from the entire microalgal lineage revealed a high conservation of ATG proteins in these organisms with the remarkable exception of red algae, which likely lost ATG genes before diversification. Here, we examine in silico the mechanisms and dynamic interactions between different components of the ATG8 lipidation system in plants and algae. Moreover, we also discuss the role of redox post-translational modifications in the regulation of ATG proteins and the activation of autophagy in these organisms by reactive oxygen species.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Institut de Biologie Paris-Seine, UMR 7238, CNRS, Sorbonne Université, 75005, Paris, France
| | - Samuel Gámez-Arcas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092, Sevilla, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, 41092, Sevilla, Spain.
| |
Collapse
|
29
|
Liao CY, Pu Y, Nolan TM, Montes C, Guo H, Walley JW, Yin Y, Bassham DC. Brassinosteroids modulate autophagy through phosphorylation of RAPTOR1B by the GSK3-like kinase BIN2 in Arabidopsis. Autophagy 2023; 19:1293-1310. [PMID: 36151786 PMCID: PMC10012961 DOI: 10.1080/15548627.2022.2124501] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy is a conserved recycling process that maintains cellular homeostasis during environmental stress. Autophagy is negatively regulated by TOR (target of rapamycin), a nutrient-regulated protein kinase that in plants is activated by several phytohormones, leading to increased growth. However, the detailed molecular mechanisms by which TOR integrates autophagy and hormone signaling are poorly understood. Here, we show that TOR modulates brassinosteroid (BR)-regulated plant growth and stress-response pathways. Active TOR was required for full BR-mediated growth in Arabidopsis thaliana. Autophagy was constitutively up-regulated upon blocking BR biosynthesis or signaling, and down-regulated by increasing the activity of the BR pathway. BIN2 (brassinosteroid-insensitive 2) kinase, a GSK3-like kinase functioning as a negative regulator in BR signaling, directly phosphorylated RAPTOR1B (regulatory-associated protein of TOR 1B), a substrate-recruiting subunit in the TOR complex, at a conserved serine residue within a typical BIN2 phosphorylation motif. Mutation of RAPTOR1B serine 916 to alanine, to block phosphorylation by BIN2, repressed autophagy and increased phosphorylation of the TOR substrate ATG13a (autophagy-related protein 13a). By contrast, this mutation had only a limited effect on growth. We present a model in which RAPTOR1B is phosphorylated and inhibited by BIN2 when BRs are absent, activating the autophagy pathway. When BRs signal and inhibit BIN2, RAPTOR1B is thus less inhibited by BIN2 phosphorylation. This leads to increased TOR activity and ATG13a phosphorylation, and decreased autophagy activity. Our studies define a new mechanism by which coordination between BR and TOR signaling pathways helps to maintain the balance between plant growth and stress responses.
Collapse
Affiliation(s)
- Ching-Yi Liao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Yunting Pu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Christian Montes
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
30
|
Zhou H, Huang J, Willems P, Van Breusegem F, Xie Y. Cysteine thiol-based post-translational modification: What do we know about transcription factors? TRENDS IN PLANT SCIENCE 2023; 28:415-428. [PMID: 36494303 DOI: 10.1016/j.tplants.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Reactive electrophilic species are ubiquitous in plant cells, where they contribute to specific redox-regulated signaling events. Redox signaling is known to modulate gene expression during diverse biological processes, including plant growth, development, and environmental stress responses. Emerging data demonstrates that transcription factors (TFs) are a main target of cysteine thiol-based oxidative post-translational modifications (OxiPTMs), which can alter their transcriptional activity and thereby convey redox information to the nucleus. Here, we review the significant progress that has been made in characterizing cysteine thiol-based OxiPTMs, their biochemical properties, and their functional effects on plant TFs. We discuss the underlying mechanism of redox regulation and its contribution to various physiological processes as well as still outstanding challenges in redox regulation of plant gene expression.
Collapse
Affiliation(s)
- Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; VIB Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
31
|
Fernández-Fernández ÁD, Stael S, Van Breusegem F. Mechanisms controlling plant proteases and their substrates. Cell Death Differ 2023; 30:1047-1058. [PMID: 36755073 PMCID: PMC10070405 DOI: 10.1038/s41418-023-01120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/03/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
In plants, proteolysis is emerging as an important field of study due to a growing understanding of the critical involvement of proteases in plant cell death, disease and development. Because proteases irreversibly modify the structure and function of their target substrates, proteolytic activities are stringently regulated at multiple levels. Most proteases are produced as dormant isoforms and only activated in specific conditions such as altered ion fluxes or by post-translational modifications. Some of the regulatory mechanisms initiating and modulating proteolytic activities are restricted in time and space, thereby ensuring precision activity, and minimizing unwanted side effects. Currently, the activation mechanisms and the substrates of only a few plant proteases have been studied in detail. Most studies focus on the role of proteases in pathogen perception and subsequent modulation of the plant reactions, including the hypersensitive response (HR). Proteases are also required for the maturation of coexpressed peptide hormones that lead essential processes within the immune response and development. Here, we review the known mechanisms for the activation of plant proteases, including post-translational modifications, together with the effects of proteinaceous inhibitors.
Collapse
Affiliation(s)
- Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zürich, Switzerland
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Uppsala BioCenter, Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
32
|
Jurado-Flores A, Gotor C, Romero LC. Proteome Dynamics of Persulfidation in Leaf Tissue under Light/Dark Conditions and Carbon Deprivation. Antioxidants (Basel) 2023; 12:antiox12040789. [PMID: 37107163 PMCID: PMC10135009 DOI: 10.3390/antiox12040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Hydrogen sulfide (H2S) acts as a signaling molecule in plants, bacteria, and mammals, regulating various physiological and pathological processes. The molecular mechanism by which hydrogen sulfide exerts its action involves the posttranslational modification of cysteine residues to form a persulfidated thiol motif. This research aimed to study the regulation of protein persulfidation. We used a label-free quantitative approach to measure the protein persulfidation profile in leaves under different growth conditions such as light regimen and carbon deprivation. The proteomic analysis identified a total of 4599 differentially persulfidated proteins, of which 1115 were differentially persulfidated between light and dark conditions. The 544 proteins that were more persulfidated in the dark were analyzed, and showed significant enrichment in functions and pathways related to protein folding and processing in the endoplasmic reticulum. Under light conditions, the persulfidation profile changed, and the number of differentially persulfidated proteins increased up to 913, with the proteasome and ubiquitin-dependent and ubiquitin-independent catabolic processes being the most-affected biological processes. Under carbon starvation conditions, a cluster of 1405 proteins was affected by a reduction in their persulfidation, being involved in metabolic processes that provide primary metabolites to essential energy pathways and including enzymes involved in sulfur assimilation and sulfide production.
Collapse
Affiliation(s)
- Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
33
|
Pantaleno R, Scuffi D, Costa A, Welchen E, Torregrossa R, Whiteman M, García-Mata C. Mitochondrial H2S donor AP39 induces stomatal closure by modulating guard cell mitochondrial activity. PLANT PHYSIOLOGY 2023; 191:2001-2011. [PMID: 36560868 PMCID: PMC10022628 DOI: 10.1093/plphys/kiac591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in numerous physiological processes in plants, including gas exchange with the environment through the regulation of stomatal pore width. Guard cells (GCs) are pairs of specialized epidermal cells that delimit stomatal pores and have a higher mitochondrial density and metabolic activity than their neighboring cells. However, there is no clear evidence on the role of mitochondrial activity in stomatal closure induction. In this work, we showed that the mitochondrial-targeted H2S donor AP39 induces stomatal closure in a dose-dependent manner. Experiments using inhibitors of the mitochondrial electron transport chain (mETC) or insertional mutants in cytochrome c (CYTc) indicated that the activity of mitochondrial CYTc and/or complex IV are required for AP39-dependent stomatal closure. By using fluorescent probes and genetically encoded biosensors we reported that AP39 hyperpolarized the mitochondrial inner potential (Δψm) and increased cytosolic ATP, cytosolic hydrogen peroxide levels, and oxidation of the glutathione pool in GCs. These findings showed that mitochondrial-targeted H2S donors induce stomatal closure, modulate guard cell mETC activity, the cytosolic energetic and oxidative status, pointing to an interplay between mitochondrial H2S, mitochondrial activity, and stomatal closure.
Collapse
Affiliation(s)
- Rosario Pantaleno
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Elina Welchen
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL). Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | | | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina
| |
Collapse
|
34
|
He B, Zhang Z, Huang Z, Duan X, Wang Y, Cao J, Li L, He K, Nice EC, He W, Gao W, Shen Z. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response. Biochem Pharmacol 2023; 209:115444. [PMID: 36736962 DOI: 10.1016/j.bcp.2023.115444] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The past few decades have witnessed significant progress in the discovery of hydrogen sulfide (H2S) as a ubiquitous gaseous signaling molecule in mammalian physiology, akin to nitric oxide and carbon monoxide. As the third gasotransmitter, H2S is now known to exert a wide range of physiological and cytoprotective functions in the biological systems. However, endogenous H2S concentrations are usually low, and its potential biologic mechanisms responsible have not yet been fully clarified. Recently, a growing body of evidence has demonstrated that protein persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH) elicited by H2S, is a fundamental mechanism of H2S-mediated signaling pathways. Persulfidation, as a biological switch for protein function, plays an important role in the maintenance of cell homeostasis in response to various internal and external stress stimuli and is also implicated in numerous diseases, such as cardiovascular and neurodegenerative diseases and cancer. In this review, the biological significance of protein persulfidation by H2S in cell stress response is reviewed providing a framework for understanding the multifaceted roles of H2S. A mechanism-guided perspective can help open novel avenues for the exploitation of therapeutics based on H2S-induced persulfidation in the context of diseases.
Collapse
Affiliation(s)
- Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiangjun Cao
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kai He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing 400038, China.
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| |
Collapse
|
35
|
Hilal B, Khan TA, Fariduddin Q. Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1065-1083. [PMID: 36921557 DOI: 10.1016/j.plaphy.2023.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Adverse environmental constraints such as drought, heat, cold, salinity, and heavy metal toxicity are the primary concerns of the agricultural industry across the globe, as these stresses negatively affect yield and quality of crop production and therefore can be a major threat to world food security. Recently, it has been demonstrated that hydrogen sulfide (H2S), which is well-known as a gasotransmitter in animals, also plays a potent role in various growth and developmental processes in plants. H2S, as a potent signaling molecule, is involved in several plant processes such as in the regulation of stomatal pore movements, seed germination, photosynthesis and plant adaptation to environmental stress through gene regulation, post-translation modification of proteins and redox homeostasis. Moreover, a number of experimental studies have revealed that H2S could improve the adaptation capabilities of plants against diverse environmental constraints by mitigating the toxic and damaging effects triggered by stressful environments. An attempt has been made to uncover recent development in the biosynthetic and metabolic pathways of H2S and various physiological functions modulated in plants, H2S donors, their functional mechanism, and application in plants. Specifically, our focus has been on how H2S is involved in combating the destructive effects of abiotic stresses and its role in persulfidation. Furthermore, we have comprehensively elucidated the crosstalk of H2S with plant growth regulators.
Collapse
Affiliation(s)
- Bisma Hilal
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Tanveer Ahmad Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
36
|
Ma SH, He GQ, Navarro-Payá D, Santiago A, Cheng YZ, Jiao JB, Li HJ, Zuo DD, Sun HT, Pei MS, Yu YH, Matus JT, Guo DL. Global analysis of alternative splicing events based on long- and short-read RNA sequencing during grape berry development. Gene 2023; 852:147056. [PMID: 36414171 DOI: 10.1016/j.gene.2022.147056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Affiliation(s)
- Shuai-Hui Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Guang-Qi He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - David Navarro-Payá
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Yi-Zhe Cheng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Jia-Bing Jiao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Hui-Jie Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Ding-Ding Zuo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Hao-Ting Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Yi-He Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China.
| |
Collapse
|
37
|
Free Radicals Mediated Redox Signaling in Plant Stress Tolerance. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010204. [PMID: 36676153 PMCID: PMC9864231 DOI: 10.3390/life13010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Abiotic and biotic stresses negatively affect plant cellular and biological processes, limiting their growth and productivity. Plants respond to these environmental cues and biotrophic attackers by activating intricate metabolic-molecular signaling networks precisely and coordinately. One of the initial signaling networks activated is involved in the generation of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). Recent research has exemplified that ROS below the threshold level can stimulate plant survival by modulating redox homeostasis and regulating various genes of the stress defense pathway. In contrast, RNS regulates the stress tolerance potential of crop plants by modulating post-translation modification processes, such as S-nitrosation and tyrosine nitration, improving the stability of protein and DNA and activating the expression of downstream stress-responsive genes. RSS has recently emerged as a new warrior in combating plant stress-induced oxidative damage by modulating various physiological and stress-related processes. Several recent findings have corroborated the existence of intertwined signaling of ROS/RNS/RSS, playing a substantial role in crop stress management. However, the molecular mechanisms underlying their remarkable effect are still unknown. This review comprehensively describes recent ROS/RNS/RSS biology advancements and how they can modulate cell signaling and gene regulation for abiotic stress management in crop plants. Further, the review summarizes the latest information on how these ROS/RNS/RSS signaling interacts with other plant growth regulators and modulates essential plant functions, particularly photosynthesis, cell growth, and apoptosis.
Collapse
|
38
|
Yang Z, Wang X, Feng J, Zhu S. Biological Functions of Hydrogen Sulfide in Plants. Int J Mol Sci 2022; 23:ijms232315107. [PMID: 36499443 PMCID: PMC9736554 DOI: 10.3390/ijms232315107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Hydrogen sulfide (H2S), which is a gasotransmitter, can be biosynthesized and participates in various physiological and biochemical processes in plants. H2S also positively affects plants' adaptation to abiotic stresses. Here, we summarize the specific ways in which H2S is endogenously synthesized and metabolized in plants, along with the agents and methods used for H2S research, and outline the progress of research on the regulation of H2S on plant metabolism and morphogenesis, abiotic stress tolerance, and the series of different post-translational modifications (PTMs) in which H2S is involved, to provide a reference for future research on the mechanism of H2S action.
Collapse
Affiliation(s)
- Zhifeng Yang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Xiaoyu Wang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Jianrong Feng
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
39
|
Smythers AL, Bhatnagar N, Ha C, Majumdar P, McConnell EW, Mohanasundaram B, Hicks LM, Pandey S. Abscisic acid-controlled redox proteome of Arabidopsis and its regulation by heterotrimeric Gβ protein. THE NEW PHYTOLOGIST 2022; 236:447-463. [PMID: 35766993 DOI: 10.1111/nph.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The plant hormone abscisic acid (ABA) plays crucial roles in regulation of stress responses and growth modulation. Heterotrimeric G-proteins are key mediators of ABA responses. Both ABA and G-proteins have also been implicated in intracellular redox regulation; however, the extent to which reversible protein oxidation manipulates ABA and/or G-protein signaling remains uncharacterized. To probe the role of reversible protein oxidation in plant stress response and its dependence on G-proteins, we determined the ABA-dependent reversible redoxome of wild-type and Gβ-protein null mutant agb1 of Arabidopsis. We quantified 6891 uniquely oxidized cysteine-containing peptides, 923 of which show significant changes in oxidation following ABA treatment. The majority of these changes required the presence of G-proteins. Divergent pathways including primary metabolism, reactive oxygen species response, translation and photosynthesis exhibited both ABA- and G-protein-dependent redox changes, many of which occurred on proteins not previously linked to them. We report the most comprehensive ABA-dependent plant redoxome and uncover a complex network of reversible oxidations that allow ABA and G-proteins to rapidly adjust cellular signaling to adapt to changing environments. Physiological validation of a subset of these observations suggests that functional G-proteins are required to maintain intracellular redox homeostasis and fully execute plant stress responses.
Collapse
Affiliation(s)
- Amanda L Smythers
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Chien Ha
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | | | - Evan W McConnell
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Leslie M Hicks
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| |
Collapse
|
40
|
Dong Y, Aref R, Forieri I, Schiel D, Leemhuis W, Meyer C, Hell R, Wirtz M. The plant TOR kinase tunes autophagy and meristem activity for nutrient stress-induced developmental plasticity. THE PLANT CELL 2022; 34:3814-3829. [PMID: 35792878 PMCID: PMC9516127 DOI: 10.1093/plcell/koac201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 05/26/2023]
Abstract
Plants, unlike animals, respond to environmental challenges with comprehensive developmental transitions that allow them to cope with these stresses. Here we discovered that antagonistic activation of the Target of Rapamycin (TOR) kinase in Arabidopsis thaliana roots and shoots is essential for the nutrient deprivation-induced increase in the root-to-shoot ratio to improve foraging for mineral ions. We demonstrate that sulfate limitation-induced downregulation of TOR in shoots activates autophagy, resulting in enhanced carbon allocation to the root. The allocation of carbon to the roots is facilitated by the specific upregulation of the sucrose-transporter genes SWEET11/12 in shoots. SWEET11/12 activation is indispensable for enabling sucrose to act as a carbon source for growth and as a signal for tuning root apical meristem activity via glucose-TOR signaling. The sugar-stimulated TOR activity in the root suppresses autophagy and maintains root apical meristem activity to support root growth to enhance mining for new sulfate resources in the soil. We provide direct evidence that the organ-specific regulation of autophagy is essential for the increased root-to-shoot ratio in response to sulfur limitation. These findings uncover how sulfur limitation controls the central sensor kinase TOR to enable nutrient recycling for stress-induced morphological adaptation of the plant body.
Collapse
Affiliation(s)
- Yihan Dong
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Rasha Aref
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ilaria Forieri
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - David Schiel
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Wiebke Leemhuis
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | | |
Collapse
|
41
|
Corpas FJ, González-Gordo S, Rodríguez-Ruiz M, Muñoz-Vargas MA, Palma JM. Thiol-based Oxidative Posttranslational Modifications (OxiPTMs) of Plant Proteins. PLANT & CELL PHYSIOLOGY 2022; 63:889-900. [PMID: 35323963 PMCID: PMC9282725 DOI: 10.1093/pcp/pcac036] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 06/01/2023]
Abstract
The thiol group of cysteine (Cys) residues, often present in the active center of the protein, is of particular importance to protein function, which is significantly determined by the redox state of a protein's environment. Our knowledge of different thiol-based oxidative posttranslational modifications (oxiPTMs), which compete for specific protein thiol groups, has increased over the last 10 years. The principal oxiPTMs include S-sulfenylation, S-glutathionylation, S-nitrosation, persulfidation, S-cyanylation and S-acylation. The role of each oxiPTM depends on the redox cellular state, which in turn depends on cellular homeostasis under either optimal or stressful conditions. Under such conditions, the metabolism of molecules such as glutathione, NADPH (reduced nicotinamide adenine dinucleotide phosphate), nitric oxide, hydrogen sulfide and hydrogen peroxide can be altered, exacerbated and, consequently, outside the cell's control. This review provides a broad overview of these oxiPTMs under physiological and unfavorable conditions, which can regulate the function of target proteins.
Collapse
Affiliation(s)
- Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Salvador González-Gordo
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Marta Rodríguez-Ruiz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - María A Muñoz-Vargas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - José M Palma
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
42
|
Xuan L, Wu H, Li J, Yuan G, Huang Y, Lian C, Wang X, Yang T, Wang C. Hydrogen sulfide reduces cell death through regulating autophagy during submergence in Arabidopsis. PLANT CELL REPORTS 2022; 41:1531-1548. [PMID: 35507055 DOI: 10.1007/s00299-022-02872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen sulfide positively regulates autophagy and the expression of hypoxia response-related genes under submergence to enhance the submergence tolerance of Arabidopsis. Flooding seriously endangers agricultural production, and it is quite necessary to explore the mechanism of plant response to submergence for improving crop yield. Both hydrogen sulfide (H2S) and autophagy are involved in the plant response to submergence. However, the mechanisms by which H2S and autophagy interact and influence submergence tolerance have not been thoroughly elucidated. Here, we reported that exogenous H2S pretreatment increased the level of endogenous H2S and alleviated plant cell death under submergence. And transgenic lines decreased in the level of endogenous H2S, L-cysteine desulfurase 1 (des1) mutant and 35S::GFP-O-acetyl-L-serine(thiol)lyase A1 (OASA1)/des1-#56/#61, were sensitive to submergence, along with the lower transcript levels of hypoxia response genes, LOB DOMAIN 41 (LBD41) and HYPOXIA RESPONSIVE UNKNOWN PROTEIN 43 (HUP43). Submergence induced the formation of autophagosomes, and the autophagy-related (ATG) mutants (atg4a/4b, atg5, atg7) displayed sensitive phenotypes to submergence. Simultaneously, H2S pretreatment repressed the autophagosome producing under normal conditions, but enhanced this process under submergence by regulating the expression of ATG genes. Moreover, the mutation of DES1 aggravated the sensitivity of des1/atg5 to submergence by reducing the formation of autophagosomes under submergence. Taken together, our results demonstrated that H2S alleviated cell death through regulating autophagy and the expression of hypoxia response genes during submergence in Arabidopsis.
Collapse
Affiliation(s)
- Lijuan Xuan
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haijun Wu
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jian Li
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guoqiang Yuan
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yijun Huang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chengfei Lian
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xinyu Wang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Yang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chongying Wang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
43
|
Degradation Mechanism of Autophagy-Related Proteins and Research Progress. Int J Mol Sci 2022; 23:ijms23137301. [PMID: 35806307 PMCID: PMC9266641 DOI: 10.3390/ijms23137301] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
In all eukaryotes, autophagy is the main pathway for nutrient recycling, which encapsulates parts of the cytoplasm and organelles in double-membrane vesicles, and then fuses with lysosomes/vacuoles to degrade them. Autophagy is a highly dynamic and relatively complex process influenced by multiple factors. Under normal growth conditions, it is maintained at basal levels. However, when plants are subjected to biotic and abiotic stresses, such as pathogens, drought, waterlogging, nutrient deficiencies, etc., autophagy is activated to help cells to survive under stress conditions. At present, the regulation of autophagy is mainly reflected in hormones, second messengers, post-transcriptional regulation, and protein post-translational modification. In recent years, the degradation mechanism of autophagy-related proteins has attracted much attention. In this review, we have summarized how autophagy-related proteins are degraded in yeast, animals, and plants, which will help us to have a more comprehensive and systematic understanding of the regulation mechanisms of autophagy. Moreover, research progress on the degradation of autophagy-related proteins in plants has been discussed.
Collapse
|
44
|
Aroca A, Gotor C. Hydrogen sulfide action in the regulation of plant autophagy. FEBS Lett 2022; 596:2186-2197. [PMID: 35735749 DOI: 10.1002/1873-3468.14433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
Hydrogen sulfide is a signaling molecule with a well-established impact on both plant and animal physiology. Intense investigation into the regulation of autophagy by sulfide in Arabidopsis thaliana has revealed that the post-translational modification of persulfidation/S-sulfhydration plays a key role. In this review focused on plants, we discuss the nature of the sulfide molecule involved in the regulation of autophagy, the final outcome of this modification, and the persulfidated autophagy proteins identified so far. A detailed outline of the actual knowledge of the regulation mechanism of the autophagy-related proteins ATG4a and ATG18a from Arabidopsis by sulfide is also included. This information will be instrumental for furthering research on the regulation of autophagy by sulfide.
Collapse
Affiliation(s)
- Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Seville, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Seville, Spain
| |
Collapse
|
45
|
Yoshitake Y, Shinozaki D, Yoshimoto K. Autophagy triggered by iron-mediated ER stress is an important stress response to the early phase of Pi starvation in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1370-1381. [PMID: 35306710 DOI: 10.1111/tpj.15743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Inorganic phosphate (Pi) is essential for plant growth. However, Pi is often limiting in soil. Hence, plants have established several mechanisms of response to Pi starvation. One of the important mechanisms is Pi recycling, which includes membrane lipid remodeling and plastid DNA degradation via catabolic enzymes. However, the involvement of other degradation systems in Pi recycling remains unclear. Autophagy, a system for degradation of intracellular components, contributes to recycling of some nutrients, such as nitrogen, carbon, and zinc, under starvation. In the present study, we found that autophagy-deficient mutants depleted Pi early and exhibited severe leaf growth defects under Pi starvation. The main cargo of autophagy induced by early Pi depleted conditions was the endoplasmic reticulum (ER), indicating that ER-phagy, a type of autophagy that selectively degrades the ER, is involved in the response to the early phase of Pi starvation for contribution to Pi recycling. This ER-phagy was suppressed in an INOSITOL-REQUIRING ENZYME 1 double mutant, ire1a ire1b, in which ER stress responses are defective, suggesting that the early Pi starvation induced ER-phagy is induced by ER stress. Furthermore, iron limitation and inhibition of lipid-reactive oxygen species accumulation suppressed the ER-phagy. Interestingly, membrane lipid remodeling, a response to late Pi starvation, was accelerated in the ire1a ire1b under early Pi-depleted conditions. Our findings reveal the existence of two different phases of responses to Pi starvation (i.e. early and late) and indicate that ER stress-mediated ER-phagy is involved in Pi recycling in the early phase to suppress acceleration of the late phase.
Collapse
Affiliation(s)
- Yushi Yoshitake
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| | - Daiki Shinozaki
- Life Science Program, Graduate School of Agriculture, Meiji University, 1-1-1, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| | - Kohki Yoshimoto
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
- Life Science Program, Graduate School of Agriculture, Meiji University, 1-1-1, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| |
Collapse
|
46
|
Magen S, Seybold H, Laloum D, Avin-Wittenberg T. Metabolism and autophagy in plants - A perfect match. FEBS Lett 2022; 596:2133-2151. [PMID: 35470431 DOI: 10.1002/1873-3468.14359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is a eukaryotic cellular transport mechanism that delivers intracellular macromolecules, proteins, and even organelles to a lytic organelle (vacuole in yeast and plants/lysosome in animals) for degradation and nutrient recycling. The process is mediated by highly conserved Autophagy-Related (ATG) proteins. In plants, autophagy maintains cellular homeostasis under favorable conditions, guaranteeing normal plant growth and fitness. Severe stress such as nutrient starvation and plant senescence further induce it, thus ensuring plant survival under unfavorable conditions by providing nutrients through the removal of damaged or aged proteins, or organelles. In this article, we examine the interplay between metabolism and autophagy, focusing on the different aspects of this reciprocal relationship. We show that autophagy has a strong influence on a range of metabolic processes, whereas, at the same time, even single metabolites can activate autophagy. We highlight the involvement of ATG genes in metabolism, examine the role of the macronutrients carbon and nitrogen, as well as various micronutrients, and take a closer look at how the interaction between autophagy and metabolism impacts on plant phenotypes and yield.
Collapse
Affiliation(s)
- Sahar Magen
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Heike Seybold
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Daniel Laloum
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Israel
| |
Collapse
|
47
|
Liao CY, Wang P, Yin Y, Bassham DC. Interactions between autophagy and phytohormone signaling pathways in plants. FEBS Lett 2022; 596:2198-2214. [PMID: 35460261 PMCID: PMC9543649 DOI: 10.1002/1873-3468.14355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/27/2022]
Abstract
Autophagy is a conserved recycling process with important functions in plant growth, development, and stress responses. Phytohormones also play key roles in the regulation of some of the same processes. Increasing evidence indicates that a close relationship exists between autophagy and phytohormone signaling pathways, and the mechanisms of interaction between these pathways have begun to be revealed. Here, we review recent advances in our understanding of how autophagy regulates hormone signaling and, conversely, how hormones regulate the activity of autophagy, both in plant growth and development and in environmental stress responses. We highlight in particular recent mechanistic insights into the coordination between autophagy and signaling events controlled by the stress hormone abscisic acid and by the growth hormones brassinosteroid and cytokinin and briefly discuss potential connections between autophagy and other phytohormones.
Collapse
Affiliation(s)
- Ching-Yi Liao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
48
|
Shedding Light on the Role of Phosphorylation in Plant Autophagy. FEBS Lett 2022; 596:2172-2185. [DOI: 10.1002/1873-3468.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/07/2022]
|
49
|
Aroca A, Gotor C. Hydrogen Sulfide: A Key Role in Autophagy Regulation from Plants to Mammalians. Antioxidants (Basel) 2022; 11:327. [PMID: 35204209 PMCID: PMC8868472 DOI: 10.3390/antiox11020327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 02/01/2023] Open
Abstract
Autophagy is a degradative conserved process in eukaryotes to recycle unwanted cellular protein aggregates and damaged organelles. Autophagy plays an important role under normal physiological conditions in multiple biological processes, but it is induced under cellular stress. Therefore, it needs to be tightly regulated to respond to different cellular stimuli. In this review, the regulation of autophagy by hydrogen sulfide is described in both animal and plant systems. The underlying mechanism of action of sulfide is deciphered as the persulfidation of specific targets, regulating the pro- or anti-autophagic role of sulfide with a cell survival outcome. This review aims to highlight the importance of sulfide and persulfidation in autophagy regulation comparing the knowledge available in mammals and plants.
Collapse
Affiliation(s)
- Angeles Aroca
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain;
| | | |
Collapse
|
50
|
Hydrogen Sulfide-Linked Persulfidation Maintains Protein Stability of ABSCISIC ACID-INSENSITIVE 4 and Delays Seed Germination. Int J Mol Sci 2022; 23:ijms23031389. [PMID: 35163311 PMCID: PMC8835735 DOI: 10.3390/ijms23031389] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/22/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous molecule that plays an important role in the plant life cycle. The multiple transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) was precisely regulated to participate in the abscisic acid (ABA) mediated signaling cascade. However, the molecular mechanisms of how H2S regulates ABI4 protein level to control seed germination and seedling growth have remained elusive. In this study, we demonstrated that ABI4 controls the expression of L-CYSTEINE DESULFHYDRASE1 (DES1), a critical endogenous H2S-producing enzyme, and both ABI4 and DES1-produced H2S have inhibitory effects on seed germination. Furthermore, the ABI4 level decreased during seed germination while H2S triggered the enhancement of the persulfidation level of ABI4 and alleviated its degradation rate, which in turn inhibited seed germination and seedling establishment. Conversely, the mutation of ABI4 at Cys250 decreased ABI4 protein stability and facilitated seed germination. Moreover, ABI4 degradation is also regulated via the 26S proteasome pathway. Taken together, these findings suggest a molecular link between DES1 and ABI4 through the post-translational modifications of persulfidation during early seedling development.
Collapse
|