1
|
Potez M, Rome C, Lemasson B, Heemeryck P, Laissue JA, Stupar V, Mathieu H, Collomb N, Barbier EL, Djonov V, Bouchet A. Microbeam Radiation Therapy Opens a Several Days' Vessel Permeability Window for Small Molecules in Brain Tumor Vessels. Int J Radiat Oncol Biol Phys 2024; 119:1506-1516. [PMID: 38373658 DOI: 10.1016/j.ijrobp.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/27/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE Synchrotron microbeam radiation therapy (MRT), based on an inhomogeneous geometric and microscopic irradiation pattern of the tissues with high-dose and high-dose-rate x-rays, enhances the permeability of brain tumor vessels. This study attempted to determine the time and size range of the permeability window induced by MRT in the blood-brain (tumor) barrier. METHODS AND MATERIALS Rats-bearing 9L gliomas were exposed to MRT, either unidirectional (tumor dose, 406 Gy) or bidirectional (crossfired) (2 × 203 Gy). We measured vessel permeability to molecules of 3 sizes (Gd-DOTA, Dotarem, 0.56 kDa; gadolinium-labeled albumin, ∼74 kDa; and gadolinium-labeled IgG, 160 kDa) by daily in vivo magnetic resonance imaging, from 1 day before to 10 days after irradiation. RESULTS An equivalent tumor dose of bidirectional MRT delivered from 2 orthogonal directions increased tumor vessel permeability for the smallest molecule tested more effectively than unidirectional MRT. Bidirectional MRT also affected the permeability of normal contralateral vessels to a different extent than unidirectional MRT. Conversely, bidirectional MRT did not modify the permeability of normal or tumor vessels for both larger molecules (74 and 160 kDa). CONCLUSIONS High-dose bidirectional (cross-fired) MRT induced a significant increase in tumor vessel permeability for small molecules between the first and the seventh day after irradiation, whereas permeability of vessels in normal brain tissue remained stable. Such a permeability window could facilitate an efficient and safe delivery of intravenous small molecules (≤0.56 kDa) to tumoral tissues. A permeability window was not achieved by molecules larger than gado-grafted albumin (74 kDa). Vascular permeability for molecules between these 2 sizes has not been determined.
Collapse
Affiliation(s)
- Marine Potez
- Institute of Anatomy, Group Topographic and Clinical Anatomy, University of Bern, Bern, Switzerland
| | - Claire Rome
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, La Tronche, France
| | - Benjamin Lemasson
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, La Tronche, France
| | - Pierre Heemeryck
- Inserm U1296 "Radiation: Defense, Health, Environment," Lyon, France
| | | | - Vasile Stupar
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, La Tronche, France; University Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Hervé Mathieu
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, La Tronche, France; University Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Nora Collomb
- University Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Emmanuel L Barbier
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, La Tronche, France; University Grenoble Alpes, Inserm, CNRS, CHU Grenoble Alpes, IRMaGe, Grenoble, France.
| | - Valentin Djonov
- Institute of Anatomy, Group Topographic and Clinical Anatomy, University of Bern, Bern, Switzerland
| | - Audrey Bouchet
- Institute of Anatomy, Group Topographic and Clinical Anatomy, University of Bern, Bern, Switzerland; Inserm U1296 "Radiation: Defense, Health, Environment," Lyon, France.
| |
Collapse
|
2
|
Bouchet A, Le Clec'h C, Rogalev L, Le Duc G, Pelletier L. Meloxicam can Potentiate the Therapeutic Effects of Synchrotron Microbeam Radiation Therapy on High-Grade Glioma Bearing Rats. Radiat Res 2022; 197:655-661. [PMID: 35245385 DOI: 10.1667/rade-21-00107.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
The microbeam radiation therapy (MRT), a spatially micro-fractionated synchrotron radiotherapy, leads to better control of incurable high-grade glioma than that obtained upon homogeneous radiotherapy. We evaluated the effect of meloxicam, a non-steroidal anti-inflammatory drug (NSAID), to increase the MRT response. Survival of rats bearing intracranial 9L gliosarcoma treated with meloxicam and/or MRT (400 Gy, 50 μm-wide microbeams, 200 μm spacing) was monitored. Tumor growth was assessed on histological tissue sections and COX-2 transcriptomic expression was studied 1 to 25 days after radiotherapy. Meloxicam significantly extended the median survival of microbeam-irradiated rats (from +10.5 to +20 days). Dual treatment led to last survivors until D90 (D39 for the MRT group) and to tumor 9.5 times smaller than MRT alone. No significant modification of COX-2 expression was induced by MRT in normal and tumor tissues. The meloxicam reinforced the anti-tumor effect of MRT for glioma treatment. Although the mechanisms of interaction between meloxicam and MRT remain to be elucidated, the addition of this NSAID, easily implemented as a supplement to water for example, is a very favorable therapeutic regimen since it doubled the survival benefit compared to MRT alone.
Collapse
Affiliation(s)
- Audrey Bouchet
- INSERM U1296 "Radiation: Defense, Health Environment", Centre Léon-Bérard, 28 Rue Laennec, 69008 Lyon, France.,Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble cedex
| | - Céline Le Clec'h
- Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble cedex
| | - Léonid Rogalev
- Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble cedex
| | - Géraldine Le Duc
- Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble cedex
| | - Laurent Pelletier
- Grenoble University Hospital, BP217, F-38043 Grenoble cedex.,INSERM U836, Team Nanomedicine and brain, 6 Rue Fortuné Ferrini, F38706 La Tronche
| |
Collapse
|
3
|
Schültke E. Flying rats and microbeam paths crossing: the beauty of international interdisciplinary science. Int J Radiat Biol 2022; 98:466-473. [PMID: 34995153 DOI: 10.1080/09553002.2021.2024293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Microbeam radiotherapy (MRT) is a still experimental radiotherapy approach. Two combined parameters contribute to an excellent normal tissue protection and an improved control of malignant tumors in small animal models, compared to conventional radiotherapy: dose deposition at a high dose rate and spatial fractionation at the micrometre level. The international microbeam research community expects to see clinical MRT trials within the next ten years.Physics-associated research is still widely regarded as a male domain. Thus, the question was asked whether this is reflected in the scientific contributions to the field of microbeam radiotherapy. METHOD A literature search was conducted using Pubmed, Semantic Scholar and other sources to look specifically for female contributors to the field of microbeam radiotherapy development. CONCLUSION The original idea for MRT was patented in 1994 by an all-male research team. In approximately 50% of all publications related to microbeam radiotherapy, however, either the first or the senior author is a woman. The contribution of those women who have been driving the development of both technical and biomedical aspects of MRT in the last two decades is highlighted.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Department of Radooncology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
4
|
Sabatasso S, Fernandez-Palomo C, Hlushchuk R, Fazzari J, Tschanz S, Pellicioli P, Krisch M, Laissue JA, Djonov V. Transient and Efficient Vascular Permeability Window for Adjuvant Drug Delivery Triggered by Microbeam Radiation. Cancers (Basel) 2021; 13:cancers13092103. [PMID: 33925455 PMCID: PMC8123803 DOI: 10.3390/cancers13092103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Microbeam Radiation Therapy (MRT) induces a transient vascular permeability window, which offers a novel drug-delivery system for the preferential accumulation of therapeutic compounds in tumors. MRT is a preclinical cancer treatment modality that spatially fractionates synchrotron X-rays into micrometer-wide planar microbeams which can induce transient vascular permeability, especially in the immature tumor vessels, without compromising vascular perfusion. Here, we characterized this phenomenon using Chicken Chorioallantoic Membrane (CAM) and demonstrated its therapeutic potential in human glioblastoma xenografts in mice. METHODS the developing CAM was exposed to planar-microbeams of 75 Gy peak dose with Synchrotron X-rays. Similarly, mice harboring human glioblastoma xenografts were exposed to peak microbeam doses of 150 Gy, followed by treatment with Cisplatin. Tumor progression was documented by Magnetic Resonance Imaging (MRI) and caliper measurements. RESULTS CAM exposed to MRT exhibited vascular permeability, beginning 15 min post-irradiation, reaching its peak from 45 min to 2 h, and ending by 4 h. We have deemed this period the "permeability window". Morphological analysis showed partially fragmented endothelial walls as the cause of the increased transport of FITC-Dextran into the surrounding tissue and the extravasation of 100 nm microspheres (representing the upper range of nanoparticles). In the human glioblastoma xenografts, MRI measurements showed that the combined treatment dramatically reduced the tumor size by 2.75-fold and 5.25-fold, respectively, compared to MRT or Cisplatin alone. CONCLUSIONS MRT provides a novel mechanism for drug delivery by increasing vascular transpermeability while preserving vessel integrity. This permeability window increases the therapeutic index of currently available chemotherapeutics and could be combined with other therapeutic agents such as Nanoparticles/Antibodies/etc.
Collapse
Affiliation(s)
- Sara Sabatasso
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (S.S.); (C.F.-P.); (R.H.); (J.F.); (S.T.); (J.A.L.)
| | - Cristian Fernandez-Palomo
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (S.S.); (C.F.-P.); (R.H.); (J.F.); (S.T.); (J.A.L.)
| | - Ruslan Hlushchuk
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (S.S.); (C.F.-P.); (R.H.); (J.F.); (S.T.); (J.A.L.)
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (S.S.); (C.F.-P.); (R.H.); (J.F.); (S.T.); (J.A.L.)
| | - Stefan Tschanz
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (S.S.); (C.F.-P.); (R.H.); (J.F.); (S.T.); (J.A.L.)
| | - Paolo Pellicioli
- Biomedical Beamline ID17, European Synchrotron Radiation Facility, 38043 Grenoble, France; (P.P.); (M.K.)
| | - Michael Krisch
- Biomedical Beamline ID17, European Synchrotron Radiation Facility, 38043 Grenoble, France; (P.P.); (M.K.)
| | - Jean A. Laissue
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (S.S.); (C.F.-P.); (R.H.); (J.F.); (S.T.); (J.A.L.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (S.S.); (C.F.-P.); (R.H.); (J.F.); (S.T.); (J.A.L.)
- Correspondence: ; Tel.: +41-31-631-84-32
| |
Collapse
|
5
|
Fernandez-Palomo C, Fazzari J, Trappetti V, Smyth L, Janka H, Laissue J, Djonov V. Animal Models in Microbeam Radiation Therapy: A Scoping Review. Cancers (Basel) 2020; 12:E527. [PMID: 32106397 PMCID: PMC7139755 DOI: 10.3390/cancers12030527] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Microbeam Radiation Therapy (MRT) is an innovative approach in radiation oncology where a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose beams which are tens of micrometres wide and separated by a few hundred micrometres. OBJECTIVE This scoping review was conducted to map the available evidence and provide a comprehensive overview of the similarities, differences, and outcomes of all experiments that have employed animal models in MRT. METHODS We considered articles that employed animal models for the purpose of studying the effects of MRT. We searched in seven databases for published and unpublished literature. Two independent reviewers screened citations for inclusion. Data extraction was done by three reviewers. RESULTS After screening 5688 citations and 159 full-text papers, 95 articles were included, of which 72 were experimental articles. Here we present the animal models and pre-clinical radiation parameters employed in the existing MRT literature according to their use in cancer treatment, non-neoplastic diseases, or normal tissue studies. CONCLUSIONS The study of MRT is concentrated in brain-related diseases performed mostly in rat models. An appropriate comparison between MRT and conventional radiotherapy (instead of synchrotron broad beam) is needed. Recommendations are provided for future studies involving MRT.
Collapse
Affiliation(s)
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Verdiana Trappetti
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Lloyd Smyth
- Department of Obstetrics & Gynaecology, University of Melbourne, 3057 Parkville, Australia;
| | - Heidrun Janka
- Medical Library, University Library Bern, University of Bern, 3012 Bern, Switzerland;
| | - Jean Laissue
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (C.F.-P.); (J.F.); (V.T.); (J.L.)
| |
Collapse
|
6
|
Potez M, Bouchet A, Flaender M, Rome C, Collomb N, Grotzer M, Krisch M, Djonov V, Balosso J, Brun E, Laissue JA, Serduc R. Synchrotron X-Ray Boost Delivered by Microbeam Radiation Therapy After Conventional X-Ray Therapy Fractionated in Time Improves F98 Glioma Control. Int J Radiat Oncol Biol Phys 2020; 107:360-369. [PMID: 32088292 DOI: 10.1016/j.ijrobp.2020.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly collimated synchrotron beam into arrays of parallel microbeams depositing several hundred grays. It appears relevant to combine MRT with a conventional treatment course, preparing a treatment scheme for future patients in clinical trials. The efficiency of MRT delivered after several broad-beam (BB) fractions to palliate F98 brain tumors in rats in comparison with BB fractions alone was evaluated in this study. METHODS AND MATERIALS Rats bearing 106 F98 cells implanted in the caudate nucleus were irradiated by 5 fractions in BB mode (3 × 6 Gy + 2 × 8 Gy BB) or by 2 boost fractions in MRT mode to a total of 5 fractions (3 × 6 Gy BB + MRT 2 × 8 Gy valley dose; peak dose 181 Gy [50/200 μm]). Tumor growth was evaluated in vivo by magnetic resonance imaging follow-up at T-1, T7, T12, T15, T20, and T25 days after radiation therapy and by histology and flow cytometry. RESULTS MRT-boosted tumors displayed lower cell density and cell proliferation compared with BB-irradiated tumors. The MRT boost completely stopped tumor growth during ∼4 weeks and led to a significant increase in median survival time, whereas tumors treated with BB alone recurred within a few days after the last radiation fraction. CONCLUSIONS The first evidence is presented that MRT, delivered as a boost of conventionally fractionated irradiation by orthovoltage broad x-ray beams, is feasible and more efficient than conventional radiation therapy alone.
Collapse
Affiliation(s)
- Marine Potez
- Inserm UA7, Rayonnement synchrotron pour la recherche médicale (STROBE), Université Grenoble Alpes, Grenoble, France
| | - Audrey Bouchet
- Inserm UA7, Rayonnement synchrotron pour la recherche médicale (STROBE), Université Grenoble Alpes, Grenoble, France; Institute of Anatomy, Group Tomographic and Clinical Anatomy, University of Bern, Bern, Switzerland.
| | - Mélanie Flaender
- Inserm UA7, Rayonnement synchrotron pour la recherche médicale (STROBE), Université Grenoble Alpes, Grenoble, France
| | - Claire Rome
- Team Functional NeuroImaging and Brain Perfusion, Inserm, France; Grenoble Institut des Neurosciences, Université Grenoble Alpes, La Tronche, France
| | - Nora Collomb
- Team Functional NeuroImaging and Brain Perfusion, Inserm, France; Grenoble Institut des Neurosciences, Université Grenoble Alpes, La Tronche, France
| | - Michael Grotzer
- Department of Oncology, University Children's Hospital of Zurich, Switzerland
| | - Michael Krisch
- European Synchrotron Radiation Facility, Grenoble, France
| | - Valentin Djonov
- Institute of Anatomy, Group Tomographic and Clinical Anatomy, University of Bern, Bern, Switzerland
| | - Jacques Balosso
- Inserm UA7, Rayonnement synchrotron pour la recherche médicale (STROBE), Université Grenoble Alpes, Grenoble, France
| | - Emmanuel Brun
- Inserm UA7, Rayonnement synchrotron pour la recherche médicale (STROBE), Université Grenoble Alpes, Grenoble, France
| | | | - Raphaël Serduc
- Inserm UA7, Rayonnement synchrotron pour la recherche médicale (STROBE), Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
7
|
Bartzsch S, Corde S, Crosbie JC, Day L, Donzelli M, Krisch M, Lerch M, Pellicioli P, Smyth LML, Tehei M. Technical advances in x-ray microbeam radiation therapy. Phys Med Biol 2020; 65:02TR01. [PMID: 31694009 DOI: 10.1088/1361-6560/ab5507] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the last 25 years microbeam radiation therapy (MRT) has emerged as a promising alternative to conventional radiation therapy at large, third generation synchrotrons. In MRT, a multi-slit collimator modulates a kilovoltage x-ray beam on a micrometer scale, creating peak dose areas with unconventionally high doses of several hundred Grays separated by low dose valley regions, where the dose remains well below the tissue tolerance level. Pre-clinical evidence demonstrates that such beam geometries lead to substantially reduced damage to normal tissue at equal tumour control rates and hence drastically increase the therapeutic window. Although the mechanisms behind MRT are still to be elucidated, previous studies indicate that immune response, tumour microenvironment, and the microvasculature may play a crucial role. Beyond tumour therapy, MRT has also been suggested as a microsurgical tool in neurological disorders and as a primer for drug delivery. The physical properties of MRT demand innovative medical physics and engineering solutions for safe treatment delivery. This article reviews technical developments in MRT and discusses existing solutions for dosimetric validation, reliable treatment planning and safety. Instrumentation at synchrotron facilities, including beam production, collimators and patient positioning systems, is also discussed. Specific solutions reviewed in this article include: dosimetry techniques that can cope with high spatial resolution, low photon energies and extremely high dose rates of up to 15 000 Gy s-1, dose calculation algorithms-apart from pure Monte Carlo Simulations-to overcome the challenge of small voxel sizes and a wide dynamic dose-range, and the use of dose-enhancing nanoparticles to combat the limited penetrability of a kilovoltage energy spectrum. Finally, concepts for alternative compact microbeam sources are presented, such as inverse Compton scattering set-ups and carbon nanotube x-ray tubes, that may facilitate the transfer of MRT into a hospital-based clinical environment. Intensive research in recent years has resulted in practical solutions to most of the technical challenges in MRT. Treatment planning, dosimetry and patient safety systems at synchrotrons have matured to a point that first veterinary and clinical studies in MRT are within reach. Should these studies confirm the promising results of pre-clinical studies, the authors are confident that MRT will become an effective new radiotherapy option for certain patients.
Collapse
Affiliation(s)
- Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany. Helmholtz Centre Munich, Institute for Radiation Medicine, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Eling L, Bouchet A, Nemoz C, Djonov V, Balosso J, Laissue J, Bräuer-Krisch E, Adam JF, Serduc R. Ultra high dose rate Synchrotron Microbeam Radiation Therapy. Preclinical evidence in view of a clinical transfer. Radiother Oncol 2019; 139:56-61. [PMID: 31307824 DOI: 10.1016/j.radonc.2019.06.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
This paper reviews the current state of the art of an emerging form of radiosurgery dedicated to brain tumour treatment and which operates at very high dose rate (kGy·s-1). Microbeam Radiation Therapy uses synchrotron-generated X-rays which triggered normal tissue sparing partially mediated by FLASH effect.
Collapse
Affiliation(s)
- Laura Eling
- Inserm UA7, Synchrotron Radiation for Biomedical Research (STROBE), Université Grenoble Alpes - ID17, Installation Européenne du Rayonnement Synchrotron (ESRF) CS 40220, Grenoble Cedex 9, France
| | - Audrey Bouchet
- Inserm UA7, Synchrotron Radiation for Biomedical Research (STROBE), Université Grenoble Alpes - ID17, Installation Européenne du Rayonnement Synchrotron (ESRF) CS 40220, Grenoble Cedex 9, France
| | | | | | | | | | | | - Jean Francois Adam
- Inserm UA7, Synchrotron Radiation for Biomedical Research (STROBE), Université Grenoble Alpes - ID17, Installation Européenne du Rayonnement Synchrotron (ESRF) CS 40220, Grenoble Cedex 9, France
| | - Raphael Serduc
- Inserm UA7, Synchrotron Radiation for Biomedical Research (STROBE), Université Grenoble Alpes - ID17, Installation Européenne du Rayonnement Synchrotron (ESRF) CS 40220, Grenoble Cedex 9, France.
| |
Collapse
|
9
|
Schültke E, Bräuer-Krisch E, Blattmann H, Requardt H, Laissue JA, Hildebrandt G. Survival of rats bearing advanced intracerebral F 98 tumors after glutathione depletion and microbeam radiation therapy: conclusions from a pilot project. Radiat Oncol 2018; 13:89. [PMID: 29747666 PMCID: PMC5946497 DOI: 10.1186/s13014-018-1038-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
Background Resistance to radiotherapy is frequently encountered in patients with glioblastoma multiforme. It is caused at least partially by the high glutathione content in the tumour tissue. Therefore, the administration of the glutathione synthesis inhibitor Buthionine-SR-Sulfoximine (BSO) should increase survival time. Methods BSO was tested in combination with an experimental synchrotron-based treatment, microbeam radiation therapy (MRT), characterized by spatially and periodically alternating microscopic dose distribution. One hundred thousand F98 glioma cells were injected into the right cerebral hemisphere of adult male Fischer rats to generate an orthotopic small animal model of a highly malignant brain tumour in a very advanced stage. Therapy was scheduled for day 13 after tumour cell implantation. At this time, 12.5% of the animals had already died from their disease. The surviving 24 tumour-bearing animals were randomly distributed in three experimental groups: subjected to MRT alone (Group A), to MRT plus BSO (Group B) and tumour-bearing untreated controls (Group C). Thus, half of the irradiated animals received an injection of 100 μM BSO into the tumour two hours before radiotherapy. Additional tumour-free animals, mirroring the treatment of the tumour-bearing animals, were included in the experiment. MRT was administered in bi-directional mode with arrays of quasi-parallel beams crossing at the tumour location. The width of the microbeams was ≈28 μm with a center-to-center distance of ≈400 μm, a peak dose of 350 Gy, and a valley dose of 9 Gy in the normal tissue and 18 Gy at the tumour location; thus, the peak to valley dose ratio (PVDR) was 31. Results After tumour-cell implantation, otherwise untreated rats had a mean survival time of 15 days. Twenty days after implantation, 62.5% of the animals receiving MRT alone (group A) and 75% of the rats given MRT + BSO (group B) were still alive. Thirty days after implantation, survival was 12.5% in Group A and 62.5% in Group B. There were no survivors on or beyond day 35 in Group A, but 25% were still alive in Group B. Thus, rats which underwent MRT with adjuvant BSO injection experienced the largest survival gain. Conclusions In this pilot project using an orthotopic small animal model of advanced malignant brain tumour, the injection of the glutathione inhibitor BSO with MRT significantly increased mean survival time.
Collapse
Affiliation(s)
- E Schültke
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059, Rostock, Germany.
| | - E Bräuer-Krisch
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | | | - H Requardt
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - J A Laissue
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - G Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059, Rostock, Germany
| |
Collapse
|
10
|
Archer J, Li E, Petasecca M, Stevenson A, Livingstone J, Dipuglia A, Davis J, Rosenfeld A, Lerch M. Synchrotron X-ray microbeam dosimetry with a 20 micrometre resolution scintillator fibre-optic dosimeter. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:826-832. [PMID: 29714194 DOI: 10.1107/s1600577518003016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
Cancer is one of the leading causes of death worldwide. External beam radiation therapy is one of the most important modalities for the treatment of cancers. Synchrotron microbeam radiation therapy (MRT) is a novel pre-clinical therapy that uses highly spatially fractionated X-ray beams to target tumours, allowing doses much higher than conventional radiotherapies to be delivered. A dosimeter with a high spatial resolution is required to provide the appropriate quality assurance for MRT. This work presents a plastic scintillator fibre optic dosimeter with a one-dimensional spatial resolution of 20 µm, an improvement on the dosimeter with a resolution of 50 µm that was demonstrated in previous work. The ability of this probe to resolve microbeams of width 50 µm has been demonstrated. The major limitations of this method were identified, most notably the low-light signal resulting from the small sensitive volume, which made valley dose measurements very challenging. A titanium-based reflective paint was used as a coating on the probe to improve the light collection, but a possible effect of the high-Z material on the probes water-equivalence has been identified. The effect of the reflective paint was a 28.5 ± 4.6% increase in the total light collected; it did not affect the shape of the depth-dose profile, nor did it explain an over-response observed when used to probe at low depths, when compared with an ionization chamber. With improvements to the data acquisition, this probe design has the potential to provide a water-equivalent, inexpensive dosimetry tool for MRT.
Collapse
Affiliation(s)
- James Archer
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Enbang Li
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Andrew Stevenson
- Imaging and Medical Beam-Line, Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Jayde Livingstone
- Imaging and Medical Beam-Line, Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Andrew Dipuglia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jeremy Davis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
11
|
Potez M, Bouchet A, Wagner J, Donzelli M, Bräuer-Krisch E, Hopewell JW, Laissue J, Djonov V. Effects of Synchrotron X-Ray Micro-beam Irradiation on Normal Mouse Ear Pinnae. Int J Radiat Oncol Biol Phys 2018; 101:680-689. [PMID: 29559293 DOI: 10.1016/j.ijrobp.2018.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE To analyze the effects of micro-beam irradiation (MBI) on the normal tissues of the mouse ear. METHODS AND MATERIALS Normal mouse ears are a unique model, which in addition to skin contain striated muscles, cartilage, blood and lymphatic vessels, and few hair follicles. This renders the mouse ear an excellent model for complex tissue studies. The ears of C57BL6 mice were exposed to MBI (50-μm-wide micro-beams, spaced 200 μm between centers) with peak entrance doses of 200, 400, or 800 Gy (at ultra-high dose rates). Tissue samples were examined histopathologically, with conventional light and electron microscopy, at 2, 7, 15, 30, and 240 days after irradiation (dpi). Sham-irradiated animals acted as controls. RESULTS Only an entrance dose of 800 Gy caused a significant increase in the thickness of both epidermal and dermal ear compartments seen from 15 to 30 dpi; the number of sebaceous glands was significantly reduced by 30 dpi. The numbers of apoptotic bodies and infiltrating leukocytes peaked between 15 and 30 dpi. Lymphatic vessels were prominently enlarged at 15 up to 240 dpi. Sarcomere lesions in striated muscle were observed after all doses, starting from 2 dpi; scar tissue within individual beam paths remained visible up to 240 dpi. Cartilage and blood vessel changes remained histologically inconspicuous. CONCLUSIONS Normal tissues such as skin, cartilage, and blood and lymphatic vessels are highly tolerant to MBI after entrance doses up to 400 Gy. The striated muscles appeared to be the most sensitive to MBI. Those findings should be taken into consideration in future micro-beam radiation therapy treatment schedules.
Collapse
Affiliation(s)
- Marine Potez
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Audrey Bouchet
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | - Mattia Donzelli
- Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble, France; Joint Department of Physics, The Institute of Cancer Research and the Royal Marsden Hospital, London, United Kingdom
| | - Elke Bräuer-Krisch
- Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble, France
| | - John W Hopewell
- Green Templeton College, University of Oxford, Oxford, United Kingdom
| | - Jean Laissue
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
Schültke E, Balosso J, Breslin T, Cavaletti G, Djonov V, Esteve F, Grotzer M, Hildebrandt G, Valdman A, Laissue J. Microbeam radiation therapy - grid therapy and beyond: a clinical perspective. Br J Radiol 2017; 90:20170073. [PMID: 28749174 PMCID: PMC5853350 DOI: 10.1259/bjr.20170073] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microbeam irradiation is spatially fractionated radiation on a micrometer scale. Microbeam irradiation with therapeutic intent has become known as microbeam radiation therapy (MRT). The basic concept of MRT was developed in the 1980s, but it has not yet been tested in any human clinical trial, even though there is now a large number of animal studies demonstrating its marked therapeutic potential with an exceptional normal tissue sparing effect. Furthermore, MRT is conceptually similar to macroscopic grid based radiation therapy which has been used in clinical practice for decades. In this review, the potential clinical applications of MRT are analysed for both malignant and non-malignant diseases.
Collapse
Affiliation(s)
- Elisabeth Schültke
- 1 Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| | - Jacques Balosso
- 2 Departement of Radiation Oncology and Medical Physics, University Grenoble Alpes (UGA) and Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble, France
| | - Thomas Breslin
- 3 Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden.,4 Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Guido Cavaletti
- 5 Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentin Djonov
- 6 Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Francois Esteve
- 2 Departement of Radiation Oncology and Medical Physics, University Grenoble Alpes (UGA) and Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble, France
| | - Michael Grotzer
- 7 Department of Oncology, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Guido Hildebrandt
- 1 Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| | - Alexander Valdman
- 8 Department of Oncology and Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Jean Laissue
- 6 Institute of Anatomy, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Bouchet A, Potez M, Coquery N, Rome C, Lemasson B, Bräuer-Krisch E, Rémy C, Laissue J, Barbier EL, Djonov V, Serduc R. Permeability of Brain Tumor Vessels Induced by Uniform or Spatially Microfractionated Synchrotron Radiation Therapies. Int J Radiat Oncol Biol Phys 2017; 98:1174-1182. [PMID: 28721902 DOI: 10.1016/j.ijrobp.2017.03.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/01/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE To compare the blood-brain barrier permeability changes induced by synchrotron microbeam radiation therapy (MRT, which relies on spatial fractionation of the incident x-ray beam into parallel micron-wide beams) with changes induced by a spatially uniform synchrotron x-ray radiation therapy. METHODS AND MATERIALS Male rats bearing malignant intracranial F98 gliomas were randomized into 3 groups: untreated, exposed to MRT (peak and valley dose: 241 and 10.5 Gy, respectively), or exposed to broad beam irradiation (BB) delivered at comparable doses (ie, equivalent to MRT valley dose); both applied by 2 arrays, intersecting orthogonally the tumor region. Vessel permeability was monitored in vivo by magnetic resonance imaging 1 day before (T-1) and 1, 2, 7, and 14 days after treatment start. To determine whether physiologic parameters influence vascular permeability, we evaluated vessel integrity in the tumor area with different values for cerebral blood flow, blood volume, edema, and tissue oxygenation. RESULTS Microbeam radiation therapy does not modify the vascular permeability of normal brain tissue. Microbeam radiation therapy-induced increase of tumor vascular permeability was detectable from T2 with a maximum at T7 after exposure, whereas BB enhanced vessel permeability only at T7. At this stage MRT was more efficient at increasing tumor vessel permeability (BB vs untreated: +19.1%; P=.0467; MRT vs untreated: +44.8%; P<.0001), and its effects lasted until T14 (MRT vs BB, +22.6%; P=.0199). We also showed that MRT was more efficient at targeting highly oxygenated (high blood volume and flow) and more proliferative parts of the tumor than BB. CONCLUSIONS Microbeam radiation therapy-induced increased tumor vascular permeability is: (1) significantly greater; (2) earlier and more prolonged than that induced by BB irradiation, especially in highly proliferative tumor areas; and (3) targets all tumor areas discriminated by physiologic characteristics, including those not damaged by homogeneous irradiation.
Collapse
Affiliation(s)
- Audrey Bouchet
- Group Topographic and Clinical Anatomy, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Marine Potez
- Rayonnement synchrotron et Recherche médicale, Université Grenoble Alpes, Grenoble, France
| | - Nicolas Coquery
- Team Functional NeuroImaging and Brain Perfusion, INSERM U1216, La Tronche, France; Grenoble Institut des Neurosciences, Université Grenoble Alpes, La Tronche, France
| | - Claire Rome
- Team Functional NeuroImaging and Brain Perfusion, INSERM U1216, La Tronche, France; Grenoble Institut des Neurosciences, Université Grenoble Alpes, La Tronche, France
| | - Benjamin Lemasson
- Team Functional NeuroImaging and Brain Perfusion, INSERM U1216, La Tronche, France; Grenoble Institut des Neurosciences, Université Grenoble Alpes, La Tronche, France
| | - Elke Bräuer-Krisch
- Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble, France
| | - Chantal Rémy
- Team Functional NeuroImaging and Brain Perfusion, INSERM U1216, La Tronche, France; Grenoble Institut des Neurosciences, Université Grenoble Alpes, La Tronche, France
| | | | - Emmanuel L Barbier
- Team Functional NeuroImaging and Brain Perfusion, INSERM U1216, La Tronche, France; Grenoble Institut des Neurosciences, Université Grenoble Alpes, La Tronche, France.
| | - Valentin Djonov
- Group Topographic and Clinical Anatomy, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Raphael Serduc
- Rayonnement synchrotron et Recherche médicale, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
14
|
Brönnimann D, Bouchet A, Schneider C, Potez M, Serduc R, Bräuer-Krisch E, Graber W, von Gunten S, Laissue JA, Djonov V. Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo. Sci Rep 2016; 6:33601. [PMID: 27640676 PMCID: PMC5027521 DOI: 10.1038/srep33601] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/25/2016] [Indexed: 11/15/2022] Open
Abstract
Our goal was the visualizing the vascular damage and acute inflammatory response to micro- and minibeam irradiation in vivo. Microbeam (MRT) and minibeam radiation therapies (MBRT) are tumor treatment approaches of potential clinical relevance, both consisting of parallel X-ray beams and allowing the delivery of thousands of Grays within tumors. We compared the effects of microbeams (25–100 μm wide) and minibeams (200–800 μm wide) on vasculature, inflammation and surrounding tissue changes during zebrafish caudal fin regeneration in vivo. Microbeam irradiation triggered an acute inflammatory response restricted to the regenerating tissue. Six hours post irradiation (6 hpi), it was infiltrated by neutrophils and fli1a+ thrombocytes adhered to the cell wall locally in the beam path. The mature tissue was not affected by microbeam irradiation. In contrast, minibeam irradiation efficiently damaged the immature tissue at 6 hpi and damaged both the mature and immature tissue at 48 hpi. We demonstrate that vascular damage, inflammatory processes and cellular toxicity depend on the beam width and the stage of tissue maturation. Minibeam irradiation did not differentiate between mature and immature tissue. In contrast, all irradiation-induced effects of the microbeams were restricted to the rapidly growing immature tissue, indicating that microbeam irradiation could be a promising tumor treatment tool.
Collapse
Affiliation(s)
- Daniel Brönnimann
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Audrey Bouchet
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Christoph Schneider
- Institute of Pharmacology, University of Bern, Inselspital INO-F, 3010 Bern, Switzerland
| | - Marine Potez
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Raphaël Serduc
- Université Grenoble Alpes, EA-Rayonnement Synchrotron et Recherche Medicale, ESRF, ID17 F-38043 Grenoble, France
| | - Elke Bräuer-Krisch
- Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043 Grenoble, France
| | - Werner Graber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Inselspital INO-F, 3010 Bern, Switzerland
| | - Jean Albert Laissue
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| |
Collapse
|
15
|
Fournier P, Cornelius I, Donzelli M, Requardt H, Nemoz C, Petasecca M, Bräuer-Krisch E, Rosenfeld A, Lerch M. X-Tream quality assurance in synchrotron X-ray microbeam radiation therapy. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1180-1190. [PMID: 27577773 DOI: 10.1107/s1600577516009322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Microbeam radiation therapy (MRT) is a novel irradiation technique for brain tumours treatment currently under development at the European Synchrotron Radiation Facility in Grenoble, France. The technique is based on the spatial fractionation of a highly brilliant synchrotron X-ray beam into an array of microbeams using a multi-slit collimator (MSC). After promising pre-clinical results, veterinary trials have recently commenced requiring the need for dedicated quality assurance (QA) procedures. The quality of MRT treatment demands reproducible and precise spatial fractionation of the incoming synchrotron beam. The intensity profile of the microbeams must also be quickly and quantitatively characterized prior to each treatment for comparison with that used for input to the dose-planning calculations. The Centre for Medical Radiation Physics (University of Wollongong, Australia) has developed an X-ray treatment monitoring system (X-Tream) which incorporates a high-spatial-resolution silicon strip detector (SSD) specifically designed for MRT. In-air measurements of the horizontal profile of the intrinsic microbeam X-ray field in order to determine the relative intensity of each microbeam are presented, and the alignment of the MSC is also assessed. The results show that the SSD is able to resolve individual microbeams which therefore provides invaluable QA of the horizontal field size and microbeam number and shape. They also demonstrate that the SSD used in the X-Tream system is very sensitive to any small misalignment of the MSC. In order to allow as rapid QA as possible, a fast alignment procedure of the SSD based on X-ray imaging with a low-intensity low-energy beam has been developed and is presented in this publication.
Collapse
Affiliation(s)
- Pauline Fournier
- Centre for Medical Radiation Physics, University of Wollongong, Australia
| | - Iwan Cornelius
- Centre for Medical Radiation Physics, University of Wollongong, Australia
| | | | | | | | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Australia
| | | | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Australia
| |
Collapse
|
16
|
Bouchet A, Bräuer-Krisch E, Prezado Y, El Atifi M, Rogalev L, Le Clec'h C, Laissue JA, Pelletier L, Le Duc G. Better Efficacy of Synchrotron Spatially Microfractionated Radiation Therapy Than Uniform Radiation Therapy on Glioma. Int J Radiat Oncol Biol Phys 2016; 95:1485-1494. [DOI: 10.1016/j.ijrobp.2016.03.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 11/29/2022]
|
17
|
Bouchet A, Serduc R, Laissue JA, Djonov V. Effects of microbeam radiation therapy on normal and tumoral blood vessels. Phys Med 2015; 31:634-41. [DOI: 10.1016/j.ejmp.2015.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/22/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022] Open
|
18
|
Bouchet A, Sakakini N, Atifi ME, Le Clec'h C, Bräuer-Krisch E, Rogalev L, Laissue JA, Rihet P, Le Duc G, Pelletier L. Identification of AREG and PLK1 pathway modulation as a potential key of the response of intracranial 9L tumor to microbeam radiation therapy. Int J Cancer 2015; 136:2705-16. [PMID: 25382544 DOI: 10.1002/ijc.29318] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/12/2014] [Accepted: 10/28/2014] [Indexed: 01/17/2023]
Abstract
Synchrotron microbeam radiation therapy (MRT) relies on the spatial fractionation of a synchrotron beam into parallel micron-wide beams allowing deposition of hectogray doses. MRT controls the intracranial tumor growth in rodent models while sparing normal brain tissues. Our aim was to identify the early biological processes underlying the differential effect of MRT on tumor and normal brain tissues. The expression of 28,000 transcripts was tested by microarray 6 hr after unidirectional MRT (400 Gy, 50 µm-wide microbeams, 200 µm spacing). The specific response of tumor tissues to MRT consisted in the significant transcriptomic modulation of 431 probesets (316 genes). Among them, 30 were not detected in normal brain tissues, neither before nor after MRT. Areg, Trib3 and Nppb were down-regulated, whereas all others were up-regulated. Twenty-two had similar expression profiles during the 2 weeks observed after MRT, including Ccnb1, Cdc20, Pttg1 and Plk1 related to the mitotic role of the Polo-like kinase (Plk) pathway. The up-regulation of Areg expression may indicate the emergence of survival processes in tumor cells triggered by the irradiation; while the modulation of the "mitotic role of Plk1" pathway, which relates to cytokinetic features of the tumor observed histologically after MRT, may partially explain the control of tumor growth by MRT. The identification of these tumor-specific responses permit to consider new strategies that might potentiate the antitumoral effect of MRT.
Collapse
Affiliation(s)
- Audrey Bouchet
- INSERM U836, Team Nanomedicine and brain, 6 Rue Fortuné Ferrini, F38706, La Tronche, France; Biomedical Beamline, European Synchrotron Radiation Facility, BP220, F38043, Grenoble cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Grotzer MA, Schültke E, Bräuer-Krisch E, Laissue JA. Microbeam radiation therapy: Clinical perspectives. Phys Med 2015; 31:564-7. [PMID: 25773883 DOI: 10.1016/j.ejmp.2015.02.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 11/19/2022] Open
Abstract
Microbeam radiation therapy (MRT), a novel form of spatially fractionated radiotherapy (RT), uses arrays of synchrotron-generated X-ray microbeams (MB). MRT has been identified as a promising treatment concept that might be applied to patients with malignant central nervous system (CNS) tumours for whom, at the current stage of development, no satisfactory therapy is available yet. Preclinical experimental studies have shown that the CNS of healthy rodents and piglets can tolerate much higher radiation doses delivered by spatially separated MBs than those delivered by a single, uninterrupted, macroscopically wide beam. High-dose, high-precision radiotherapies such as MRT with reduced probabilities of normal tissue complications offer prospects of improved therapeutic ratios, as extensively demonstrated by results of experiments published by many international groups in the last two decades. The significance of developing MRT as a new RT approach cannot be understated. Up to 50% of cancer patients receive conventional RT, and any new treatment that provides better tumour control whilst preserving healthy tissue is likely to significantly improve patient outcomes.
Collapse
Affiliation(s)
- M A Grotzer
- University Children's Hospital of Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland.
| | - E Schültke
- Rostock University Medical Center, Department of Radiotherapy, Südring 75, 18059 Rostock, Germany
| | - E Bräuer-Krisch
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38043 Grenoble Cedex 9, France
| | | |
Collapse
|
20
|
Characterization of the 9L gliosarcoma implanted in the Fischer rat: an orthotopic model for a grade IV brain tumor. Tumour Biol 2014; 35:6221-33. [PMID: 24633919 DOI: 10.1007/s13277-014-1783-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/19/2014] [Indexed: 10/25/2022] Open
Abstract
Among rodent models for brain tumors, the 9L gliosarcoma is one of the most widely used. Our 9L-European Synchrotron Radiation Facility (ESRF) model was developed from cells acquired at the Brookhaven National Laboratory (NY, USA) in 1997 and implanted in the right caudate nucleus of syngeneic Fisher rats. It has been largely used by the user community of the ESRF during the last decade, for imaging, radiotherapy, and chemotherapy, including innovative treatments based on particular irradiation techniques and/or use of new drugs. This work presents a detailed study of its characteristics, assessed by magnetic resonance imaging (MRI), histology, immunohistochemistry, and cytogenetic analysis. The data used for this work were from rats sampled in six experiments carried out over a 3-year period in our lab (total number of rats = 142). The 9L-ESRF tumors were induced by a stereotactic inoculation of 10(4) 9L cells in the right caudate nucleus of the brain. The assessment of vascular parameters was performed by MRI (blood volume fraction and vascular size index) and by immunostaining of vessels (rat endothelial cell antigen-1 and type IV collagen). Immunohistochemistry and regular histology were used to describe features such as tumor cell infiltration, necrosis area, nuclear pleomorphism, cellularity, mitotic characteristics, leukocytic infiltration, proliferation, and inflammation. Moreover, for each of the six experiments, the survival of the animals was assessed and related to the tumor growth observed by MRI or histology. Additionally, the cytogenetic status of the 9L cells used at ESRF lab was investigated by comparative genomics hybridization analysis. Finally, the response of the 9L-ESRF tumor to radiotherapy was estimated by plotting the survival curves after irradiation. The median survival time of 9L-ESRF tumor-bearing rats was highly reproducible (19-20 days). The 9L-ESRF tumors presented a quasi-exponential growth, were highly vascularized with a high cellular density and a high proliferative index, accompanied by signs of inflammatory responses. We also report an infiltrative pattern which is poorly observed on conventional 9 L tumor. The 9L-ESRF cells presented some cytogenetic specificities such as altered regions including CDK4, CDKN2A, CDKN2B, and MDM2 genes. Finally, the lifespan of 9L-ESRF tumor-bearing rats was enhanced up to 28, 35, and 45 days for single doses of 10, 20, and 2 × 20 Gy, respectively. First, this report describes an animal model that is used worldwide. Second, we describe few features typical of our model if compared to other 9L models worldwide. Altogether, the 9L-ESRF tumor model presents characteristics close to the human high-grade gliomas such as high proliferative capability, high vascularization and a high infiltrative pattern. Its response to radiotherapy demonstrates its potential as a tool for innovative radiotherapy protocols.
Collapse
|
21
|
Bouchet A, Sakakini N, El Atifi M, Le Clec'h C, Brauer E, Moisan A, Deman P, Rihet P, Le Duc G, Pelletier L. Early gene expression analysis in 9L orthotopic tumor-bearing rats identifies immune modulation in molecular response to synchrotron microbeam radiation therapy. PLoS One 2013; 8:e81874. [PMID: 24391709 PMCID: PMC3876987 DOI: 10.1371/journal.pone.0081874] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/19/2013] [Indexed: 01/21/2023] Open
Abstract
Synchrotron Microbeam Radiation Therapy (MRT) relies on the spatial fractionation of the synchrotron photon beam into parallel micro-beams applying several hundred of grays in their paths. Several works have reported the therapeutic interest of the radiotherapy modality at preclinical level, but biological mechanisms responsible for the described efficacy are not fully understood to date. The aim of this study was to identify the early transcriptomic responses of normal brain and glioma tissue in rats after MRT irradiation (400Gy). The transcriptomic analysis of similarly irradiated normal brain and tumor tissues was performed 6 hours after irradiation of 9 L orthotopically tumor-bearing rats. Pangenomic analysis revealed 1012 overexpressed and 497 repressed genes in the irradiated contralateral normal tissue and 344 induced and 210 repressed genes in tumor tissue. These genes were grouped in a total of 135 canonical pathways. More than half were common to both tissues with a predominance for immunity or inflammation (64 and 67% of genes for normal and tumor tissues, respectively). Several pathways involving HMGB1, toll-like receptors, C-type lectins and CD36 may serve as a link between biochemical changes triggered by irradiation and inflammation and immunological challenge. Most immune cell populations were involved: macrophages, dendritic cells, natural killer, T and B lymphocytes. Among them, our results highlighted the involvement of Th17 cell population, recently described in tumor. The immune response was regulated by a large network of mediators comprising growth factors, cytokines, lymphokines. In conclusion, early response to MRT is mainly based on inflammation and immunity which appear therefore as major contributors to MRT efficacy.
Collapse
Affiliation(s)
- Audrey Bouchet
- Institut National de la Santé et de la Recherche Médicale (INSERM) - Unit 836, Team Nanomedecine and brain, La Tronche, France
- European Synchrotron Radiation Facility (ESRF), Biomedical Beamline, Grenoble, France
| | - Nathalie Sakakini
- Unité Mixte de Recherche 1090, Team Technlogical Advances for Genomics and Clinics (TAGC), Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Michèle El Atifi
- Institut National de la Santé et de la Recherche Médicale (INSERM) - Unit 836, Team Nanomedecine and brain, La Tronche, France
- Grenoble University Hospital, Grenoble, France
| | - Céline Le Clec'h
- European Synchrotron Radiation Facility (ESRF), Biomedical Beamline, Grenoble, France
| | - Elke Brauer
- European Synchrotron Radiation Facility (ESRF), Biomedical Beamline, Grenoble, France
| | - Anaïck Moisan
- Institut National de la Santé et de la Recherche Médicale (INSERM) - Unit 836, Team Functional NeuroImaging and Brain Perfusion, La Tronche, France
| | - Pierre Deman
- Institut National de la Santé et de la Recherche Médicale (INSERM) - Unit 836, Team Synchrotron Radiation and Medical Research, La Tronche, France
| | - Pascal Rihet
- Unité Mixte de Recherche 1090, Team Technlogical Advances for Genomics and Clinics (TAGC), Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
- Aix-Marseille Université, Marseille, France
| | - Géraldine Le Duc
- European Synchrotron Radiation Facility (ESRF), Biomedical Beamline, Grenoble, France
| | - Laurent Pelletier
- Institut National de la Santé et de la Recherche Médicale (INSERM) - Unit 836, Team Nanomedecine and brain, La Tronche, France
- Grenoble University Hospital, Grenoble, France
- * E-mail:
| |
Collapse
|
22
|
Gokeri G, Kocar C, Tombakoglu M, Cecen Y. Monte Carlo simulation of stereotactic microbeam radiation therapy: evaluation of the usage of a linear accelerator as the x-ray source. Phys Med Biol 2013; 58:4621-42. [PMID: 23771153 DOI: 10.1088/0031-9155/58/13/4621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The usage of linear accelerator-generated x-rays for the stereotactic microbeam radiation therapy technique was evaluated in this study. Dose distributions were calculated with the Monte Carlo code MCNPX. Unidirectional single beams and beam arrays were simulated in a cylindrical water phantom to observe the effects of x-ray energies and irradiation geometry on dose distributions. Beam arrays were formed with square pencil beams. Two orthogonally interlaced beam arrays were simulated in a detailed head phantom and dose distributions were compared with ones which had been calculated for a bidirectional interlaced microbeam therapy (BIMRT) technique that uses synchrotron-generated x-rays. A parallel pattern of the beams was preserved through the phantom; however an unsegmented dose region could not be formed at the target. Five orthogonally interlaced beam array pairs (ten beam arrays) were simulated in a mathematical head phantom and the unsegmented dose region was formed. However, the dose fall-off distance is longer than the one that had been calculated for the BIMRT technique. Besides, the peak-to-dose ratios between the phantom's outer surface and the target region are lower. Therefore, the advantages of the MRT technique may not be preserved with the usage of a linac as the x-ray source.
Collapse
Affiliation(s)
- Gurdal Gokeri
- Department of Nuclear Engineering, Hacettepe University, Ankara, Turkey.
| | | | | | | |
Collapse
|
23
|
Bouchet A, Lemasson B, Christen T, Potez M, Rome C, Coquery N, Le Clec'h C, Moisan A, Bräuer-Krisch E, Leduc G, Rémy C, Laissue JA, Barbier EL, Brun E, Serduc R. Synchrotron microbeam radiation therapy induces hypoxia in intracerebral gliosarcoma but not in the normal brain. Radiother Oncol 2013; 108:143-8. [PMID: 23731617 DOI: 10.1016/j.radonc.2013.05.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/12/2013] [Accepted: 05/04/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Synchrotron microbeam radiation therapy (MRT) is an innovative irradiation modality based on spatial fractionation of a high-dose X-ray beam into lattices of microbeams. The increase in lifespan of brain tumor-bearing rats is associated with vascular damage but the physiological consequences of MRT on blood vessels have not been described. In this manuscript, we evaluate the oxygenation changes induced by MRT in an intracerebral 9L gliosarcoma model. METHODS Tissue responses to MRT (two orthogonal arrays (2 × 400Gy)) were studied using magnetic resonance-based measurements of local blood oxygen saturation (MR_SO2) and quantitative immunohistology of RECA-1, Type-IV collagen and GLUT-1, marker of hypoxia. RESULTS In tumors, MR_SO2 decreased by a factor of 2 in tumor between day 8 and day 45 after MRT. This correlated with tumor vascular remodeling, i.e. decrease in vessel density, increases in half-vessel distances (×5) and GLUT-1 immunoreactivity. Conversely, MRT did not change normal brain MR_SO2, although vessel inter-distances increased slightly. CONCLUSION We provide new evidence for the differential effect of MRT on tumor vasculature, an effect that leads to tumor hypoxia. As hypothesized formerly, the vasculature of the normal brain exposed to MRT remains sufficiently perfused to prevent any hypoxia.
Collapse
|