1
|
Miotto MC, Reiken S, Wronska A, Yuan Q, Dridi H, Liu Y, Weninger G, Tchagou C, Marks AR. Structural basis for ryanodine receptor type 2 leak in heart failure and arrhythmogenic disorders. Nat Commun 2024; 15:8080. [PMID: 39278969 PMCID: PMC11402997 DOI: 10.1038/s41467-024-51791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Heart failure, the leading cause of mortality and morbidity in the developed world, is characterized by cardiac ryanodine receptor 2 channels that are hyperphosphorylated, oxidized, and depleted of the stabilizing subunit calstabin-2. This results in a diastolic sarcoplasmic reticulum Ca2+ leak that impairs cardiac contractility and triggers arrhythmias. Genetic mutations in ryanodine receptor 2 can also cause Ca2+ leak, leading to arrhythmias and sudden cardiac death. Here, we solved the cryogenic electron microscopy structures of ryanodine receptor 2 variants linked either to heart failure or inherited sudden cardiac death. All are in the primed state, part way between closed and open. Binding of Rycal drugs to ryanodine receptor 2 channels reverts the primed state back towards the closed state, decreasing Ca2+ leak, improving cardiac function, and preventing arrhythmias. We propose a structural-physiological mechanism whereby the ryanodine receptor 2 channel primed state underlies the arrhythmias in heart failure and arrhythmogenic disorders.
Collapse
Affiliation(s)
- Marco C Miotto
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Carl Tchagou
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Miotto MC, Weninger G, Dridi H, Yuan Q, Liu Y, Wronska A, Melville Z, Sittenfeld L, Reiken S, Marks AR. Structural analyses of human ryanodine receptor type 2 channels reveal the mechanisms for sudden cardiac death and treatment. SCIENCE ADVANCES 2022; 8:eabo1272. [PMID: 35857850 PMCID: PMC9299551 DOI: 10.1126/sciadv.abo1272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/03/2022] [Indexed: 05/29/2023]
Abstract
Ryanodine receptor type 2 (RyR2) mutations have been linked to an inherited form of exercise-induced sudden cardiac death called catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT results from stress-induced sarcoplasmic reticular Ca2+ leak via the mutant RyR2 channels during diastole. We present atomic models of human wild-type (WT) RyR2 and the CPVT mutant RyR2-R2474S determined by cryo-electron microscopy with overall resolutions in the range of 2.6 to 3.6 Å, and reaching local resolutions of 2.25 Å, unprecedented for RyR2 channels. Under nonactivating conditions, the RyR2-R2474S channel is in a "primed" state between the closed and open states of WT RyR2, rendering it more sensitive to activation that results in stress-induced Ca2+ leak. The Rycal drug ARM210 binds to RyR2-R2474S, reverting the primed state toward the closed state. Together, these studies provide a mechanism for CPVT and for the therapeutic actions of ARM210.
Collapse
Affiliation(s)
- Marco C. Miotto
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Zephan Melville
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Hadiatullah H, He Z, Yuchi Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front Pharmacol 2022; 13:897494. [PMID: 35677449 PMCID: PMC9168041 DOI: 10.3389/fphar.2022.897494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
The ryanodine receptors (RyRs) are large cation-selective ligand-gated channels that are expressed in the sarcoplasmic reticulum (SR) membrane. They mediate the controlled release of Ca2+ from SR and play an important role in many cellular processes. The mutations in RyRs are associated with several skeletal muscle and cardiac conditions, including malignant hyperthermia (MH), central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). Recent breakthroughs in structural biology including cryo-electron microscopy (EM) and X-ray crystallography allowed the determination of a number of near-atomic structures of RyRs, including wildtype and mutant structures as well as the structures in complex with different modulating molecules. This allows us to comprehend the physiological gating and regulatory mechanisms of RyRs and the underlying pathological mechanisms of the disease-causing mutations. In this review, based on the insights gained from the available high-resolution structures of RyRs, we address several questions: 1) what are the gating mechanisms of different RyR isoforms; 2) how RyRs are regulated by multiple channel modulators, including ions, small molecules, and regulatory proteins; 3) how do disease-causing mutations affect the structure and function of RyRs; 4) how can these structural information aid in the diagnosis of the related diseases and the development of pharmacological therapies.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao He
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhiguang Yuchi,
| |
Collapse
|
4
|
Cardiac ryanodine receptor N-terminal region biosensors identify novel inhibitors via FRET-based high-throughput screening. J Biol Chem 2021; 298:101412. [PMID: 34793835 PMCID: PMC8689225 DOI: 10.1016/j.jbc.2021.101412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The N-terminal region (NTR) of ryanodine receptor (RyR) channels is critical for the regulation of Ca2+ release during excitation–contraction (EC) coupling in muscle. The NTR hosts numerous mutations linked to skeletal (RyR1) and cardiac (RyR2) myopathies, highlighting its potential as a therapeutic target. Here, we constructed two biosensors by labeling the mouse RyR2 NTR at domains A, B, and C with FRET pairs. Using fluorescence lifetime (FLT) detection of intramolecular FRET signal, we developed high-throughput screening (HTS) assays with these biosensors to identify small-molecule RyR modulators. We then screened a small validation library and identified several hits. Hits with saturable FRET dose–response profiles and previously unreported effects on RyR were further tested using [3H]ryanodine binding to isolated sarcoplasmic reticulum vesicles to determine effects on intact RyR opening in its natural membrane. We identified three novel inhibitors of both RyR1 and RyR2 and two RyR1-selective inhibitors effective at nanomolar Ca2+. Two of these hits activated RyR1 only at micromolar Ca2+, highlighting them as potential enhancers of excitation–contraction coupling. To determine whether such hits can inhibit RyR leak in muscle, we further focused on one, an FDA-approved natural antibiotic, fusidic acid (FA). In skinned skeletal myofibers and permeabilized cardiomyocytes, FA inhibited RyR leak with no detrimental effect on skeletal myofiber excitation–contraction coupling. However, in intact cardiomyocytes, FA induced arrhythmogenic Ca2+ transients, a cautionary observation for a compound with an otherwise solid safety record. These results indicate that HTS campaigns using the NTR biosensor can identify compounds with therapeutic potential.
Collapse
|
5
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Yin L, Zahradnikova A, Rizzetto R, Boncompagni S, Rabesahala de Meritens C, Zhang Y, Joanne P, Marqués-Sulé E, Aguilar-Sánchez Y, Fernández-Tenorio M, Villejoubert O, Li L, Wang YY, Mateo P, Nicolas V, Gerbaud P, Lai FA, Perrier R, Álvarez JL, Niggli E, Valdivia HH, Valdivia CR, Ramos-Franco J, Zorio E, Zissimopoulos S, Protasi F, Benitah JP, Gómez AM. Impaired Binding to Junctophilin-2 and Nanostructural Alteration in CPVT Mutation. Circ Res 2021; 129:e35-e52. [PMID: 34111951 DOI: 10.1161/circresaha.121.319094] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liheng Yin
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Alexandra Zahradnikova
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Riccardo Rizzetto
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Simona Boncompagni
- CAST, Department of Neuroscience, Imaging and Clinical Sciences (DNICS), Medicine and Ageing Sciences (DMSI), University Gabriele d'Annunzio, Chieti, Italy (S.B., F.P.)
| | | | - Yadan Zhang
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK (C.R.d.M., Y.Z., S.Z.)
| | - Pierre Joanne
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Elena Marqués-Sulé
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.).,Physiotherapy, University of Valencia, Valencia, Spain (E.M.-S.)
| | - Yuriana Aguilar-Sánchez
- Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA (Y.A.-S., J.R.-F.)
| | | | - Olivier Villejoubert
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Linwei Li
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Yue Yi Wang
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Philippe Mateo
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | | | - Pascale Gerbaud
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - F Anthony Lai
- College of Medicine, Biomedical & Pharmaceutical Research Unit, QU Health, & Biomedical Research Centre, Qatar University, Doha, Qatar (F.A.L.)
| | | | - Julio L Álvarez
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.).,Institute of Cardiology, Havana, Cuba (J.L.A.)
| | - Ernst Niggli
- Physiology, University of Bern, Bern, Switzerland (M.F.-T., E.N.)
| | - Héctor H Valdivia
- Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin (H.H.V., C.R.V.)
| | - Carmen R Valdivia
- Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin (H.H.V., C.R.V.)
| | - Josefina Ramos-Franco
- Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA (Y.A.-S., J.R.-F.)
| | - Esther Zorio
- Cardiology Department and Unidad de Cardiopatías Familiares, Muerte Súbita y Mecanismos de Enfermedad (CaFaMuSMe), Hospital Universitario y Politécnico La Fe and Instituto de Investigación Sanitaria La Fe, Valencia, Spain (E.Z.).,Center for Biomedical Network Research on Cardiovascular diseases (CIBERCV), Madrid, Spain (E.Z.)
| | - Spyros Zissimopoulos
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK (C.R.d.M., Y.Z., S.Z.)
| | - Feliciano Protasi
- CAST, Department of Neuroscience, Imaging and Clinical Sciences (DNICS), Medicine and Ageing Sciences (DMSI), University Gabriele d'Annunzio, Chieti, Italy (S.B., F.P.)
| | - Jean-Pierre Benitah
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Ana M Gómez
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| |
Collapse
|
7
|
Yamazawa T, Ogawa H, Murayama T, Yamaguchi M, Oyamada H, Suzuki J, Kurebayashi N, Kanemaru K, Oguchi K, Sakurai T, Iino M. Insights into channel modulation mechanism of RYR1 mutants using Ca2+ imaging and molecular dynamics. J Gen Physiol 2021; 152:132759. [PMID: 31841587 PMCID: PMC7034096 DOI: 10.1085/jgp.201812235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/31/2019] [Accepted: 11/05/2019] [Indexed: 12/01/2022] Open
Abstract
Molecular bases of pathogenic enhancement of Ca2+ release channel activities in RYR1 carrying disease-associated mutations at the N-terminal region were studied. Functional studies and MD simulation revealed that the interactions between domains have a strong correlation with channel activity. Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum in skeletal muscle and plays an important role in excitation–contraction coupling. Mutations in the RYR1 gene cause severe muscle diseases such as malignant hyperthermia (MH), which is a disorder of CICR via RYR1. Thus far, >300 mutations in RYR1 have been reported in patients with MH. However, owing to a lack of comprehensive analysis of the structure–function relationship of mutant RYR1, the mechanism remains largely unknown. Here, we combined functional studies and molecular dynamics (MD) simulations of RYR1 bearing disease-associated mutations at the N-terminal region. When expressed in HEK293 cells, the mutant RYR1 caused abnormalities in Ca2+ homeostasis. MD simulations of WT and mutant RYR1s were performed using crystal structure of the N-terminal domain (NTD) monomer, consisting of A, B, and C domains. We found that the mutations located around the interdomain region differentially affected hydrogen bonds/salt bridges. Particularly, mutations at R402, which increase the open probability of the channel, cause clockwise rotation of BC domains with respect to the A domain by alteration of the interdomain interactions. Similar results were also obtained with artificial mutations that mimic alteration of the interactions. Our results reveal the importance of interdomain interactions within the NTD in the regulation of the RYR1 channel and provide insights into the mechanism of MH caused by the mutations at the NTD.
Collapse
Affiliation(s)
- Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruo Ogawa
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Maki Yamaguchi
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideto Oyamada
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Junji Suzuki
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Physiology, University of California, San Francisco, San Francisco, CA
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazunori Kanemaru
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan
| | - Katsuji Oguchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Chiapparino A, Grbavac A, Jonker HR, Hackmann Y, Mortensen S, Zatorska E, Schott A, Stier G, Saxena K, Wild K, Schwalbe H, Strahl S, Sinning I. Functional implications of MIR domains in protein O-mannosylation. eLife 2020; 9:61189. [PMID: 33357379 PMCID: PMC7759382 DOI: 10.7554/elife.61189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Protein O-mannosyltransferases (PMTs) represent a conserved family of multispanning endoplasmic reticulum membrane proteins involved in glycosylation of S/T-rich protein substrates and unfolded proteins. PMTs work as dimers and contain a luminal MIR domain with a β-trefoil fold, which is susceptive for missense mutations causing α-dystroglycanopathies in humans. Here, we analyze PMT-MIR domains by an integrated structural biology approach using X-ray crystallography and NMR spectroscopy and evaluate their role in PMT function in vivo. We determine Pmt2- and Pmt3-MIR domain structures and identify two conserved mannose-binding sites, which are consistent with general β-trefoil carbohydrate-binding sites (α, β), and also a unique PMT2-subfamily exposed FKR motif. We show that conserved residues in site α influence enzyme processivity of the Pmt1-Pmt2 heterodimer in vivo. Integration of the data into the context of a Pmt1-Pmt2 structure and comparison with homologous β-trefoil – carbohydrate complexes allows for a functional description of MIR domains in protein O-mannosylation.
Collapse
Affiliation(s)
| | - Antonija Grbavac
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Hendrik Ra Jonker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main, Germany
| | - Yvonne Hackmann
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Sofia Mortensen
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Ewa Zatorska
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Andrea Schott
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Gunter Stier
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt am Main, Germany
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| |
Collapse
|
9
|
Bauerová-Hlinková V, Hajdúchová D, Bauer JA. Structure and Function of the Human Ryanodine Receptors and Their Association with Myopathies-Present State, Challenges, and Perspectives. Molecules 2020; 25:molecules25184040. [PMID: 32899693 PMCID: PMC7570887 DOI: 10.3390/molecules25184040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 01/28/2023] Open
Abstract
Cardiac arrhythmias are serious, life-threatening diseases associated with the dysregulation of Ca2+ influx into the cytoplasm of cardiomyocytes. This dysregulation often arises from dysfunction of ryanodine receptor 2 (RyR2), the principal Ca2+ release channel. Dysfunction of RyR1, the skeletal muscle isoform, also results in less severe, but also potentially life-threatening syndromes. The RYR2 and RYR1 genes have been found to harbor three main mutation “hot spots”, where mutations change the channel structure, its interdomain interface properties, its interactions with its binding partners, or its dynamics. In all cases, the result is a defective release of Ca2+ ions from the sarcoplasmic reticulum into the myocyte cytoplasm. Here, we provide an overview of the most frequent diseases resulting from mutations to RyR1 and RyR2, briefly review some of the recent experimental structural work on these two molecules, detail some of the computational work describing their dynamics, and summarize the known changes to the structure and function of these receptors with particular emphasis on their N-terminal, central, and channel domains.
Collapse
|
10
|
RYR2 p.R169L mutation and left ventricular hypertrophy in a child with emotion-triggered sudden death. Cardiol Young 2020; 30:1039-1042. [PMID: 32513315 DOI: 10.1017/s1047951120001316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia is a rare (prevalence: 1/10,000) channelopathy characterised by exercise-induced or emotion-triggered ventricular arrhythmias. There is an overall paucity of genotype-phenotype correlation studies in patients with catecholaminergic polymorphic ventricular tachycardia, and in vitro and in vivo effects of individual mutations have not been well characterised. We report an 8-year-old child who carried a mutation in the coding exon 8 of RYR2 (p.R169L) and presented with emotion-triggered sudden cardiac death. He was also found to have left ventricular hypertrophy, a combination which has not been reported before. We discuss the association between genetic variation in RYR2, particularly mutations causing replacement of arginine at position 169 of RYR2 and structural cardiac abnormalities.
Collapse
|
11
|
Lin L, Hao Z, Cao P, Yuchi Z. Homology modeling and docking study of diamondback moth ryanodine receptor reveals the mechanisms for channel activation, insecticide binding and resistance. PEST MANAGEMENT SCIENCE 2020; 76:1291-1303. [PMID: 31595631 DOI: 10.1002/ps.5640] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Diamide insecticides, including phthalic and anthranilic diamides, target insect ryanodine receptors (RyRs) and cause misregulation of calcium signaling in insect muscles and neurons. Several resistance mutations have been reported to reduce the efficacy of the diamides, but the exact binding sites and mechanism of resistance mutations are not clear. RESULTS The recent breakthrough in structural studies of mammalian RyRs has deepened our understanding of these giant calcium-release channels, but structural information about insect RyRs is still scarce. The only reported high-resolution structure is from the N-terminal domain of diamondback moth (DBM) RyR determined by our group. Here, we generate several homology models of full-length DBM RyR representing different functional states and dock the diamide insecticides into the structural models using Schrodinger software. These models reveal the specific structural features, activation mechanism, structural difference between functional states, ligand-binding sites and insecticide-binding sites of DBM RyR. By comparing the structures of wild-type and insecticide-resistant mutants, we propose a model depicting how the mutations affect the insecticide binding. We also identify the key difference between mammalian and insect RyRs that may explain the species-specific binding properties of diamides. CONCLUSION The binding sites for three activators Ca2+ , ATP and caffeine, and regulator ryanodine are conserved in insect and mammalian RyRs, but the binding site for diamide insecticides is species-specific. The phthalic and anthranilic diamides have distinct binding properties in DBM, which can be interfered by resistance mutations located in the transmembrane region. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhiyuan Hao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
12
|
Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. Regulatory mechanisms of ryanodine receptor/Ca 2+ release channel revealed by recent advancements in structural studies. J Muscle Res Cell Motil 2020; 42:291-304. [PMID: 32040690 PMCID: PMC8332584 DOI: 10.1007/s10974-020-09575-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Ryanodine receptors (RyRs) are huge homotetrameric Ca2+ release channels localized to the sarcoplasmic reticulum. RyRs are responsible for the release of Ca2+ from the SR during excitation–contraction coupling in striated muscle cells. Recent revolutionary advancements in cryo-electron microscopy have provided a number of near-atomic structures of RyRs, which have enabled us to better understand the architecture of RyRs. Thus, we are now in a new era understanding the gating, regulatory and disease-causing mechanisms of RyRs. Here we review recent advances in the elucidation of the structures of RyRs, especially RyR1 in skeletal muscle, and their mechanisms of regulation by small molecules, associated proteins and disease-causing mutations.
Collapse
Affiliation(s)
- Haruo Ogawa
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
13
|
Nozaki Y, Kato Y, Uike K, Yamamura K, Kikuchi M, Yasuda M, Ohno S, Horie M, Murayama T, Kurebayashi N, Horigome H. Co-Phenotype of Left Ventricular Non-Compaction Cardiomyopathy and Atypical Catecholaminergic Polymorphic Ventricular Tachycardia in Association With R169Q, a Ryanodine Receptor Type 2 Missense Mutation. Circ J 2020; 84:226-234. [PMID: 31875585 DOI: 10.1253/circj.cj-19-0720] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
BACKGROUND Left ventricular non-compaction (LVNC) is a cardiomyopathy characterized by prominent trabeculae and intertrabecular recesses. We present the cases of 3 girls with the sameryanodine receptor type 2(RYR2) mutation who had phenotypes of both catecholaminergic polymorphic ventricular tachycardia (CPVT) and LVNC. METHODS AND RESULTS Clinical characteristics and genetic background of the 3 patients were analyzed retrospectively. Age at onset was 5, 6, and 7 years, respectively. Clinical presentation included syncope during exercise in all 3 patients and cardiac arrest in 2 patients. LVNC diagnosis was confirmed on echocardiography according to previously defined criteria. Exercise stress testing provoked ventricular arrhythmia in two of the patients. Beta-blockers (n=3) and flecainide (n=2) were given, and an implantable cardioverter defibrillator was used in 1 patient. Genotyping identified the sameRYR2-R169Q missense mutation and no other CPVT- or LVNC-related gene mutations. Functional analysis of the mutation using HEK293 cells with single-cell Ca2+imaging and [3H]ryanodine binding analysis, indicated a gain of function: a reduced threshold for overload-induced Ca2+release from the sarcoplasmic reticulum and increased fractional Ca2+release. CONCLUSIONS The rare association of LVNC and CPVT phenotypes withRYR2mutations is less likely to be coincidental. Screening for life-threatening arrhythmias using exercise or pharmacologic stress tests is recommended in LVNC patients to prevent sudden cardiac death in those with preserved LV function.
Collapse
Affiliation(s)
- Yoshihiro Nozaki
- Department of Child Health, Faculty of Medicine, University of Tsukuba
| | - Yoshiaki Kato
- Department of Child Health, Faculty of Medicine, University of Tsukuba
| | - Kiyoshi Uike
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University
| | - Kenichiro Yamamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University
| | | | - Maki Yasuda
- Department of Pediatrics, Hitachi General Hospital
| | - Seiko Ohno
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine
| | - Hitoshi Horigome
- Department of Child Health, Faculty of Medicine, University of Tsukuba
| |
Collapse
|
14
|
Bauer JA, Borko Ľ, Pavlović J, Kutejová E, Bauerová-Hlinková V. Disease-associated mutations alter the dynamic motion of the N-terminal domain of the human cardiac ryanodine receptor. J Biomol Struct Dyn 2019; 38:1054-1070. [PMID: 30909845 DOI: 10.1080/07391102.2019.1600027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human cardiac ryanodine receptor (hRyR2), the ion channel responsible for the release of Ca2+ ions from the sarcoplasmic reticulum into the cytosol, plays an important role in cardiac muscle contraction. Mutations to this channel are associated with inherited cardiac arrhythmias. These mutations appear to cluster in distinct parts of the N-terminal, central and C-terminal areas of the channel. Here, we used molecular dynamics simulation to examine the effects three disease-associated mutations to the N-terminal region, R414L, I419F and R420W, have on the dynamics of a model of residues 1-655 of hRyR2. We find that the R414L and I419F mutations diminish the overall amplitude of motion without greatly changing the direction of motion of the individual domains, whereas R420W both enhances the amplitude and changes the direction of motion. Based on these results, we hypothesize that R414L and I419F hinder channel closing, whereas R420W may enhance channel opening. Overall, it appears that the wild-type protein possesses a moderate level of flexibility which allows the gate to close and not easily open without an opening signal. These mutations, however, disrupt this balance by making the gate either too rigid or too loose, causing closing to become difficult or less effective. Small-angle X-ray scattering studies of the same 1-655 residue fragment are in agreement with the molecular dynamics results and also suggest that the rest of the protein is needed to keep the entire domain properly folded.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jacob A Bauer
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ľubomír Borko
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jelena Pavlović
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Kutejová
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
15
|
Roston TM, Yuchi Z, Kannankeril PJ, Hathaway J, Vinocur JM, Etheridge SP, Potts JE, Maginot KR, Salerno JC, Cohen MI, Hamilton RM, Pflaumer A, Mohammed S, Kimlicka L, Kanter RJ, LaPage MJ, Collins KK, Gebauer RA, Temple JD, Batra AS, Erickson C, Miszczak-Knecht M, Kubuš P, Bar-Cohen Y, Kantoch M, Thomas VC, Hessling G, Anderson C, Young ML, Choi SHJ, Cabrera Ortega M, Lau YR, Johnsrude CL, Fournier A, Van Petegem F, Sanatani S. The clinical and genetic spectrum of catecholaminergic polymorphic ventricular tachycardia: findings from an international multicentre registry. Europace 2018; 20:541-547. [PMID: 28158428 DOI: 10.1093/europace/euw389] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/03/2016] [Indexed: 11/12/2022] Open
Abstract
Aims Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an ion channelopathy characterized by ventricular arrhythmia during exertion or stress. Mutations in RYR2-coded Ryanodine Receptor-2 (RyR2) and CASQ2-coded Calsequestrin-2 (CASQ2) genes underlie CPVT1 and CPVT2, respectively. However, prognostic markers are scarce. We sought to better characterize the phenotypic and genotypic spectrum of CPVT, and utilize molecular modelling to help account for clinical phenotypes. Methods and results This is a Pediatric and Congenital Electrophysiology Society multicentre, retrospective cohort study of CPVT patients diagnosed at <19 years of age and their first-degree relatives. Genetic testing was undertaken in 194 of 236 subjects (82%) during 3.5 (1.4-5.3) years of follow-up. The majority (60%) had RyR2-associated CPVT1. Variant locations were predicted based on a 3D structural model of RyR2. Specific residues appear to have key structural importance, supported by an association between cardiac arrest and mutations in the intersubunit interface of the N-terminus, and the S4-S5 linker and helices S5 and S6 of the RyR2 C-terminus. In approximately one quarter of symptomatic patients, cardiac events were precipitated by only normal wakeful activities. Conclusion This large, multicentre study identifies contemporary challenges related to the diagnosis and prognostication of CPVT patients. Structural modelling of RyR2 can improve our understanding severe CPVT phenotypes. Wakeful rest, rather than exertion, often precipitated life-threatening cardiac events.
Collapse
Affiliation(s)
- Thomas M Roston
- Departments of Pediatrics/Medicine/Biochemistry & Molecular Biology, University of British Columbia, 4480 Oak Street, Room 1F3, Vancouver, BC, V6H 3V4, Canada
| | - Zhiguang Yuchi
- Departments of Pediatrics/Medicine/Biochemistry & Molecular Biology, University of British Columbia, 4480 Oak Street, Room 1F3, Vancouver, BC, V6H 3V4, Canada
| | - Prince J Kannankeril
- Department of Pediatrics and the Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART) Vanderbilt University Medical Center and the Monroe Carell Jr. Children's Hospital at Vanderbilt, 2200 Children's Way, Suite 5230, Nashville, TN 37232-9119, USA
| | - Julie Hathaway
- BC Inherited Arrhythmia Program, 211-1033 Davie St, Vancouver, BC V6E 1M7, Canada
| | - Jeffrey M Vinocur
- Department of Pediatrics, University of Rochester, 601 Elmwood Ave, Box 631, Rochester, NY 14642, USA
| | - Susan P Etheridge
- Department of Pediatrics, University of Utah, 81 N Mario Capecchi Drive Salt Lake City, UT 84113, USA
| | - James E Potts
- Departments of Pediatrics/Medicine/Biochemistry & Molecular Biology, University of British Columbia, 4480 Oak Street, Room 1F3, Vancouver, BC, V6H 3V4, Canada
| | - Kathleen R Maginot
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1675 Highland Ave, Madison, WI 53792, USA
| | - Jack C Salerno
- Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Mitchell I Cohen
- Division of Cardiology Phoenix Children's Hospital, 1919 E. Thomas Road, 2nd Floor, Heart Center, Phoenix, AZ 85016, USA
| | - Robert M Hamilton
- Department of Pediatrics, University of Toronto, Hospital for Sick Children, 555 University Avenue Toronto, Ontario M5G 1X8, Canada
| | - Andreas Pflaumer
- Royal Children's Hospital MCRI and University of Melbourne, 50 Flemington Road Parkville, Melbourne 3052, Australia
| | - Saira Mohammed
- Departments of Pediatrics/Medicine/Biochemistry & Molecular Biology, University of British Columbia, 4480 Oak Street, Room 1F3, Vancouver, BC, V6H 3V4, Canada
| | - Lynn Kimlicka
- Departments of Pediatrics/Medicine/Biochemistry & Molecular Biology, University of British Columbia, 4480 Oak Street, Room 1F3, Vancouver, BC, V6H 3V4, Canada
| | - Ronald J Kanter
- Nicklaus Children's Hospital, 3100 SW 62 Ave, Cardiology ACB - 2nd Floor Miami, FL 33155, USA
| | - Martin J LaPage
- Department of Pediatrics, University of Michigan, 1500 E Medical Center Drive, #6303, Ann Arbor, MI 48109, USA
| | - Kathryn K Collins
- Department of Pediatrics, University of Colorado, 13123 East 16th Avenue, Aurora, CO 80045, USA
| | - Roman A Gebauer
- Department of Pediatric Cardiology, Heart Center, University of Leipzig, Strümpellstrasse 39, Leipzig, Germany
| | - Joel D Temple
- Department of Pediatrics, A. I. DuPont Hospital For Children, 1600 Rockland Rd, Wilmington, DE 19803, USA
| | - Anjan S Batra
- Department of Pediatrics, University of California at Irvine Medical Center, 1140 W. La Veta Ave., Suite 750, Orange, CA 92868, USA
| | - Christopher Erickson
- Division of Cardiology, UNMC/CUMC/Children's Hospital and Medical Center, 8200 Dodge Street, Omaha, NE 68114, USA
| | - Maria Miszczak-Knecht
- Department of Cardiology, Children's Memorial Health Institute, Dzieci Polskich 20, 04 -730 Warsaw, Poland
| | - Peter Kubuš
- Children's Heart Centre, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Vúvalu 84, 15006, Prague, Czech Republic
| | - Yaniv Bar-Cohen
- Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd #34, Los Angeles, CA 90027, USA
| | - Michal Kantoch
- Stollery Children's Hospital, University of Alberta, Clinical Sciences Building, 8440 112 St NW, Edmonton, AB T6G 2B7, Canada
| | - Vincent C Thomas
- Division of Cardiology, UNMC/CUMC/Children's Hospital and Medical Center, 8200 Dodge Street, Omaha, NE 68114, USA
| | - Gabriele Hessling
- Department of Electrophysiology, German Heart Center Munich, Technical University, Lazarettstr. 3680636 Munich, Germany
| | - Chris Anderson
- Providence Sacred Heart Children's Hospital, 101 W. 8th Ave. Suite 4300E, Spokane, WA 99204, USA
| | - Ming-Lon Young
- Department of Pediatrics, Joe DiMaggio Children's Hospital, 1150 North 35th Avenue Suite 575, Hollywood, FL 33021, USA
| | - Sally H J Choi
- Departments of Pediatrics/Medicine/Biochemistry & Molecular Biology, University of British Columbia, 4480 Oak Street, Room 1F3, Vancouver, BC, V6H 3V4, Canada
| | - Michel Cabrera Ortega
- Department of Arrhythmia and Cardiac Pacing, Cardiocentro Pediatrico William Soler, 100 y perla, Boyeros. 10800, Havana, Cuba
| | - Yung R Lau
- Division of Pediatric Cardiology, University of Alabama at Birmingham, 1700 6th Ave S, Birmingham, AL 35233, USA
| | - Christopher L Johnsrude
- Department of Pediatrics, University of Louisville, 601 S Floyd St #602, Louisville, KY 40208, USA
| | - Anne Fournier
- Département de Pédiatrie, CHU Ste Justine, 3175, chemin Côte Sainte-Catherine, Montréal, QC H3T 1C5 Canada
| | - Filip Van Petegem
- Departments of Pediatrics/Medicine/Biochemistry & Molecular Biology, University of British Columbia, 4480 Oak Street, Room 1F3, Vancouver, BC, V6H 3V4, Canada
| | - Shubhayan Sanatani
- Departments of Pediatrics/Medicine/Biochemistry & Molecular Biology, University of British Columbia, 4480 Oak Street, Room 1F3, Vancouver, BC, V6H 3V4, Canada
| |
Collapse
|
16
|
Xiong J, Liu X, Gong Y, Zhang P, Qiang S, Zhao Q, Guo R, Qian Y, Wang L, Zhu L, Wang R, Hao Z, Wen H, Zhang J, Tang K, Zang WF, Yuchi Z, Chen H, Chen SRW, Zheng W, Wang SQ, Xu YW, Liu Z. Pathogenic mechanism of a catecholaminergic polymorphic ventricular tachycardia causing-mutation in cardiac calcium release channel RyR2. J Mol Cell Cardiol 2018; 117:26-35. [PMID: 29477366 DOI: 10.1016/j.yjmcc.2018.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/27/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a condition that is characterized by an abnormal heart rhythm in response to physical or emotional stress. The majority CPVT patients carry mutations in the RYR2 gene that encodes the calcium release channel/ryanodine receptor (RyR2) in cardiomyocytes. The pathogenic mechanisms that account for the clinical phenotypes of CPVT are still elusive. We have identified a de novo mutation, A165D, from a CPVT patient. We found that CPVT phenotypes are recapitulated in A165D knock-in mice. The mutant RyR2 channels enhanced sarcoplasmic reticulum Ca2+ release, triggered delayed afterdepolarization in cardiomyocytes. Structural analysis revealed that the A165D mutation is located in a loop that is involved in inter-subunit interactions in the RyR2 tetrameric structure, it disrupted conformational stability of the RyR2, which favored a closed-to-open state transition, resulting in a leaky channel. The loop also harbors several other CPVT mutations, which suggests a common pathogenic molecular mechanism of CPVT-causing mutations. Our data illustrated disease-relevant functional defects and provide a deeper mechanistic understanding of a life-threatening cardiac arrhythmia.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xijun Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Yunyun Gong
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Peng Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sujing Qiang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Rong Guo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunyun Qian
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Lipeng Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Li Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Albert, Canada
| | - Zhiyuan Hao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, United States
| | - Jingying Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wang-Fu Zang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, China
| | - Haijun Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, United States
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Albert, Canada
| | - Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, New York, United States.
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Ya-Wei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China.
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Lin L, Liu C, Qin J, Wang J, Dong S, Chen W, He W, Gao Q, You M, Yuchi Z. Crystal structure of ryanodine receptor N-terminal domain from Plutella xylostella reveals two potential species-specific insecticide-targeting sites. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 92:73-83. [PMID: 29191465 DOI: 10.1016/j.ibmb.2017.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/04/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Ryanodine receptors (RyRs) are large calcium-release channels located in sarcoplasmic reticulum membrane. They play a central role in excitation-contraction coupling of muscle cells. Three commercialized insecticides targeting pest RyRs generate worldwide sales over 2 billion U.S. dollars annually, but the structure of insect RyRs remains elusive, hindering our understanding of the mode of action of RyR-targeting insecticides and the development of insecticide resistance in pests. Here we present the crystal structure of RyR N-terminal domain (NTD) (residue 1-205) at 2.84 Å resolution from the diamondback moth (DBM), Plutella xylostella, a destructive pest devouring cruciferous crops all over the world. Similar to its mammalian homolog, DBM RyR NTD consists of a beta-trefoil folding motif and a flanking alpha helix. Interestingly, two regions in NTD interacting with neighboring domains showed distinguished conformations in DBM relative to mammalian RyRs. Using homology modeling and molecular dynamics simulation, we created a structural model of the N-terminal three domains, showing two unique binding pockets that could be targeted by potential species-specific insecticides. Thermal melt experiment showed that the stability of DBM RyR NTD was higher than mammalian RyRs, probably due to a stable intra-domain disulfide bond observed in the crystal structure. Previously DBM NTD was shown to be one of the two critical regions to interact with insecticide flubendiamide, but isothermal titration calorimetry experiments negated DBM NTD alone as a major binding site for flubendiamide.
Collapse
Affiliation(s)
- Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Juan Qin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shengjie Dong
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wei Chen
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiyi He
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
18
|
Faltinova A, Tomaskova N, Antalik M, Sevcik J, Zahradnikova A. The N-Terminal Region of the Ryanodine Receptor Affects Channel Activation. Front Physiol 2017; 8:443. [PMID: 28713282 PMCID: PMC5492033 DOI: 10.3389/fphys.2017.00443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/12/2017] [Indexed: 11/29/2022] Open
Abstract
Mutations in the cardiac ryanodine receptor (RyR2), the ion channel responsible for release of calcium ions from intracellular stores into cytoplasm, are the cause of several inherited cardiac arrhythmias. At the molecular level, disease symptoms can be mimicked by domain peptides from mutation-prone regions of RyR2 that bind to RyR2 and activate it. Here we show that the domain peptide DPcpvtN2, corresponding to the central helix of the N-terminal region of RyR2, activates the RyR2 channel. Structural modeling of interaction between DPcpvtN2 and the N-terminal region of RyR2 in the closed and open conformation provided three plausible structures of the complex. Only one of them could explain the dependence of RyR2 activity on concentration of DPcpvtN2. The structure of the complex was at odds with the previously proposed “domain switch” mechanism of competition between domain peptides and ryanodine receptor domains. Likewise, in structural models of the N-terminal region, the conformational changes induced by DPcpvtN2 binding were different from those induced by mutation of central helix amino acids. The activating effect of DPcpvtN2 binding and of mutations in the central helix could be explained by their similar effect on the transition energy between the closed and open conformation of RyR2.
Collapse
Affiliation(s)
- Andrea Faltinova
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics of the Centre of Biosciences, Slovak Academy of SciencesBratislava, Slovakia.,Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of SciencesBratislava, Slovakia
| | - Nataša Tomaskova
- Faculty of Science, Institute of Chemical Sciences, Pavol Jozef Šafárik UniversityKošice, Slovakia
| | - Marián Antalik
- Faculty of Science, Institute of Chemical Sciences, Pavol Jozef Šafárik UniversityKošice, Slovakia
| | - Jozef Sevcik
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of SciencesBratislava, Slovakia
| | - Alexandra Zahradnikova
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics of the Centre of Biosciences, Slovak Academy of SciencesBratislava, Slovakia.,Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of SciencesBratislava, Slovakia
| |
Collapse
|
19
|
Dhindwal S, Lobo J, Cabra V, Santiago DJ, Nayak AR, Dryden K, Samsó M. A cryo-EM–based model of phosphorylation- and FKBP12.6-mediated allosterism of the cardiac ryanodine receptor. Sci Signal 2017; 10:10/480/eaai8842. [DOI: 10.1126/scisignal.aai8842] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Wang YY, Mesirca P, Marqués-Sulé E, Zahradnikova A, Villejoubert O, D'Ocon P, Ruiz C, Domingo D, Zorio E, Mangoni ME, Benitah JP, Gómez AM. RyR2R420Q catecholaminergic polymorphic ventricular tachycardia mutation induces bradycardia by disturbing the coupled clock pacemaker mechanism. JCI Insight 2017; 2:91872. [PMID: 28422759 DOI: 10.1172/jci.insight.91872] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/09/2017] [Indexed: 01/14/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal genetic arrhythmia that manifests syncope or sudden death in children and young adults under stress conditions. CPVT patients often present bradycardia and sino-atrial node (SAN) dysfunction. However, the mechanism remains unclear. We analyzed SAN function in two CPVT families and in a novel knock-in (KI) mouse model carrying the RyR2R420Q mutation. Humans and KI mice presented slower resting heart rate. Accordingly, the rate of spontaneous intracellular Ca2+ ([Ca2+]i) transients was slower in KI mouse SAN preparations than in WT, without any significant alteration in the "funny" current (If ). The L-type Ca2+ current was reduced in KI SAN cells in a [Ca2+]i-dependent way, suggesting that bradycardia was due to disrupted crosstalk between the "voltage" and "Ca2+" clock, and the mechanisms of pacemaking was induced by aberrant spontaneous RyR2- dependent Ca2+ release. This finding was consistent with a higher Ca2+ leak during diastolic periods produced by long-lasting Ca2+ sparks in KI SAN cells. Our results uncover a mechanism for the CPVT-causing RyR2 N-terminal mutation R420Q, and they highlight the fact that enhancing the Ca2+ clock may slow the heart rhythm by disturbing the coupling between Ca2+ and voltage clocks.
Collapse
Affiliation(s)
- Yue Yi Wang
- UMR-S 1180, Inserm, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Pietro Mesirca
- UMR-5203, CNRS, INSERM U1191, Institut de Génomique Fonctionnelle, Département de Physiologie, Université de Montpellier, Montpellier, France
| | - Elena Marqués-Sulé
- UMR-S 1180, Inserm, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Physiotherapy Department
| | - Alexandra Zahradnikova
- UMR-S 1180, Inserm, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Olivier Villejoubert
- UMR-S 1180, Inserm, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Pilar D'Ocon
- ERI BIOTECMED and Department of Pharmacology School, University of Valencia, Valencia, Spain
| | | | - Diana Domingo
- Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Esther Zorio
- Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Matteo E Mangoni
- UMR-5203, CNRS, INSERM U1191, Institut de Génomique Fonctionnelle, Département de Physiologie, Université de Montpellier, Montpellier, France
| | - Jean-Pierre Benitah
- UMR-S 1180, Inserm, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Ana María Gómez
- UMR-S 1180, Inserm, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
21
|
Roston TM, Guo W, Krahn AD, Wang R, Van Petegem F, Sanatani S, Chen SRW, Lehman A. A novel RYR2 loss-of-function mutation (I4855M) is associated with left ventricular non-compaction and atypical catecholaminergic polymorphic ventricular tachycardia. J Electrocardiol 2016; 50:227-233. [PMID: 27646203 DOI: 10.1016/j.jelectrocard.2016.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an ion channelopathy usually caused by gain-of-function mutations ryanodine receptor type-2 (RyR2). Left ventricular non-compaction (LVNC) is an often genetic cardiomyopathy. A rare LVNC-CPVT overlap syndrome may be caused by exon 3 deletion in RyR2. We sought to characterize the phenotypic spectrum and molecular basis of a novel RyR2 mutation identified in a family with both conditions. METHODS Several members of an affected family underwent clinical and genetic assessments. A homology model of the RyR2 pore-region was generated to predict the location and potential impact of their RyR2 mutation. Ca2+-release assays were performed to characterize the functional impact of the RyR2 mutant expressed in HEK293 cells. RESULTS A multigenerational family presented with a history of sudden death and a phenotype of atypical CPVT and LVNC. Genetic testing revealed a RYR2 mutation (I4855M) in two affected individuals. A homology model of the RyR2 pore-region showed that the I4855M mutant reside is located in the highly conserved 'inner vestibule', a water-filled cavity. I4855M may interfere with Ca2+ permeation and affect interactions between RyR2 pore subunits, and is thus predicted in silico to be damaging. Expression and functional studies in HEK293 cells revealed that I4855M inhibited caffeine-induced Ca2+ release and exerted a dominant-negative impact on wild type RyR2. CONCLUSIONS This study identifies a potentially lethal overlapping syndrome of LVNC and atypical CPVT related to a novel RYR2 variant. Structural and functional studies suggest that this is a loss-of-function mutation, which exerts a dominant-negative effect on wild type RyR2.
Collapse
Affiliation(s)
- Thomas M Roston
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology & Pharmacology and Department Biochemistry & Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Andrew D Krahn
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada; Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute of Alberta, Department of Physiology & Pharmacology and Department Biochemistry & Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Shubhayan Sanatani
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada; Child and Family Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology & Pharmacology and Department Biochemistry & Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Anna Lehman
- BC Inherited Arrhythmia Program, Vancouver, BC, Canada; Child and Family Research Institute, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Yuchi Z, Van Petegem F. Ryanodine receptors under the magnifying lens: Insights and limitations of cryo-electron microscopy and X-ray crystallography studies. Cell Calcium 2016; 59:209-27. [DOI: 10.1016/j.ceca.2016.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
|
23
|
Gaburjakova J, Gaburjakova M. Cardiac ryanodine receptor: Selectivity for alkaline earth metal cations points to the EF-hand nature of luminal binding sites. Bioelectrochemistry 2016; 109:49-56. [PMID: 26849106 DOI: 10.1016/j.bioelechem.2016.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 11/18/2022]
Abstract
A growing body of evidence suggests that the regulation of cardiac ryanodine receptor (RYR2) by luminal Ca(2+) is mediated by luminal binding sites located on the RYR2 channel itself and/or its auxiliary protein, calsequestrin. The localization and structure of RYR2-resident binding sites are not known because of the lack of a high-resolution structure of RYR2 luminal regions. To obtain the first structural insight, we probed the RYR2 luminal face stripped of calsequestrin by alkaline earth metal divalents (M(2+): Mg(2+), Ca(2+), Sr(2+) or Ba(2+)). We show that the RYR2 response to caffeine at the single-channel level is significantly modified by the nature of luminal M(2+). Moreover, we performed competition experiments by varying the concentration of luminal M(2+) (Mg(2+), Sr(2+) or Ba(2+)) from 8 mM to 53 mM and investigated its ability to compete with 1mM luminal Ca(2+). We demonstrate that all tested M(2+) bind to exactly the same RYR2 luminal binding sites. Their affinities decrease in the order: Ca(2+)>Sr(2+)>Mg(2+)~Ba(2+), showing a strong correlation with the M(2+) affinity of the EF-hand motif. This indicates that the RYR2 luminal binding regions and the EF-hand motif likely share some structural similarities because the structure ties directly to the function.
Collapse
Affiliation(s)
- Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Health Sciences Pavilion, 840 05, Bratislava, Slovak Republic.
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Health Sciences Pavilion, 840 05, Bratislava, Slovak Republic.
| |
Collapse
|
24
|
Yuchi Z, Yuen SMWK, Lau K, Underhill AQ, Cornea RL, Fessenden JD, Van Petegem F. Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant. Nat Commun 2015; 6:7947. [PMID: 26245150 PMCID: PMC4530471 DOI: 10.1038/ncomms8947] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 06/30/2015] [Indexed: 12/22/2022] Open
Abstract
Ryanodine receptors (RyRs) form calcium release channels located in the membranes of the sarcoplasmic and endoplasmic reticulum. RyRs play a major role in excitation-contraction coupling and other Ca2+-dependent signalling events, and consist of several globular domains that together form a large assembly. Here we describe the crystal structures of the SPRY1 and tandem-repeat domains at 1.2–1.5 Å resolution, which reveal several structural elements not detected in recent cryo-EM reconstructions of RyRs. The cryo-EM studies disagree on the position of SPRY domains, which had been proposed based on homology modelling. Computational docking of the crystal structures, combined with FRET studies, show that the SPRY1 domain is located next to FK506-binding protein (FKBP). Molecular dynamics flexible fitting and mutagenesis experiments suggest a hydrophobic cluster within SPRY1 that is crucial for FKBP binding. A RyR1 disease mutation, N760D, appears to directly impact FKBP binding through interfering with SPRY1 folding. The ryanodine receptor (RyR) is a large multi-domain ion channel that functions to release calcium from the endoplasmic or sarcoplasmic reticulum. Here the authors present crystal structures of the SPRY1 and tandem repeat domains of RyR, allowing precise positioning of the domains and linking disease mutations to RyR function.
Collapse
Affiliation(s)
- Zhiguang Yuchi
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Siobhan M Wong King Yuen
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Kelvin Lau
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Ainsley Q Underhill
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - James D Fessenden
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| |
Collapse
|
25
|
Domingo D, Neco P, Fernández-Pons E, Zissimopoulos S, Molina P, Olagüe J, Suárez-Mier MP, Lai FA, Gómez AM, Zorio E. Non-ventricular, Clinical, and Functional Features of the RyR2(R420Q) Mutation Causing Catecholaminergic Polymorphic Ventricular Tachycardia. ACTA ACUST UNITED AC 2014; 68:398-407. [PMID: 25440180 DOI: 10.1016/j.rec.2014.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/28/2014] [Indexed: 11/18/2022]
Abstract
INTRODUCTION AND OBJECTIVES Catecholaminergic polymorphic ventricular tachycardia is a malignant disease, due to mutations in proteins controlling Ca(2+) homeostasis. While the phenotype is characterized by polymorphic ventricular arrhythmias under stress, supraventricular arrhythmias may occur and are not fully characterized. METHODS Twenty-five relatives from a Spanish family with several sudden deaths were evaluated with electrocardiogram, exercise testing, and optional epinephrine challenge. Selective RyR2 sequencing in an affected individual and cascade screening in the rest of the family was offered. The RyR2(R420Q) mutation was generated in HEK-293 cells using site-directed mutagenesis to conduct in vitro functional studies. RESULTS The exercise testing unmasked catecholaminergic polymorphic ventricular tachycardia in 8 relatives (sensitivity = 89%; positive predictive value = 100%; negative predictive value = 93%), all of them carrying the heterozygous RyR2(R420Q) mutation, which was also present in the proband and a young girl without exercise testing, a 91% penetrance at the end of the follow-up. Remarkably, sinus bradycardia, atrial and junctional arrhythmias, and/or giant post-effort U-waves were identified in patients. Upon permeabilization and in intact cells, the RyR2(R420Q) expressing cells showed a smaller peak of Ca(2+) release than RyR2 wild-type cells. However, at physiologic intracellular Ca(2+) concentration, equivalent to the diastolic cytosolic concentration, the RyR2(R420Q) released more Ca(2+) and oscillated faster than RyR2 wild-type cells. CONCLUSIONS The missense RyR2(R420Q) mutation was identified in the N-terminus of the RyR2 gene in this highly symptomatic family. Remarkably, this mutation is associated with sinus bradycardia, atrial and junctional arrhythmias, and giant U-waves. Collectively, functional heterologous expression studies suggest that the RyR2(R420Q) behaves as an aberrant channel, as a loss- or gain-of-function mutation depending on cytosolic intracellular Ca(2+) concentration.
Collapse
Affiliation(s)
- Diana Domingo
- Servicio de Cardiología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Patricia Neco
- Inserm, U769, Université de Paris Sud, IFR141, LabEx Lermit, Châtenay-Malabry, France
| | - Elena Fernández-Pons
- Grupo de Investigación acreditado de Hemostasia, Trombosis, Arteriosclerosis y Biología Vascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Spyros Zissimopoulos
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Pilar Molina
- Servicio de Histopatología, Instituto de Medicina Legal, Valencia, Spain
| | - José Olagüe
- Servicio de Cardiología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - M Paz Suárez-Mier
- Servicio de Histopatología, Instituto Nacional de Toxicología y Ciencias Forenses, Madrid, Spain
| | - F Anthony Lai
- Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ana M Gómez
- Inserm, U769, Université de Paris Sud, IFR141, LabEx Lermit, Châtenay-Malabry, France
| | - Esther Zorio
- Servicio de Cardiología, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| |
Collapse
|