1
|
Vazzana G, Savojardo C, Martelli PL, Casadio R. Testing the Capability of Embedding-Based Alignments on the GST Superfamily Classification: The Role of Protein Length. Molecules 2024; 29:4616. [PMID: 39407545 PMCID: PMC11478096 DOI: 10.3390/molecules29194616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
In order to shed light on the usage of protein language model-based alignment procedures, we attempted the classification of Glutathione S-transferases (GST; EC 2.5.1.18) and compared our results with the ARBA/UNI rule-based annotation in UniProt. GST is a protein superfamily involved in cellular detoxification from harmful xenobiotics and endobiotics, widely distributed in prokaryotes and eukaryotes. What is particularly interesting is that the superfamily is characterized by different classes, comprising proteins from different taxa that can act in different cell locations (cytosolic, mitochondrial and microsomal compartments) with different folds and different levels of sequence identity with remote homologs. For this reason, GST functional annotation in a specific class is problematic: unless a structure is released, the protein can be classified only on the basis of sequence similarity, which excludes the annotation of remote homologs. Here, we adopt an embedding-based alignment to classify 15,061 GST proteins automatically annotated by the UniProt-ARBA/UNI rules. Embedding is based on the Meta ESM2-15b protein language. The embedding-based alignment reaches more than a 99% rate of perfect matching with the UniProt automatic procedure. Data analysis indicates that 46% of the UniProt automatically classified proteins do not conserve the typical length of canonical GSTs, whose structure is known. Therefore, 46% of the classified proteins do not conserve the template/s structure required for their family classification. Our approach finds that 41% of 64,207 GST UniProt proteins not yet assigned to any class can be classified consistently with the structural template length.
Collapse
Affiliation(s)
| | | | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (G.V.); (C.S.)
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (G.V.); (C.S.)
| |
Collapse
|
2
|
Schwartz M, Petiot N, Chaloyard J, Senty-Segault V, Lirussi F, Senet P, Nicolai A, Heydel JM, Canon F, Sonkaria S, Khare V, Didierjean C, Neiers F. Structural and Thermodynamic Insights into Dimerization Interfaces of Drosophila Glutathione Transferases. Biomolecules 2024; 14:758. [PMID: 39062472 PMCID: PMC11274453 DOI: 10.3390/biom14070758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
This study presents a comprehensive analysis of the dimerization interfaces of fly GSTs through sequence alignment. Our investigation revealed GSTE1 as a particularly intriguing target, providing valuable insights into the variations within Delta and Epsilon GST interfaces. The X-ray structure of GSTE1 was determined, unveiling remarkable thermal stability and a distinctive dimerization interface. Utilizing circular dichroism, we assessed the thermal stability of GSTE1 and other Drosophila GSTs with resolved X-ray structures. The subsequent examination of GST dimer stability correlated with the dimerization interface supported by findings from X-ray structural analysis and thermal stability measurements. Our discussion extends to the broader context of GST dimer interfaces, offering a generalized perspective on their stability. This research enhances our understanding of the structural and thermodynamic aspects of GST dimerization, contributing valuable insights to the field.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Université de Bourgogne, 21000 Dijon, France; (M.S.); (J.C.); (V.S.-S.); (J.-M.H.)
| | - Nicolas Petiot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France; (N.P.); (P.S.); (A.N.)
| | - Jeanne Chaloyard
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Université de Bourgogne, 21000 Dijon, France; (M.S.); (J.C.); (V.S.-S.); (J.-M.H.)
| | - Véronique Senty-Segault
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Université de Bourgogne, 21000 Dijon, France; (M.S.); (J.C.); (V.S.-S.); (J.-M.H.)
| | - Frédéric Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France;
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, 25000 Besançon, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France; (N.P.); (P.S.); (A.N.)
| | - Adrien Nicolai
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France; (N.P.); (P.S.); (A.N.)
| | - Jean-Marie Heydel
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Université de Bourgogne, 21000 Dijon, France; (M.S.); (J.C.); (V.S.-S.); (J.-M.H.)
| | | | - Sanjiv Sonkaria
- Soft Foundry Institute, Seoul National University, Kwanak-gu, Seoul 39-131, Republic of Korea; (S.S.); (V.K.)
| | - Varsha Khare
- Soft Foundry Institute, Seoul National University, Kwanak-gu, Seoul 39-131, Republic of Korea; (S.S.); (V.K.)
| | | | - Fabrice Neiers
- Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Université de Bourgogne, 21000 Dijon, France; (M.S.); (J.C.); (V.S.-S.); (J.-M.H.)
| |
Collapse
|
3
|
Koirala B K S, Moural T, Zhu F. Functional and Structural Diversity of Insect Glutathione S-transferases in Xenobiotic Adaptation. Int J Biol Sci 2022; 18:5713-5723. [PMID: 36263171 PMCID: PMC9576527 DOI: 10.7150/ijbs.77141] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 01/12/2023] Open
Abstract
As a superfamily of multifunctional enzymes that is mainly associated with xenobiotic adaptation, glutathione S-transferases (GSTs) facilitate insects' survival under chemical stresses in their environment. GSTs confer xenobiotic adaptation through direct metabolism or sequestration of xenobiotics, and/or indirectly by providing protection against oxidative stress induced by xenobiotic exposure. In this article, a comprehensive overview of current understanding on the versatile functions of insect GSTs in detoxifying chemical compounds is presented. The diverse structures of different classes of insect GSTs, specifically the spatial localization and composition of their amino acid residues constituted in their active sites are also summarized. Recent availability of whole genome sequences of numerous insect species, accompanied by RNA interference, X-ray crystallography, enzyme kinetics and site-directed mutagenesis techniques have significantly enhanced our understanding of functional and structural diversity of insect GSTs.
Collapse
Affiliation(s)
- Sonu Koirala B K
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Timothy Moural
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.,✉ Corresponding author: Dr. Fang Zhu, Department of Entomology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA. Phone: +1-814-863-4432; Fax: +1- 814-865-3048; E-mail:
| |
Collapse
|
4
|
Expression Patterns of Drosophila Melanogaster Glutathione Transferases. INSECTS 2022; 13:insects13070612. [PMID: 35886788 PMCID: PMC9318439 DOI: 10.3390/insects13070612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Glutathione transferases (GSTs) are ubiquitous enzymes that catalyze the conjugation of glutathione to various molecules. Among the 42 GSTs identified in Drosophila melanogaster, Delta and Epsilon are the largest classes, with 25 members. The Delta and Epsilon classes are involved in different functions, such as insecticide resistance and ecdysone biosynthesis. The insect GST number variability is due mainly to these classes. Thus, they are generally considered supports during the evolution for the adaptability of the insect species. To explore the link between Delta and Epsilon GST and their evolution, we analyzed the sequences using bioinformatic tools. Subgroups appear within the Delta and Epsilon GSTs with different levels of diversification. The diversification also appears in the sequences showing differences in the active site. Additionally, amino acids essential for structural stability or dimerization appear conserved in all GSTs. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the transcripts corresponding to these two classes are heterogeneously expressed within D. melanogaster. Some GSTs, such as GSTD1, are highly expressed in all tissues, suggesting their general function in detoxification. Conversely, some others, such as GSTD11 or GSTE4, are specifically expressed at a high level specifically in antennae, suggesting a potential role in olfaction.
Collapse
|
5
|
Koiwai K, Inaba K, Morohashi K, Enya S, Arai R, Kojima H, Okabe T, Fujikawa Y, Inoue H, Yoshino R, Hirokawa T, Kato K, Fukuzawa K, Shimada-Niwa Y, Nakamura A, Yumoto F, Senda T, Niwa R. An integrated approach to unravel a crucial structural property required for the function of the insect steroidogenic Halloween protein Noppera-bo. J Biol Chem 2020; 295:7154-7167. [PMID: 32241910 PMCID: PMC7242711 DOI: 10.1074/jbc.ra119.011463] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Ecdysteroids are the principal steroid hormones essential for insect development and physiology. In the last 18 years, several enzymes responsible for ecdysteroid biosynthesis encoded by Halloween genes were identified and genetically and biochemically characterized. However, the tertiary structures of these proteins have not yet been characterized. Here, we report the results of an integrated series of in silico, in vitro, and in vivo analyses of the Halloween GST protein Noppera-bo (Nobo). We determined crystal structures of Drosophila melanogaster Nobo (DmNobo) complexed with GSH and 17β-estradiol, a DmNobo inhibitor. 17β-Estradiol almost fully occupied the putative ligand-binding pocket and a prominent hydrogen bond formed between 17β-estradiol and Asp-113 of DmNobo. We found that Asp-113 is essential for 17β-estradiol–mediated inhibition of DmNobo enzymatic activity, as 17β-estradiol did not inhibit and physically interacted less with the D113A DmNobo variant. Asp-113 is highly conserved among Nobo proteins, but not among other GSTs, implying that this residue is important for endogenous Nobo function. Indeed, a homozygous nobo allele with the D113A substitution exhibited embryonic lethality and an undifferentiated cuticle structure, a phenocopy of complete loss-of-function nobo homozygotes. These results suggest that the nobo family of GST proteins has acquired a unique amino acid residue that appears to be essential for binding an endogenous sterol substrate to regulate ecdysteroid biosynthesis. To the best of our knowledge, ours is the first study describing the structural characteristics of insect steroidogenic Halloween proteins. Our findings provide insights relevant for applied entomology to develop insecticides that specifically inhibit ecdysteroid biosynthesis.
Collapse
Affiliation(s)
- Kotaro Koiwai
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kazue Inaba
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kana Morohashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Sora Enya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Reina Arai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuuta Fujikawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideshi Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ryunosuke Yoshino
- Graduate School of Comprehensive Human Sciences Majors of Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Koichiro Kato
- Mizuho Information & Research Institute, Inc., 2-3 Kanda Nishiki-cho, Chiyoda-ku, Tokyo 101-8443, Japan
| | - Kaori Fukuzawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuko Shimada-Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akira Nakamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Fumiaki Yumoto
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.,School of High Energy Accelerator Science, Sokendai University, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8571, Japan
| | - Ryusuke Niwa
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan .,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
6
|
Škerlová J, Lindström H, Gonis E, Sjödin B, Neiers F, Stenmark P, Mannervik B. Structure and steroid isomerase activity of
Drosophila
glutathione transferase E14 essential for ecdysteroid biosynthesis. FEBS Lett 2020; 594:1187-1195. [DOI: 10.1002/1873-3468.13718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Jana Škerlová
- Department of Biochemistry and Biophysics Stockholm University Sweden
| | - Helena Lindström
- Department of Biochemistry and Biophysics Stockholm University Sweden
| | - Elodie Gonis
- CSGA Laboratory of Taste and Olfaction University Bourgogne Franche‐Comté Dijon France
| | - Birgitta Sjödin
- Department of Biochemistry and Biophysics Stockholm University Sweden
| | - Fabrice Neiers
- CSGA Laboratory of Taste and Olfaction University Bourgogne Franche‐Comté Dijon France
| | - Pål Stenmark
- Department of Biochemistry and Biophysics Stockholm University Sweden
- Department of Experimental Medical Science Lund University Sweden
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics Stockholm University Sweden
| |
Collapse
|
7
|
Yamamoto K, Higashiura A, Hirowatari A, Yamada N, Tsubota T, Sezutsu H, Nakagawa A. Characterisation of a diazinon-metabolising glutathione S-transferase in the silkworm Bombyx mori by X-ray crystallography and genome editing analysis. Sci Rep 2018; 8:16835. [PMID: 30443011 PMCID: PMC6237972 DOI: 10.1038/s41598-018-35207-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/01/2018] [Indexed: 11/09/2022] Open
Abstract
Previously, we found an unclassified glutathione S-transferase 2 (bmGSTu2) in the silkworm Bombyx mori that conjugates glutathione to 1-chloro-2,4-dinitrobenzene and also metabolises diazinon, an organophosphate insecticide. Here, we provide a structural and genome-editing characterisation of the diazinon-metabolising glutathione S-transferase in B. mori. The structure of bmGSTu2 was determined at 1.68 Å by X-ray crystallography. Mutation of putative amino acid residues in the substrate-binding site showed that Pro13, Tyr107, Ile118, Phe119, and Phe211 are crucial for enzymatic function. bmGSTu2 gene disruption resulted in a decrease in median lethal dose values to an organophosphate insecticide and a decrease in acetylcholine levels in silkworms. Taken together, these results indicate that bmGSTu2 could metabolise an organophosphate insecticide. Thus, this study provides insights into the physiological role of bmGSTu2 in silkworms, detoxification of organophosphate insecticides, and drug targets for the development of a novel insecticide.
Collapse
Affiliation(s)
- Kohji Yamamoto
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Akifumi Higashiura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Aiko Hirowatari
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naotaka Yamada
- Department of Bioscience and Biotechnology, Kyushu University Graduate School, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takuya Tsubota
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hideki Sezutsu
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Li L, Lan M, Lu W, Li Z, Xia T, Zhu J, Ye M, Gao X, Wu G. De novo transcriptomic analysis of the alimentary tract of the tephritid gall fly, Procecidochares utilis. PLoS One 2018; 13:e0201679. [PMID: 30138350 PMCID: PMC6107134 DOI: 10.1371/journal.pone.0201679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022] Open
Abstract
The tephritid gall fly, Procecidochares utilis, is an important obligate parasitic insect of the malignant weed Eupatorium adenophorum which biosynthesizes toxic secondary metabolites. Insect alimentary tracts secrete several enzymes that are used for detoxification, including cytochrome P450s, glutathione S-transferases, and carboxylesterases. To explore the adaptation of P. utilis to its toxic host plant, E. adenophorum at molecular level, we sequenced the transcriptome of the alimentary tract of P. utilis using Illumina sequencing. Sequencing and de novo assembly yielded 62,443 high-quality contigs with an average length of 604 bp that were further assembled into 45,985 unigenes with an average length of 674 bp and an N50 of 983 bp. Among the unigenes, 30,430 (66.17%) were annotated by alignment against the NCBI non-redundant protein (Nr) database, while 16,700 (36.32%), 16,267 (35.37%), and 11,530 (25.07%) were assigned functions using the Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) databases, respectively. Using the comprehensive transcriptome data set, we manually identified several important gene families likely to be involved in the detoxification of toxic compounds including 21 unigenes within the glutathione S-transferase (GST) family, 22 unigenes within the cytochrome P450 (P450) family, and 16 unigenes within the carboxylesterase (CarE) family. Quantitative PCR was used to verify eight, six, and two genes of GSTs, P450s, and CarEs, respectively, in different P. utilis tissues and at different developmental stages. The detoxification enzyme genes were mainly expressed in the foregut and midgut. Moreover, the unigenes were higher expressed in the larvae, pupae, and 3-day adults, while they were expressed at lower levels in eggs. These transcriptomic data provide a valuable molecular resource for better understanding the function of the P. utilis alimentary canal. These identified genes could be pinpoints to address the molecular mechanisms of P. utilis interacting with toxic plant host.
Collapse
Affiliation(s)
- Lifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Wufeng Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Zhaobo Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Tao Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- * E-mail: (XG); (GW)
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- * E-mail: (XG); (GW)
| |
Collapse
|
9
|
Crystal structure of the delta-class glutathione transferase in Musca domestica. Biochem Biophys Res Commun 2018; 502:345-350. [DOI: 10.1016/j.bbrc.2018.05.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 11/20/2022]
|
10
|
Gonzalez D, Fraichard S, Grassein P, Delarue P, Senet P, Nicolaï A, Chavanne E, Mucher E, Artur Y, Ferveur JF, Heydel JM, Briand L, Neiers F. Characterization of a Drosophila glutathione transferase involved in isothiocyanate detoxification. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 95:33-43. [PMID: 29578047 DOI: 10.1016/j.ibmb.2018.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 05/20/2023]
Abstract
Glutathione transferases (GSTs) are ubiquitous key enzymes that catalyse the conjugation of glutathione to xenobiotic compounds in the detoxification process. GSTs have been proposed to play a dual role in the signal termination of insect chemodetection by modifying odorant and tasting molecules and by protecting the chemosensory system. Among the 40 GSTs identified in Drosophila melanogaster, the Delta and Epsilon groups are insect-specific. GSTs Delta and Epsilon may have evolved to serve in detoxification, and have been associated with insecticide resistance. Here, we report the heterologous expression and purification of the D. melanogaster GST Delta 2 (GSTD2). We investigated the capacity of GSTD2 to bind tasting molecules. Among them, we found that isothiocyanates (ITC), insecticidal compounds naturally present in cruciferous plant and perceived as bitter, are good substrates for GSTD2. The X-ray structure of GSTD2 was solved, showing the absence of the classical Ser catalytic residue, conserved in the Delta and Epsilon GSTs. Using molecular dynamics, the interaction of ITC with the GSTD2 three-dimensional structure is analysed and discussed. These findings allow us to consider a biological role for GSTD2 in chemoperception, considering GSTD2 expression in the chemosensory organs and the potential consequences of insect exposure to ITC.
Collapse
Affiliation(s)
- Daniel Gonzalez
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Stéphane Fraichard
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Paul Grassein
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078, Dijon Cedex, France
| | - Patrice Delarue
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078, Dijon Cedex, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078, Dijon Cedex, France
| | - Adrien Nicolaï
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Univ. Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47 870, F-21078, Dijon Cedex, France
| | - Evelyne Chavanne
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Elodie Mucher
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Yves Artur
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation (CSGA), Université de Bourgogne Franche-Comté, INRA, CNRS, France.
| |
Collapse
|
11
|
Mazari AMA, Mannervik B. Drosophila GSTs display outstanding catalytic efficiencies with the environmental pollutants 2,4,6-trinitrotoluene and 2,4-dinitrotoluene. Biochem Biophys Rep 2015; 5:141-145. [PMID: 28955816 PMCID: PMC5600427 DOI: 10.1016/j.bbrep.2015.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/20/2015] [Accepted: 12/01/2015] [Indexed: 12/03/2022] Open
Abstract
The nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) and the related 2,4-dinitrotoluene (DNT) are toxic environmental pollutants. The biotransformation and detoxication of these persistent compounds in higher organisms are of great significance from a health perspective as well as for the biotechnological challenge of bioremediation of contaminated soil. We demonstrate that different human glutathione transferases (GSTs) and GSTs from the fruit fly Drosophila melanogaster are catalysts of the biotransformation of TNT and DNT. The human GSTs had significant but modest catalytic activities with both DNT and TNT. However, D. melanogaster GSTE6 and GSTE7 displayed outstanding high activities with both substrates. The explosive TNT is a carcinogenic environmental pollutant spread world-wide. TNT and the related DNT can be detoxified by conjugation with cellular glutathione. Previously studied plant glutathione transferases display modest activity with TNT. We found that human GSTs from four classes have low activity with TNT and DNT. By contrast Drosophila GSTE6 and GSTE7 displayed outstanding TNT and DNT activities.
Collapse
Affiliation(s)
- Aslam M A Mazari
- Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Bengt Mannervik
- Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|