1
|
Li F, Liu R, Li W, Xie M, Qin S. Synchrotron Radiation: A Key Tool for Drug Discovery. Bioorg Med Chem Lett 2024; 114:129990. [PMID: 39406298 DOI: 10.1016/j.bmcl.2024.129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Synchrotron radiation is extensively utilized in the domains of materials science, physical chemistry, and life science, resulting from its high intensity, exceptional monochromaticity, superior collimation, and broad wave spectrum. This top-notch light source has also made significant contributions to the progress of biomedicine. The advancement of synchrotron radiation-based X-ray and protein crystallography technologies has created new prospects for drug discovery. These innovative techniques have opened up exciting avenues in the field. The investigation of protein crystal structures and the elucidation of the spatial configuration of biological macromolecules have revealed intricate details regarding the modes of protein binding. Furthermore, the screening of crystal polymorphs and ligands has laid the groundwork for rational drug modification and the improvement of drug physicochemical properties. As science and technology continue to advance, the techniques for analyzing structures using synchrotron radiation sources and the design of corresponding crystallographic beamline stations are undergoing continuous enhancement. These cutting-edge tools and facilities are expected to expedite the drug development process and rectify the current situation of a lack of targeted drugs.
Collapse
Affiliation(s)
- Fengcheng Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Mingyuan Xie
- Institute of Advanced Science Facilities, Shenzhen, Guangdong 518107, China.
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
2
|
Sun S, Zhu R, Zhu M, Wang Q, Li N, Yang B. Visualization of conformational transition of GRP94 in solution. Life Sci Alliance 2024; 7:e202302051. [PMID: 37949474 PMCID: PMC10638095 DOI: 10.26508/lsa.202302051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
GRP94, an ER paralog of the heat-shock protein 90 family, binds and hydrolyses ATP to chaperone the folding and maturation of its selected clients. Compared with other hsp90 proteins, the in-solution conformational dynamics of GRP94 along the ATP hydrolysis cycle are less understood, hindering our understanding of its chaperoning mechanism. Leveraging small-angle X-ray scattering, negative-staining EM, and hydrogen-deuterium exchange coupled mass-spec, here we show that in its apo form, ∼60% of mouse GRP94 (mGRP94) populates an "extended" conformation, whereas the rest exist in either "close V" or "twist V" like "compact" conformations. Different from other hsp90 proteins, the presence of AMPPNP only impacts the relative abundance of the two compact conformations, rather than shifting the equilibrium between the "extended" and "compact" conformations of mGRP94. HDX-MS study of apo, AMPPNP-bound, and ADP-bound mGRP94 suggests a conformational transition from "twist V" to "close V" upon ATP binding and a back transition from "close V" to "twist V" upon ATP hydrolysis. These results illustrate the dissimilarities of GRP94 in conformation transition during ATP hydrolysis from other hsp90 paralogs.
Collapse
Affiliation(s)
- Shangwu Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Rui Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mengyao Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qi Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Na Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai, China
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
3
|
Blanchet CE, Round A, Mertens HDT, Ayyer K, Graewert M, Awel S, Franke D, Dörner K, Bajt S, Bean R, Custódio TF, de Wijn R, Juncheng E, Henkel A, Gruzinov A, Jeffries CM, Kim Y, Kirkwood H, Kloos M, Knoška J, Koliyadu J, Letrun R, Löw C, Makroczyova J, Mall A, Meijers R, Pena Murillo GE, Oberthür D, Round E, Seuring C, Sikorski M, Vagovic P, Valerio J, Wollweber T, Zhuang Y, Schulz J, Haas H, Chapman HN, Mancuso AP, Svergun D. Form factor determination of biological molecules with X-ray free electron laser small-angle scattering (XFEL-SAS). Commun Biol 2023; 6:1057. [PMID: 37853181 PMCID: PMC10585004 DOI: 10.1038/s42003-023-05416-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Free-electron lasers (FEL) are revolutionizing X-ray-based structural biology methods. While protein crystallography is already routinely performed at FELs, Small Angle X-ray Scattering (SAXS) studies of biological macromolecules are not as prevalent. SAXS allows the study of the shape and overall structure of proteins and nucleic acids in solution, in a quasi-native environment. In solution, chemical and biophysical parameters that have an influence on the structure and dynamics of molecules can be varied and their effect on conformational changes can be monitored in time-resolved XFEL and SAXS experiments. We report here the collection of scattering form factors of proteins in solution using FEL X-rays. The form factors correspond to the scattering signal of the protein ensemble alone; the scattering contributions from the solvent and the instrument are separately measured and accurately subtracted. The experiment was done using a liquid jet for sample delivery. These results pave the way for time-resolved studies and measurements from dilute samples, capitalizing on the intense and short FEL X-ray pulses.
Collapse
Affiliation(s)
- Clement E Blanchet
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany.
| | - Adam Round
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
| | - Kartik Ayyer
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Melissa Graewert
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Daniel Franke
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
- BIOSAXS GmbH, Notkestr. 85, 22607, Hamburg, Germany
| | - Katerina Dörner
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Saša Bajt
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tânia F Custódio
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Raphael de Wijn
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - E Juncheng
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alessandra Henkel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Andrey Gruzinov
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
| | - Yoonhee Kim
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Henry Kirkwood
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marco Kloos
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Juraj Knoška
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | | | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Christian Löw
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
| | | | - Abhishek Mall
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Rob Meijers
- Institute for Protein Innovation (IPI), 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Gisel Esperanza Pena Murillo
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Ekaterina Round
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Carolin Seuring
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Marcin Sikorski
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Patrik Vagovic
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Joana Valerio
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tamme Wollweber
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Yulong Zhuang
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Henry N Chapman
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Dmitri Svergun
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany.
- BIOSAXS GmbH, Notkestr. 85, 22607, Hamburg, Germany.
| |
Collapse
|
4
|
Li Y, Zhang J, Song P, Miao X, Liu G, Yang C, Wei X, Li N, Bian F. Small-Angle X-ray Scattering for PEGylated Liposomal Doxorubicin Drugs: An Analytical Model Comparison Study. Mol Pharm 2023; 20:4654-4663. [PMID: 37616278 DOI: 10.1021/acs.molpharmaceut.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Liposomal delivery systems are recognized as efficient and safe platforms for chemotherapeutic agents, with doxorubicin-loaded liposomes being the most representative nanopharmaceuticals. Characterizing the structure of liposomal nanomedicines in high spatial and temporal resolution is critical to analyze and evaluate their stability and efficacy. Small-angle X-ray scattering (SAXS) is a powerful tool increasingly used to investigate liposomal delivery systems. In this study, we chose a Doxil-like PEGylated liposomal doxorubicin (PLD) as an example and characterized the liposomal drug structure using synchrotron SAXS. Classical analytical models, including the spherical-shell or flat-slab geometries with Gaussian or uniform electron density profiles, were used to model the internal structure of the liposomal membrane. A cylinder model was applied to fit the scattering from the drug crystal loaded in the liposomes. The high-resolution structures of the original drug, Caelyx, and a similar research drug prepared in our laboratory were characterized using these analytical models. The structural parameters of PLDs, including the thickness of the liposomal membrane and morphology of the drug crystal, were further compared. The results demonstrated that both spherical-shell and flat-slab geometries with Gaussian electron density distribution were suitable to elucidate the structural features of the liposomal membrane under a certain range of scattering vectors, while models with uniform electron density distribution exhibited poor fitting performance. This study highlights the technical features of SAXS, which provides structural information at the nanoscale for liposomal drugs. The demonstrated methods are reliable and easy-to-use for the structural analysis of liposomal drugs, which are helpful for a broader application of SAXS in the production and regulation of nanopharmaceuticals.
Collapse
Affiliation(s)
- Yiwen Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jianqiao Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Panqi Song
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiaran Miao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Guangfeng Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chunming Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Na Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Fenggang Bian
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Trewhella J, Vachette P, Bierma J, Blanchet C, Brookes E, Chakravarthy S, Chatzimagas L, Cleveland TE, Cowieson N, Crossett B, Duff AP, Franke D, Gabel F, Gillilan RE, Graewert M, Grishaev A, Guss JM, Hammel M, Hopkins J, Huang Q, Hub JS, Hura GL, Irving TC, Jeffries CM, Jeong C, Kirby N, Krueger S, Martel A, Matsui T, Li N, Pérez J, Porcar L, Prangé T, Rajkovic I, Rocco M, Rosenberg DJ, Ryan TM, Seifert S, Sekiguchi H, Svergun D, Teixeira S, Thureau A, Weiss TM, Whitten AE, Wood K, Zuo X. A round-robin approach provides a detailed assessment of biomolecular small-angle scattering data reproducibility and yields consensus curves for benchmarking. Acta Crystallogr D Struct Biol 2022; 78:1315-1336. [PMID: 36322416 PMCID: PMC9629491 DOI: 10.1107/s2059798322009184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Through an expansive international effort that involved data collection on 12 small-angle X-ray scattering (SAXS) and four small-angle neutron scattering (SANS) instruments, 171 SAXS and 76 SANS measurements for five proteins (ribonuclease A, lysozyme, xylanase, urate oxidase and xylose isomerase) were acquired. From these data, the solvent-subtracted protein scattering profiles were shown to be reproducible, with the caveat that an additive constant adjustment was required to account for small errors in solvent subtraction. Further, the major features of the obtained consensus SAXS data over the q measurement range 0-1 Å-1 are consistent with theoretical prediction. The inherently lower statistical precision for SANS limited the reliably measured q-range to <0.5 Å-1, but within the limits of experimental uncertainties the major features of the consensus SANS data were also consistent with prediction for all five proteins measured in H2O and in D2O. Thus, a foundation set of consensus SAS profiles has been obtained for benchmarking scattering-profile prediction from atomic coordinates. Additionally, two sets of SAXS data measured at different facilities to q > 2.2 Å-1 showed good mutual agreement, affirming that this region has interpretable features for structural modelling. SAS measurements with inline size-exclusion chromatography (SEC) proved to be generally superior for eliminating sample heterogeneity, but with unavoidable sample dilution during column elution, while batch SAS data collected at higher concentrations and for longer times provided superior statistical precision. Careful merging of data measured using inline SEC and batch modes, or low- and high-concentration data from batch measurements, was successful in eliminating small amounts of aggregate or interparticle interference from the scattering while providing improved statistical precision overall for the benchmarking data set.
Collapse
Affiliation(s)
- Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Patrice Vachette
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Paris, 91198 Gif-sur-Yvette, France
| | - Jan Bierma
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Clement Blanchet
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Emre Brookes
- Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA
| | - Srinivas Chakravarthy
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Leonie Chatzimagas
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2.6, 66123 Saarbrücken, Germany
| | - Thomas E. Cleveland
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Nathan Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ben Crossett
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anthony P. Duff
- Australian Nuclear Science and Technology Organisation, New Illawara Road, Lucas Heights, NSW 2234, Australia
| | - Daniel Franke
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Frank Gabel
- Institut de Biologie Structurale, CEA, CNRS, Université Grenoblé Alpes, 41 Rue Jules Horowitz, 38027 Grenoble, France
| | - Richard E. Gillilan
- Cornell High-Energy Synchrotron Source, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Melissa Graewert
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Alexander Grishaev
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - J. Mitchell Guss
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jesse Hopkins
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Qingqui Huang
- Cornell High-Energy Synchrotron Source, 161 Synchrotron Drive, Ithaca, NY 14853, USA
| | - Jochen S. Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2.6, 66123 Saarbrücken, Germany
| | - Greg L. Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Thomas C. Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Cy Michael Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Cheol Jeong
- Department of Physics, Wesleyan University, Middletown, CT 06459, USA
| | - Nigel Kirby
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3158, Australia
| | - Susan Krueger
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Anne Martel
- Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble CEDEX 9, France
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Na Li
- National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Road No. 333, Haike Road, Shanghai 201210, People’s Republic of China
| | - Javier Pérez
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette, France
| | - Lionel Porcar
- Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble CEDEX 9, France
| | - Thierry Prangé
- CITCoM (UMR 8038 CNRS), Faculté de Pharmacie, 4 Avenue de l’Observatoire, 75006 Paris, France
| | - Ivan Rajkovic
- Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mattia Rocco
- Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Daniel J. Rosenberg
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Timothy M. Ryan
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3158, Australia
| | - Soenke Seifert
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Hiroshi Sekiguchi
- SPring-8, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyōgo 679-5198, Japan
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Susana Teixeira
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Aurelien Thureau
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette, France
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Andrew E. Whitten
- Australian Nuclear Science and Technology Organisation, New Illawara Road, Lucas Heights, NSW 2234, Australia
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation, New Illawara Road, Lucas Heights, NSW 2234, Australia
| | - Xiaobing Zuo
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|
6
|
Du Z, Xu N, Yang Y, Li G, Tai Z, Li N, Sun Y. Study on internal structure of casein micelles in reconstituted skim milk powder. Int J Biol Macromol 2022; 224:437-452. [DOI: 10.1016/j.ijbiomac.2022.10.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
7
|
Trewhella J. Recent advances in small-angle scattering and its expanding impact in structural biology. Structure 2022; 30:15-23. [PMID: 34995477 DOI: 10.1016/j.str.2021.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 10/19/2022]
Abstract
Applications of small-angle scattering (SAS) in structural biology have benefited from continuing developments in instrumentation, tools for data analysis, modeling capabilities, standards for data and model presentation, and data archiving. The interplay of these capabilities has enabled SAS to contribute to advances in structural biology as the field pushes the boundaries in studies of biomolecular complexes and assemblies as large as whole cells, membrane proteins in lipid environments, and dynamic systems on time scales ranging from femtoseconds to hours. This review covers some of the important advances in biomolecular SAS capabilities for structural biology focused on over the last 5 years and presents highlights of recent applications that demonstrate how the technique is exploring new territories.
Collapse
Affiliation(s)
- Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
8
|
Song P, Zhang J, Li Y, Liu G, Li N. Solution Small-Angle Scattering in Soft Matter: Application and Prospective ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Li L, Zhang C, Xu L, Ye C, Chen S, Wang X, Song Y. Luminescence Ratiometric Nanothermometry Regulated by Tailoring Annihilators of Triplet–Triplet Annihilation Upconversion Nanomicelles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lin Li
- School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Chun Zhang
- School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Lei Xu
- School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Shuoran Chen
- School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Xiaomei Wang
- School of Materials Science and Engineering Suzhou University of Science and Technology Suzhou 215009 P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
10
|
Li L, Zhang C, Xu L, Ye C, Chen S, Wang X, Song Y. Luminescence Ratiometric Nanothermometry Regulated by Tailoring Annihilators of Triplet-Triplet Annihilation Upconversion Nanomicelles. Angew Chem Int Ed Engl 2021; 60:26725-26733. [PMID: 34623016 DOI: 10.1002/anie.202110830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 11/07/2022]
Abstract
Triplet-triplet annihilation (TTA) upconversion is a special non-linear photophysical process that converts low-energy photons into high-energy photons based on sensitizer/annihilator pairs. Here, we constructed a novel luminescence ratiometric nanothermometer based on TTA upconversion nanomicelles by encapsulating sensitizer/annihilator molecules into a temperature-sensitive amphiphilic triblock polymer and obtained good linear relationships between the luminescence ratio (integrated intensity ratio of upconverted luminescence peak to the downshifted phosphorescence peak) and the temperature. We also found chemical modification of annihilators would rule out the interference of the polymer concentration and stereochemical engineering of annihilators would readily regulate the thermal sensitivity.
Collapse
Affiliation(s)
- Lin Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Chun Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Lei Xu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shuoran Chen
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Xiaomei Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
11
|
Sun Y, Tai Z, Yan T, Dai Y, Hemar Y, Li N. Unveiling the structure of the primary caseinate particle using small-angle X-ray scattering and simulation methodologies. Food Res Int 2021; 149:110653. [PMID: 34600655 DOI: 10.1016/j.foodres.2021.110653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022]
Abstract
The low-resolution structure of casein (CN) clusters in sodium caseinate (NaCas) solution and its conformational dynamics were obtained by size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), small-angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and native PAGE revealed that the casein clusters consisted predominantly of α- and β-CN complexes, and a trace amount of κ-CN. The AUC analysis indicated that the casein clusters were composed of 34.6% of casein monomers, 19.2%, 20.4%, and 25.8% of complexes with molar weight (Mw) of ~50.3, ~70.6, and ~133 kDa, respectively. The volume fractions of components in casein clusters were quantified as 64.3% of αs1-β-αs2-CN, 22.3% of αs1-CN, 8.5% of αs2-CN, and 4.4% of αs1-αs2-CN, respectively. The ensemble optimization method (EOM) gave a fitting result where αs1-β-αs2-CN species coexisted in ~35.3% under compact conformation and ~64.7% in elongated conformation in solution. The three-dimensional structures of αs1-β-αs2-CN from EOM showed a good overlay on the casein clusters ab initio model obtained from DAMMIN and DAMMIX program. MD simulations revealed that αs1-β-αs2-CN underwent a conformational change from the elongated state into the compact state within the initial 200 ns of simulations. The addition of nonionic surfactants affected little the backbone-to-backbone interactions in the formation of the casein clusters. We propose that αs1-CN, β-CN, αs2-CN, and κ-CN associated in consecutive steps into casein clusters, and a trace of κ-CN may be located at the surface of the assemblies limiting the growth of casein aggregates.
Collapse
Affiliation(s)
- Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Yieryi Avenue, No. 298, 650092 Kunming, Yunnan, People's Republic of China.
| | - Zhonghong Tai
- College of Vocational and Technical Education, Yunnan Normal University, Yieryi Avenue, No. 298, 650092 Kunming, Yunnan, People's Republic of China
| | - Tingting Yan
- College of Vocational and Technical Education, Yunnan Normal University, Yieryi Avenue, No. 298, 650092 Kunming, Yunnan, People's Republic of China
| | - Yiqi Dai
- College of Vocational and Technical Education, Yunnan Normal University, Yieryi Avenue, No. 298, 650092 Kunming, Yunnan, People's Republic of China
| | - Yacine Hemar
- Catalyst Tec Limited., 16 Beatrice Tinsley Cresecnt, Rosedale 0632, Auckland, New Zealand; International Joint Research Laboratory for Functional Dairy Protein Ingredients, U.S.-China, People's Republic of China
| | - Na Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, No.333, Haike Road, Shanghai, Shanghai 201210, People's Republic of China.
| |
Collapse
|
12
|
Wang C, Yu F, Liu Y, Li X, Chen J, Thiyagalingam J, Sepe A. Deploying the Big Data Science Center at the Shanghai Synchrotron Radiation Facility: the first superfacility platform in China. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abe193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
With recent technological advances, large-scale experimental facilities generate huge datasets, into the petabyte range, every year, thereby creating the Big Data deluge effect. Data management, including the collection, management, and curation of these large datasets, is a significantly intensive precursor step in relation to the data analysis that underpins scientific investigations. The rise of artificial intelligence (AI), machine learning (ML), and robotic automation has changed the landscape for experimental facilities, producing a paradigm shift in how different datasets are leveraged for improved intelligence, operation, and data analysis. Therefore, such facilities, known as superfacilities, which fully enable user science while addressing the challenges of the Big Data deluge, are critical for the scientific community. In this work, we discuss the process of setting up the Big Data Science Center within the Shanghai Synchrotron Radiation Facility (SSRF), China’s first superfacility. We provide details of our initiatives for enabling user science at SSRF, with particular consideration given to recent developments in AI, ML, and robotic automation.
Collapse
|
13
|
Zhang S, Han J, Luo X, Wang Z, Gu X, Li N, de Souza NR, Garcia Sakai V, Chu XQ. Investigations of structural and dynamical mechanisms of ice formation regulated by graphene oxide nanosheets. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:054901. [PMID: 34549075 PMCID: PMC8443304 DOI: 10.1063/4.0000111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/20/2021] [Indexed: 05/14/2023]
Abstract
Recent research indicates that graphene oxide (GO) nanosheets can be used to regulate ice formation by controlling critical ice nucleus growth in water at supercooling temperatures. In addition, the study of ice formation mechanisms regulated by GO nanosheets, a good model system for antifreeze proteins (AFPs), will shed light on how AFPs regulate ice formation in nature. In this work, time-resolved small-angle x-ray scattering (TR-SAXS) and quasi-elastic neutron scattering (QENS) experiments were carried out to investigate the structural and dynamical mechanisms of ice formation regulated by GO nanosheets. Strikingly, a transient intermediate state was observed in TR-SAXS experiments that only exists in the aqueous dispersions with a larger GO size (11 nm). This serves as evidence that the size of GO is critical for regulating ice formation. Elastic neutron scattering results indicate that ice is formed in all samples and thermal hysteresis occurs in GO aqueous dispersions in both H2O and D2O. The structural and dynamics information about water molecules in GO, extracted from QENS, reveals different dynamical behaviors of water molecules in GO aqueous dispersions when approaching the ice formation temperature.
Collapse
Affiliation(s)
| | - Jingjing Han
- Graduate School of China Academy of Engineering Physics, Beijing, China
| | - Xiang Luo
- Graduate School of China Academy of Engineering Physics, Beijing, China
| | - Zhixin Wang
- Graduate School of China Academy of Engineering Physics, Beijing, China
| | - Xudong Gu
- Graduate School of China Academy of Engineering Physics, Beijing, China
| | - Na Li
- National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai Advanced Research Institute, CAS, No.333, Haike Road, Shanghai 201210, China
| | - Nicolas R. de Souza
- Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
| | - Victoria Garcia Sakai
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Xiang-Qiang Chu
- Graduate School of China Academy of Engineering Physics, Beijing, China
- Author to whom correspondence should be addressed:
| |
Collapse
|
14
|
Manalastas-Cantos K, Konarev PV, Hajizadeh NR, Kikhney AG, Petoukhov MV, Molodenskiy DS, Panjkovich A, Mertens HDT, Gruzinov A, Borges C, Jeffries CM, Svergun DI, Franke D. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr 2021; 54:343-355. [PMID: 33833657 PMCID: PMC7941305 DOI: 10.1107/s1600576720013412] [Citation(s) in RCA: 535] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/06/2020] [Indexed: 11/11/2022] Open
Abstract
The ATSAS software suite encompasses a number of programs for the processing, visualization, analysis and modelling of small-angle scattering data, with a focus on the data measured from biological macromolecules. Here, new developments in the ATSAS 3.0 package are described. They include IMSIM, for simulating isotropic 2D scattering patterns; IMOP, to perform operations on 2D images and masks; DATRESAMPLE, a method for variance estimation of structural invariants through parametric resampling; DATFT, which computes the pair distance distribution function by a direct Fourier transform of the scattering data; PDDFFIT, to compute the scattering data from a pair distance distribution function, allowing comparison with the experimental data; a new module in DATMW for Bayesian consensus-based concentration-independent molecular weight estimation; DATMIF, an ab initio shape analysis method that optimizes the search model directly against the scattering data; DAMEMB, an application to set up the initial search volume for multiphase modelling of membrane proteins; ELLLIP, to perform quasi-atomistic modelling of liposomes with elliptical shapes; NMATOR, which models conformational changes in nucleic acid structures through normal mode analysis in torsion angle space; DAMMIX, which reconstructs the shape of an unknown intermediate in an evolving system; and LIPMIX and BILMIX, for modelling multilamellar and asymmetric lipid vesicles, respectively. In addition, technical updates were deployed to facilitate maintainability of the package, which include porting the PRIMUS graphical interface to Qt5, updating SASpy - a PyMOL plugin to run a subset of ATSAS tools - to be both Python 2 and 3 compatible, and adding utilities to facilitate mmCIF compatibility in future ATSAS releases. All these features are implemented in ATSAS 3.0, freely available for academic users at https://www.embl-hamburg.de/biosaxs/software.html.
Collapse
Affiliation(s)
- Karen Manalastas-Cantos
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Petr V. Konarev
- A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninsky prospekt 59, Moscow, 119333, Russian Federation
| | - Nelly R. Hajizadeh
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Alexey G. Kikhney
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Maxim V. Petoukhov
- A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre ‘Crystallography and Photonics’ of Russian Academy of Sciences, Leninsky prospekt 59, Moscow, 119333, Russian Federation
| | - Dmitry S. Molodenskiy
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Alejandro Panjkovich
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Haydyn D. T. Mertens
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Andrey Gruzinov
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Clemente Borges
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| | - Daniel Franke
- European Molecular Biology Laboratory, Hamburg Site, Notkestrasse 85, Building 25 A, Hamburg, 22607, Germany
| |
Collapse
|
15
|
Wu H, Li Y, Liu G, Liu H, Li N. SAS-cam: a program for automatic processing and analysis of small-angle scattering data. J Appl Crystallogr 2020. [DOI: 10.1107/s1600576720008985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) is a widely used method for investigating biological macromolecules in structural biology, providing information on macromolecular structures and dynamics in solution. Modern synchrotron SAXS beamlines are characterized as high-throughput, capable of collecting large volumes of data and thus demanding fast data processing for efficient beamline operations. This article presents a fully automated and high-throughput SAXS data analysis pipeline, SAS-cam, primarily based on the SASTBX package. Five modules are included in SAS-cam, encompassing the data analysis process from data reduction to model interpretation. The model parameters are extracted from SAXS profiles and stored in an HTML summary file, ready for online visualization using a web browser. SAS-cam can provide the user with the possibility of optimizing experimental parameters based on real-time feedback and it therefore significantly improves the efficiency of beam time. SAS-cam is installed on the BioSAXS beamline at the Shanghai Synchrotron Radiation Facility. The source code is available upon request.
Collapse
|