1
|
Kapetanaki SM, Coquelle N, von Stetten D, Byrdin M, Rios-Santacruz R, Bean R, Bielecki J, Boudjelida M, Fekete Z, Grime GW, Han H, Hatton C, Kantamneni S, Kharitonov K, Kim C, Kloos M, Koua FHM, de Diego Martinez I, Melo D, Rane L, Round A, Round E, Sarma A, Schubert R, Schulz J, Sikorski M, Vakili M, Valerio J, Vitas J, de Wijn R, Wrona A, Zala N, Pearson A, Dörner K, Schirò G, Garman EF, Lukács A, Weik M. Crystal structure of a bacterial photoactivated adenylate cyclase determined by serial femtosecond and serial synchrotron crystallography. IUCRJ 2024; 11:991-1006. [PMID: 39470573 PMCID: PMC11533990 DOI: 10.1107/s2052252524010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources. We further investigate the effect of the Y6W mutation in the BLUF domain, a mutation which results in a rearrangement of the hydrogen-bond network around the flavin and a notable rotation of the side chain of the critical Gln48 residue. These studies pave the way for picosecond-millisecond time-resolved serial crystallography experiments at X-ray free-electron lasers and synchrotrons in order to determine the early structural intermediates and correlate them with the well studied picosecond-millisecond spectroscopic intermediates.
Collapse
Affiliation(s)
- Sofia M. Kapetanaki
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Nicolas Coquelle
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - David von Stetten
- European Molecular Biology Laboratory (EMBL)Hamburg Unit c/o DESYNotkestrasse 8522607HamburgGermany
| | - Martin Byrdin
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Ronald Rios-Santacruz
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | | | | | - Mohamed Boudjelida
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Zsuzsana Fekete
- Department of Biophysics, Medical SchoolUniversity of PecsSzigeti Street 127624PécsHungary
| | - Geoffrey W. Grime
- Surrey Ion Beam CentreUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| | - Huijong Han
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Caitlin Hatton
- Institute for Nanostructure and Solid-State PhysicsUniversität HamburgHARBOR, Luruper Chaussee 14922761HamburgGermany
| | | | | | - Chan Kim
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Marco Kloos
- European XFELHolzkoppel 422869SchenefeldGermany
| | | | | | - Diogo Melo
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Lukas Rane
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Adam Round
- European XFELHolzkoppel 422869SchenefeldGermany
| | | | | | | | | | | | | | | | - Jovana Vitas
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | | | | | - Ninon Zala
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Arwen Pearson
- Institute for Nanostructure and Solid-State PhysicsUniversität HamburgHARBOR, Luruper Chaussee 14922761HamburgGermany
| | | | - Giorgio Schirò
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Elspeth F. Garman
- Department of BiochemistryUniversity of OxfordDorothy Crowfoot Hodgkin Building, South Parks RoadOxfordOX1 3QUUnited Kingdom
| | - András Lukács
- Department of Biophysics, Medical SchoolUniversity of PecsSzigeti Street 127624PécsHungary
| | - Martin Weik
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| |
Collapse
|
2
|
Marutyan S, Karapetyan H, Khachatryan L, Muradyan A, Marutyan S, Poladyan A, Trchounian K. The antimicrobial effects of silver nanoparticles obtained through the royal jelly on the yeasts Candida guilliermondii NP-4. Sci Rep 2024; 14:19163. [PMID: 39160246 PMCID: PMC11333486 DOI: 10.1038/s41598-024-70197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The effect of silver nanoparticles (Ag NPs) obtained in the presence of royal jelly (RJ) on the growth of yeast Candida guilliermondii NP-4, on the total and H+-ATPase activity, as well as lipid peroxidation process and antioxidant enzymes (superoxide dismutase (SOD), catalase) activity was studied. It has been shown that RJ-mediated Ag NPs have a fungicide and fungistatic effects at the concentrations of 5.4 µg mL-1 and 27 µg mL-1, respectively. Under the influence of RJ-mediated Ag NPs, a decrease in total and H+-ATPase activity in yeast homogenates by ~ 90% and ~ 80% was observed, respectively. In yeast mitochondria total and H+-ATPase activity depression was detected by ~ 80% and ~ 90%, respectively. The amount of malondialdehyde in the Ag NPs exposed yeast homogenate increased ~ 60%, the catalase activity increased ~ 70%, and the SOD activity-~ 30%. The obtained data indicate that the use of RJ-mediated Ag NPs have a diverse range of influence on yeast cells. This approach may be important in the field of biomedical research aimed at evaluating the development of oxidative stress in cells. It may also contribute to a more comprehensive understanding of antimicrobial properties of RJ-mediated Ag NPs and help control the proliferation of pathogenic fungi.
Collapse
Affiliation(s)
- Seda Marutyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia.
| | - Hasmik Karapetyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Lusine Khachatryan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Anna Muradyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Syuzan Marutyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Anna Poladyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia.
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian Str., 0025, Yerevan, Armenia.
- Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 1 A. Manoogian, 0025, Yerevan, Armenia.
| |
Collapse
|
3
|
Harutyunyan A, Gabrielyan L, Aghajanyan A, Gevorgyan S, Schubert R, Betzel C, Kujawski W, Gabrielyan L. Comparative Study of Physicochemical Properties and Antibacterial Potential of Cyanobacteria Spirulina platensis-Derived and Chemically Synthesized Silver Nanoparticles. ACS OMEGA 2024; 9:29410-29421. [PMID: 39005782 PMCID: PMC11238227 DOI: 10.1021/acsomega.4c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
The "green synthesis" of nanoparticles (NPs) offers cost-effective and environmentally friendly advantages over chemical synthesis by utilizing biological sources such as bacteria, algae, fungi, or plants. In this context, cyanobacteria and their components are valuable sources to produce various NPs. The present study describes the comparative analysis of physicochemical and antibacterial properties of chemically synthesized (Chem-AgNPs) and cyanobacteria Spirulina platensis-derived silver NPs (Splat-AgNPs). The physicochemical characterization applying complementary dynamic light scattering and transmission electron microscopy revealed that Splat-AgNPs have an average hydrodynamic radius of ∼ 28.70 nm and spherical morphology, whereas Chem-AgNPs are irregular-shaped with an average radius size of ∼ 53.88 nm. The X-ray diffraction pattern of Splat-AgNPs confirms the formation of face-centered cubic crystalline AgNPs by "green synthesis". Energy-dispersive spectroscopy analysis demonstrated the purity of the Splat-AgNPs. Fourier transform infrared spectroscopy analysis of Splat-AgNPs demonstrated the involvement of some functional groups in the formation of NPs. Additionally, Splat-AgNPs demonstrated high colloidal stability with a zeta-potential value of (-50.0 ± 8.30) mV and a pronounced bactericidal activity against selected Gram-positive (Enterococcus hirae and Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa and Salmonella typhimurium) bacteria compared with Chem-AgNPs. Furthermore, our studies toward understanding the action mechanism of NPs showed that Splat-AgNPs alter the permeability of bacterial membranes and the energy-dependent H+-fluxes via FoF1-ATPase, thus playing a crucial role in bacterial energetics. The insights gained from this study show that Spirulina-derived synthesis is a low-cost, simple approach to producing stable AgNPs for their energy-metabolism-targeted antibacterial applications in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Ani Harutyunyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
| | - Liana Gabrielyan
- Department of Physical and Colloids Chemistry, Chemistry Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
- Chemical Research Center, Laboratory of Physical Chemistry, 1 Alex Manoukian Str., Yerevan 0025, Armenia
| | - Anush Aghajanyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
| | - Susanna Gevorgyan
- The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, Build. 22A, Hamburg 22607, Germany
| | - Robin Schubert
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | - Christian Betzel
- The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, Build. 22A, Hamburg 22607, Germany
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, Toruń 87-100, Poland
| | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
| |
Collapse
|
4
|
Chretien A, Nagel MF, Botha S, de Wijn R, Brings L, Dörner K, Han H, Koliyadu JCP, Letrun R, Round A, Sato T, Schmidt C, Secareanu RC, von Stetten D, Vakili M, Wrona A, Bean R, Mancuso A, Schulz J, Pearson AR, Kottke T, Lorenzen K, Schubert R. Light-induced Trp in/Met out Switching During BLUF Domain Activation in ATP-bound Photoactivatable Adenylate Cyclase OaPAC. J Mol Biol 2024; 436:168439. [PMID: 38185322 DOI: 10.1016/j.jmb.2024.168439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
The understanding of signal transduction mechanisms in photoreceptor proteins is essential for elucidating how living organisms respond to light as environmental stimuli. In this study, we investigated the ATP binding, photoactivation and signal transduction process in the photoactivatable adenylate cyclase from Oscillatoria acuminata (OaPAC) upon blue light excitation. Structural models with ATP bound in the active site of native OaPAC at cryogenic as well as room temperature are presented. ATP is found in one conformation at cryogenic- and in two conformations at ambient-temperature, and is bound in an energetically unfavorable conformation for the conversion to cAMP. However, FTIR spectroscopic experiments confirm that this conformation is the native binding mode in dark state OaPAC and that transition to a productive conformation for ATP turnover only occurs after light activation. A combination of time-resolved crystallography experiments at synchrotron and X-ray Free Electron Lasers sheds light on the early events around the Flavin Adenine Dinucleotide (FAD) chromophore in the light-sensitive BLUF domain of OaPAC. Early changes involve the highly conserved amino acids Tyr6, Gln48 and Met92. Crucially, the Gln48 side chain performs a 180° rotation during activation, leading to the stabilization of the FAD chromophore. Cryo-trapping experiments allowed us to investigate a late light-activated state of the reaction and revealed significant conformational changes in the BLUF domain around the FAD chromophore. In particular, a Trpin/Metout transition upon illumination is observed for the first time in the BLUF domain and its role in signal transmission via α-helix 3 and 4 in the linker region between sensor and effector domain is discussed.
Collapse
Affiliation(s)
- Anaïs Chretien
- European XFEL GmbH, Schenefeld, Germany; Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - Marius F Nagel
- Department of Chemistry and Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Sabine Botha
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA; Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | | | | | | | | | | | | | | | | | | | | | - David von Stetten
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | | | | | | | | | | | - Arwen R Pearson
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | - Tilman Kottke
- Department of Chemistry and Medical School OWL, Bielefeld University, Bielefeld, Germany
| | | | | |
Collapse
|
5
|
Vorovitch MF, Samygina VR, Pichkur E, Konarev PV, Peters G, Khvatov EV, Ivanova AL, Tuchynskaya KK, Konyushko OI, Fedotov AY, Armeev G, Shaytan KV, Kovalchuk MV, Osolodkin DI, Egorov AM, Ishmukhametov AA. Preparation and characterization of inactivated tick-borne encephalitis virus samples for single-particle imaging at the European XFEL. Acta Crystallogr D Struct Biol 2024; 80:44-59. [PMID: 38164954 DOI: 10.1107/s2059798323010562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024] Open
Abstract
X-ray imaging of virus particles at the European XFEL could eventually allow their complete structures to be solved, potentially approaching the resolution of other structural virology methods. To achieve this ambitious goal with today's technologies, about 1 ml of purified virus suspension containing at least 1012 particles per millilitre is required. Such large amounts of concentrated suspension have never before been obtained for enveloped viruses. Tick-borne encephalitis virus (TBEV) represents an attractive model system for the development of enveloped virus purification and concentration protocols, given the availability of large amounts of inactivated virus material provided by vaccine-manufacturing facilities. Here, the development of a TBEV vaccine purification and concentration scheme is presented combined with a quality-control protocol that allows substantial amounts of highly concentrated non-aggregated suspension to be obtained. Preliminary single-particle imaging experiments were performed for this sample at the European XFEL, showing distinct diffraction patterns.
Collapse
Affiliation(s)
- Mikhail F Vorovitch
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation
| | | | - Evgeny Pichkur
- NRC `Kurchatov Insitute', Moscow 123182, Russian Federation
| | | | - Georgy Peters
- NRC `Kurchatov Insitute', Moscow 123182, Russian Federation
| | - Evgeny V Khvatov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Alla L Ivanova
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Ksenia K Tuchynskaya
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Olga I Konyushko
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Anton Y Fedotov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Grigory Armeev
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Konstantin V Shaytan
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | | | - Dmitry I Osolodkin
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Alexey M Egorov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Aydar A Ishmukhametov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| |
Collapse
|
6
|
Williamson LJ, Galchenkova M, Best HL, Bean RJ, Munke A, Awel S, Pena G, Knoska J, Schubert R, Dörner K, Park HW, Bideshi DK, Henkel A, Kremling V, Klopprogge B, Lloyd-Evans E, Young MT, Valerio J, Kloos M, Sikorski M, Mills G, Bielecki J, Kirkwood H, Kim C, de Wijn R, Lorenzen K, Xavier PL, Rahmani Mashhour A, Gelisio L, Yefanov O, Mancuso AP, Federici BA, Chapman HN, Crickmore N, Rizkallah PJ, Berry C, Oberthür D. Structure of the Lysinibacillus sphaericus Tpp49Aa1 pesticidal protein elucidated from natural crystals using MHz-SFX. Proc Natl Acad Sci U S A 2023; 120:e2203241120. [PMID: 38015839 PMCID: PMC10710082 DOI: 10.1073/pnas.2203241120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi, Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control.
Collapse
Affiliation(s)
| | - Marina Galchenkova
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Hannah L. Best
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | | | - Anna Munke
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Salah Awel
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Gisel Pena
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Juraj Knoska
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | | | | | - Hyun-Woo Park
- Department of Biological Sciences, California Baptist University, Riverside, CA92504
| | - Dennis K. Bideshi
- Department of Biological Sciences, California Baptist University, Riverside, CA92504
| | - Alessandra Henkel
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Viviane Kremling
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Bjarne Klopprogge
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Emyr Lloyd-Evans
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Mark T. Young
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | | | - Marco Kloos
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | - Grant Mills
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | | | - Chan Kim
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | | | - Paul Lourdu Xavier
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
- Max-Planck Institute for the Structure and Dynamics of Matter, 22761Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Luca Gelisio
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL GmbH, 22869Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Brian A. Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Henry N. Chapman
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
- Centre for Ultrafast Imaging, Universität Hamburg, 22761Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761Hamburg, Germany
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, BrightonBN1 9QG, United Kingdom
| | | | - Colin Berry
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Dominik Oberthür
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| |
Collapse
|
7
|
Botha S, Fromme P. Review of serial femtosecond crystallography including the COVID-19 pandemic impact and future outlook. Structure 2023; 31:1306-1319. [PMID: 37898125 PMCID: PMC10842180 DOI: 10.1016/j.str.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/30/2023]
Abstract
Serial femtosecond crystallography (SFX) revolutionized macromolecular crystallography over the past decade by enabling the collection of X-ray diffraction data from nano- or micrometer sized crystals while outrunning structure-altering radiation damage effects at room temperature. The serial manner of data collection from millions of individual crystals coupled with the femtosecond duration of the ultrabright X-ray pulses enables time-resolved studies of macromolecules under near-physiological conditions to unprecedented temporal resolution. In 2020 the rapid spread of the coronavirus SARS-CoV-2 resulted in a global pandemic of coronavirus disease-2019. This led to a shift in how serial femtosecond experiments were performed, along with rapid funding and free electron laser beamtime availability dedicated to SARS-CoV-2-related studies. This review outlines the current state of SFX research, the milestones that were achieved, the impact of the global pandemic on this field as well as an outlook into exciting future directions.
Collapse
Affiliation(s)
- Sabine Botha
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA.
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
8
|
Vakili M, Han H, Schmidt C, Wrona A, Kloos M, de Diego I, Dörner K, Geng T, Kim C, Koua FHM, Melo DVM, Rappas M, Round A, Round E, Sikorski M, Valerio J, Zhou T, Lorenzen K, Schulz J. Mix-and-extrude: high-viscosity sample injection towards time-resolved protein crystallography. J Appl Crystallogr 2023; 56:1038-1045. [PMID: 37555221 PMCID: PMC10405586 DOI: 10.1107/s1600576723004405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/21/2023] [Indexed: 08/10/2023] Open
Abstract
Time-resolved crystallography enables the visualization of protein molecular motion during a reaction. Although light is often used to initiate reactions in time-resolved crystallography, only a small number of proteins can be activated by light. However, many biological reactions can be triggered by the interaction between proteins and ligands. The sample delivery method presented here uses a mix-and-extrude approach based on 3D-printed microchannels in conjunction with a micronozzle. The diffusive mixing enables the study of the dynamics of samples in viscous media. The device design allows mixing of the ligands and protein crystals in 2 to 20 s. The device characterization using a model system (fluorescence quenching of iq-mEmerald proteins by copper ions) demonstrated that ligand and protein crystals, each within lipidic cubic phase, can be mixed efficiently. The potential of this approach for time-resolved membrane protein crystallography to support the development of new drugs is discussed.
Collapse
Affiliation(s)
| | - Huijong Han
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | | | | | - Marco Kloos
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | - Iñaki de Diego
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | | | - Tian Geng
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Chan Kim
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | | | | | - Mathieu Rappas
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Adam Round
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | | | | | - Joana Valerio
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | - Tiankun Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | | | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| |
Collapse
|
9
|
Kalkan Ö, Kantamneni S, Brings L, Han H, Bean R, Mancuso AP, Koua FHM. Heterologous expression, purification and structural features of native Dictyostelium discoideum dye-decolorizing peroxidase bound to a natively incorporated heme. Front Chem 2023; 11:1220543. [PMID: 37593106 PMCID: PMC10427876 DOI: 10.3389/fchem.2023.1220543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The Dictyostelium discoideum dye-decolorizing peroxidase (DdDyP) is a newly discovered peroxidase, which belongs to a unique class of heme peroxidase family that lacks homology to the known members of plant peroxidase superfamily. DdDyP catalyzes the H2O2-dependent oxidation of a wide-spectrum of substrates ranging from polycyclic dyes to lignin biomass, holding promise for potential industrial and biotechnological applications. To study the molecular mechanism of DdDyP, highly pure and functional protein with a natively incorporated heme is required, however, obtaining a functional DyP-type peroxidase with a natively bound heme is challenging and often requires addition of expensive biosynthesis precursors. Alternatively, a heme in vitro reconstitution approach followed by a chromatographic purification step to remove the excess heme is often used. Here, we show that expressing the DdDyP peroxidase in ×2 YT enriched medium at low temperature (20°C), without adding heme supplement or biosynthetic precursors, allows for a correct native incorporation of heme into the apo-protein, giving rise to a stable protein with a strong Soret peak at 402 nm. Further, we crystallized and determined the native structure of DdDyP at a resolution of 1.95 Å, which verifies the correct heme binding and its geometry. The structural analysis also reveals a binding of two water molecules at the distal site of heme plane bridging the catalytic residues (Arg239 and Asp149) of the GXXDG motif to the heme-Fe(III) via hydrogen bonds. Our results provide new insights into the geometry of native DdDyP active site and its implication on DyP catalysis.
Collapse
Affiliation(s)
- Özlem Kalkan
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | | | - Lea Brings
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
| | - Huijong Han
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
| | - Richard Bean
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
| | - Adrian P. Mancuso
- European XFEL GmbH, Schenefeld, Schleswig-Holstein, Germany
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, United Kingdom
| | | |
Collapse
|
10
|
Initiation and modulation of Tau protein phase separation by the drug suramin. Sci Rep 2023; 13:3963. [PMID: 36894559 PMCID: PMC9997437 DOI: 10.1038/s41598-023-29846-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Tau is an intrinsically disordered neuronal protein in the central nervous system. Aggregated Tau is the main component of neurofibrillary tangles observed in Alzheimer's disease. In vitro, Tau aggregation can be triggered by polyanionic co-factors, like RNA or heparin. At different concentration ratios, the same polyanions can induce Tau condensates via liquid-liquid phase separation (LLPS), which over time develop pathological aggregation seeding potential. Data obtained by time resolved Dynamic Light Scattering experiments (trDLS), light and electron microscopy show that intermolecular electrostatic interactions between Tau and the negatively charged drug suramin induce Tau condensation and compete with the interactions driving and stabilizing the formation of Tau:heparin and Tau:RNA coacervates, thus, reducing their potential to induce cellular Tau aggregation. Tau:suramin condensates do not seed Tau aggregation in a HEK cell model for Tau aggregation, even after extended incubation. These observations indicate that electrostatically driven Tau condensation can occur without pathological aggregation when initiated by small anionic molecules. Our results provide a novel avenue for therapeutic intervention of aberrant Tau phase separation, utilizing small anionic compounds.
Collapse
|
11
|
Sonker M, Doppler D, Egatz-Gomez A, Zaare S, Rabbani MT, Manna A, Cruz Villarreal J, Nelson G, Ketawala GK, Karpos K, Alvarez RC, Nazari R, Thifault D, Jernigan R, Oberthür D, Han H, Sierra R, Hunter MS, Batyuk A, Kupitz CJ, Sublett RE, Poitevin F, Lisova S, Mariani V, Tolstikova A, Boutet S, Messerschmidt M, Meza-Aguilar JD, Fromme R, Martin-Garcia JM, Botha S, Fromme P, Grant TD, Kirian RA, Ros A. Electrically stimulated droplet injector for reduced sample consumption in serial crystallography. BIOPHYSICAL REPORTS 2022; 2:100081. [PMID: 36425668 PMCID: PMC9680787 DOI: 10.1016/j.bpr.2022.100081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
With advances in X-ray free-electron lasers (XFELs), serial femtosecond crystallography (SFX) has enabled the static and dynamic structure determination for challenging proteins such as membrane protein complexes. In SFX with XFELs, the crystals are typically destroyed after interacting with a single XFEL pulse. Therefore, thousands of new crystals must be sequentially introduced into the X-ray beam to collect full data sets. Because of the serial nature of any SFX experiment, up to 99% of the sample delivered to the X-ray beam during its "off-time" between X-ray pulses is wasted due to the intrinsic pulsed nature of all current XFELs. To solve this major problem of large and often limiting sample consumption, we report on improvements of a revolutionary sample-saving method that is compatible with all current XFELs. We previously reported 3D-printed injection devices coupled with gas dynamic virtual nozzles (GDVNs) capable of generating samples containing droplets segmented by an immiscible oil phase for jetting crystal-laden droplets into the path of an XFEL. Here, we have further improved the device design by including metal electrodes inducing electrowetting effects for improved control over droplet generation frequency to stimulate the droplet release to matching the XFEL repetition rate by employing an electrical feedback mechanism. We report the improvements in this electrically triggered segmented flow approach for sample conservation in comparison with a continuous GDVN injection using the microcrystals of lysozyme and 3-deoxy-D-manno-octulosonate 8-phosphate synthase and report the segmented flow approach for sample injection applied at the Macromolecular Femtosecond Crystallography instrument at the Linear Coherent Light Source for the first time.
Collapse
Affiliation(s)
- Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Diandra Doppler
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Sahba Zaare
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Mohammad T. Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Abhik Manna
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Gihan K. Ketawala
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Konstantinos Karpos
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Roberto C. Alvarez
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Reza Nazari
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Darren Thifault
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Rebecca Jernigan
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | | | - Raymond Sierra
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Mark S. Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Alexander Batyuk
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Christopher J. Kupitz
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Robert E. Sublett
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Frederic Poitevin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Stella Lisova
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Valerio Mariani
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Sebastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Marc Messerschmidt
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - J. Domingo Meza-Aguilar
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jose M. Martin-Garcia
- Institute Physical-Chemistry Rocasolano, Spanish National Research Council, Madrid, Spain
| | - Sabine Botha
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, New York
| | - Richard A. Kirian
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
12
|
Gevorgyan S, Schubert R, Falke S, Lorenzen K, Trchounian K, Betzel C. Structural characterization and antibacterial activity of silver nanoparticles synthesized using a low-molecular-weight Royal Jelly extract. Sci Rep 2022; 12:14077. [PMID: 35982108 PMCID: PMC9388513 DOI: 10.1038/s41598-022-17929-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years silver nanoparticles (Ag NPs) gained increased and widespread applications in various fields of industry, technology, and medicine. This study describes the green synthesis of silver nanoparticles (Ag NPs) applying a low-molecular-weight fraction (LMF) of Royal Jelly, the nanoparticle characterization, and particularly their antibacterial activity. The optical properties of NPs, characterized by UV–Vis absorption spectroscopy, showed a peak at ~ 430 nm. The hydrodynamic radius and concentration were determined by complementary dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The particle morphology was investigated using transmission electron microscopy (TEM), and the crystallinity of the silver was confirmed by X-ray diffraction (XRD). The antibacterial activities were evaluated utilizing Gram-negative and Gram-positive bacteria and colony counting assays. The growth inhibition curve method was applied to obtain information about the corresponding minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC) required. Obtained results showed that (i) the sizes of Ag NPs are increasing within the increase of silver ion precursor concentration, (ii) DLS, in agreement with NTA, showed that most particles have dimensions in the range of 50–100 nm; (iii) E. coli was more susceptible to all Ag NP samples compared to B. subtilis.
Collapse
Affiliation(s)
- Susanna Gevorgyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia.,The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, Build. 22A, 22607, Hamburg, Germany
| | - Robin Schubert
- European X-Ray Free Electron Laser GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Sven Falke
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Kristina Lorenzen
- European X-Ray Free Electron Laser GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Christian Betzel
- The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany. .,Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, Build. 22A, 22607, Hamburg, Germany.
| |
Collapse
|
13
|
Niebling S, Veith K, Vollmer B, Lizarrondo J, Burastero O, Schiller J, Struve García A, Lewe P, Seuring C, Witt S, García-Alai M. Biophysical Screening Pipeline for Cryo-EM Grid Preparation of Membrane Proteins. Front Mol Biosci 2022; 9:882288. [PMID: 35813810 PMCID: PMC9259969 DOI: 10.3389/fmolb.2022.882288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Successful sample preparation is the foundation to any structural biology technique. Membrane proteins are of particular interest as these are important targets for drug design, but also notoriously difficult to work with. For electron cryo-microscopy (cryo-EM), the biophysical characterization of sample purity, homogeneity, and integrity as well as biochemical activity is the prerequisite for the preparation of good quality cryo-EM grids as these factors impact the result of the computational reconstruction. Here, we present a quality control pipeline prior to single particle cryo-EM grid preparation using a combination of biophysical techniques to address the integrity, purity, and oligomeric states of membrane proteins and its complexes to enable reproducible conditions for sample vitrification. Differential scanning fluorimetry following the intrinsic protein fluorescence (nDSF) is used for optimizing buffer and detergent conditions, whereas mass photometry and dynamic light scattering are used to assess aggregation behavior, reconstitution efficiency, and oligomerization. The data collected on nDSF and mass photometry instruments can be analyzed with web servers publicly available at spc.embl-hamburg.de. Case studies to optimize conditions prior to cryo-EM sample preparation of membrane proteins present an example quality assessment to corroborate the usefulness of our pipeline.
Collapse
Affiliation(s)
- Stephan Niebling
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Benjamin Vollmer
- Centre for Structural Systems Biology (CSSB), Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Osvaldo Burastero
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Janina Schiller
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Angelica Struve García
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Philipp Lewe
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolin Seuring
- Centre for Structural Systems Biology (CSSB), Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Susanne Witt
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - María García-Alai
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- *Correspondence: María García-Alai,
| |
Collapse
|
14
|
Vakili M, Bielecki J, Knoška J, Otte F, Han H, Kloos M, Schubert R, Delmas E, Mills G, de Wijn R, Letrun R, Dold S, Bean R, Round A, Kim Y, Lima FA, Dörner K, Valerio J, Heymann M, Mancuso AP, Schulz J. 3D printed devices and infrastructure for liquid sample delivery at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:331-346. [PMID: 35254295 PMCID: PMC8900844 DOI: 10.1107/s1600577521013370] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The Sample Environment and Characterization (SEC) group of the European X-ray Free-Electron Laser (EuXFEL) develops sample delivery systems for the various scientific instruments, including systems for the injection of liquid samples that enable serial femtosecond X-ray crystallography (SFX) and single-particle imaging (SPI) experiments, among others. For rapid prototyping of various device types and materials, sub-micrometre precision 3D printers are used to address the specific experimental conditions of SFX and SPI by providing a large number of devices with reliable performance. This work presents the current pool of 3D printed liquid sample delivery devices, based on the two-photon polymerization (2PP) technique. These devices encompass gas dynamic virtual nozzles (GDVNs), mixing-GDVNs, high-viscosity extruders (HVEs) and electrospray conical capillary tips (CCTs) with highly reproducible geometric features that are suitable for time-resolved SFX and SPI experiments at XFEL facilities. Liquid sample injection setups and infrastructure on the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument are described, this being the instrument which is designated for biological structure determination at the EuXFEL.
Collapse
Affiliation(s)
| | | | - Juraj Knoška
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Florian Otte
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Physics, TU Dortmund, Otto-Hahn-Straße 4, 44221 Dortmund, Germany
| | - Huijong Han
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Marco Kloos
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Elisa Delmas
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Grant Mills
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Romain Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Simon Dold
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adam Round
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- School of Chemical and Physical Sciences, Keele University, Staffordshire ST5 5AZ, United Kingdom
| | - Yoonhee Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Joana Valerio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Heymann
- Institute for Biomaterials and Biomolecular Systems (IBBS), University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne 3086, Australia
| | | |
Collapse
|
15
|
Plasma-Generated X-ray Pulses: Betatron Radiation Opportunities at EuPRAXIA@SPARC_LAB. CONDENSED MATTER 2022. [DOI: 10.3390/condmat7010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
EuPRAXIA is a leading European project aimed at the development of a dedicated, ground-breaking, ultra-compact accelerator research infrastructure based on novel plasma acceleration concepts and laser technology and on the development of their users’ communities. Within this framework, the Laboratori Nazionali di Frascati (LNF, INFN) will be equipped with a unique combination of an X-band RF LINAC generating high-brightness GeV-range electron beams, a 0.5 PW class laser system and the first fifth-generation free electron laser (FEL) source driven by a plasma-based accelerator, the EuPRAXIA@SPARC_LAB facility. Wiggler-like radiation emitted by electrons accelerated in plasma wakefields gives rise to brilliant, ultra-short X-ray pulses, called betatron radiation. Extensive studies have been performed at the FLAME laser facility at LNF, INFN, where betatron radiation was measured and characterized. The purpose of this paper is to describe the betatron spectrum emitted by particle wakefield acceleration at EuPRAXIA@SPARC_LAB and provide an overview of the foreseen applications of this specific source, thus helping to establish a future user community interested in (possibly coupled) FEL and betatron radiation experiments. In order to provide a quantitative estimate of the expected betatron spectrum and therefore to present suitable applications, we performed simple simulations to determine the spectrum of the betatron radiation emitted at EuPRAXIA@SPARC_LAB. With reference to experiments performed exploiting similar betatron sources, we highlight the opportunities offered by its brilliant femtosecond pulses for ultra-fast X-ray spectroscopy and imaging measurements, but also as an ancillary tool for designing and testing FEL instrumentation and experiments.
Collapse
|
16
|
Doppler D, Rabbani MT, Letrun R, Cruz Villarreal J, Kim DH, Gandhi S, Egatz-Gomez A, Sonker M, Chen J, Koua FHM, Yang J, Youssef M, Mazalova V, Bajt S, Shelby ML, Coleman MA, Wiedorn MO, Knoska J, Schön S, Sato T, Hunter MS, Hosseinizadeh A, Kuptiz C, Nazari R, Alvarez RC, Karpos K, Zaare S, Dobson Z, Discianno E, Zhang S, Zook JD, Bielecki J, de Wijn R, Round AR, Vagovic P, Kloos M, Vakili M, Ketawala GK, Stander NE, Olson TL, Morin K, Mondal J, Nguyen J, Meza-Aguilar JD, Kodis G, Vaiana S, Martin-Garcia JM, Mariani V, Schwander P, Schmidt M, Messerschmidt M, Ourmazd A, Zatsepin N, Weierstall U, Bruce BD, Mancuso AP, Grant T, Barty A, Chapman HN, Frank M, Fromme R, Spence JCH, Botha S, Fromme P, Kirian RA, Ros A. Co-flow injection for serial crystallography at X-ray free-electron lasers. J Appl Crystallogr 2022; 55:1-13. [PMID: 35153640 PMCID: PMC8805165 DOI: 10.1107/s1600576721011079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023] Open
Abstract
Serial femtosecond crystallography (SFX) is a powerful technique that exploits X-ray free-electron lasers to determine the structure of macro-molecules at room temperature. Despite the impressive exposition of structural details with this novel crystallographic approach, the methods currently available to introduce crystals into the path of the X-ray beam sometimes exhibit serious drawbacks. Samples requiring liquid injection of crystal slurries consume large quantities of crystals (at times up to a gram of protein per data set), may not be compatible with vacuum configurations on beamlines or provide a high background due to additional sheathing liquids present during the injection. Proposed and characterized here is the use of an immiscible inert oil phase to supplement the flow of sample in a hybrid microfluidic 3D-printed co-flow device. Co-flow generation is reported with sample and oil phases flowing in parallel, resulting in stable injection conditions for two different resin materials experimentally. A numerical model is presented that adequately predicts these flow-rate conditions. The co-flow generating devices reduce crystal clogging effects, have the potential to conserve protein crystal samples up to 95% and will allow degradation-free light-induced time-resolved SFX.
Collapse
Affiliation(s)
- Diandra Doppler
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mohammad T. Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | | | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Dai Hyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Sahir Gandhi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Joe Chen
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Faisal H. M. Koua
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Jayhow Yang
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mohamed Youssef
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Victoria Mazalova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Saša Bajt
- Hamburg Center for Ultrafast Imaging, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Megan L. Shelby
- Lawrence Livermore National Laboratory (LLNL), Livermore, California, USA
| | - Matt A. Coleman
- Lawrence Livermore National Laboratory (LLNL), Livermore, California, USA
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Silvan Schön
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | | | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Ahmad Hosseinizadeh
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Christopher Kuptiz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Reza Nazari
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Roberto C. Alvarez
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Konstantinos Karpos
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Sahba Zaare
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Zachary Dobson
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Erin Discianno
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Shangji Zhang
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James D. Zook
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | | | | | - Adam R. Round
- European XFEL, Schenefeld, Germany
- School of Chemical and Physical Sciences, Keele University, Staffordshire, UK
| | - Patrik Vagovic
- European XFEL, Schenefeld, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | | | | | - Gihan K. Ketawala
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Natasha E. Stander
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Tien L. Olson
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Katherine Morin
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jyotirmory Mondal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jonathan Nguyen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - José Domingo Meza-Aguilar
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- European XFEL, Schenefeld, Germany
| | - Gerdenis Kodis
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Sara Vaiana
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Jose M. Martin-Garcia
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry ‘Rocasolano’, CSIC, Madrid, Spain
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Marius Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Marc Messerschmidt
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Nadia Zatsepin
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Uwe Weierstall
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Barry D. Bruce
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Adrian P. Mancuso
- European XFEL, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Thomas Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, New York, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Center for Data and Computing in Natural Science CDCS, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Matthias Frank
- Lawrence Livermore National Laboratory (LLNL), Livermore, California, USA
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - John C. H. Spence
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Sabine Botha
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Richard A. Kirian
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
17
|
Pandey S, Calvey G, Katz AM, Malla TN, Koua FHM, Martin-Garcia JM, Poudyal I, Yang JH, Vakili M, Yefanov O, Zielinski KA, Bajt S, Awel S, Doerner K, Frank M, Gelisio L, Jernigan R, Kirkwood H, Kloos M, Koliyadu J, Mariani V, Miller MD, Mills G, Nelson G, Olmos JL, Sadri A, Sato T, Tolstikova A, Xu W, Ourmazd A, Spence JCH, Schwander P, Barty A, Chapman HN, Fromme P, Mancuso AP, Phillips GN, Bean R, Pollack L, Schmidt M. Observation of substrate diffusion and ligand binding in enzyme crystals using high-repetition-rate mix-and-inject serial crystallography. IUCRJ 2021; 8:878-895. [PMID: 34804542 PMCID: PMC8562667 DOI: 10.1107/s2052252521008125] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 05/22/2023]
Abstract
Here, we illustrate what happens inside the catalytic cleft of an enzyme when substrate or ligand binds on single-millisecond timescales. The initial phase of the enzymatic cycle is observed with near-atomic resolution using the most advanced X-ray source currently available: the European XFEL (EuXFEL). The high repetition rate of the EuXFEL combined with our mix-and-inject technology enables the initial phase of ceftriaxone binding to the Mycobacterium tuberculosis β-lactamase to be followed using time-resolved crystallography in real time. It is shown how a diffusion coefficient in enzyme crystals can be derived directly from the X-ray data, enabling the determination of ligand and enzyme-ligand concentrations at any position in the crystal volume as a function of time. In addition, the structure of the irreversible inhibitor sulbactam bound to the enzyme at a 66 ms time delay after mixing is described. This demonstrates that the EuXFEL can be used as an important tool for biomedically relevant research.
Collapse
Affiliation(s)
- Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - George Calvey
- School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA
| | - Andrea M. Katz
- School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA
| | - Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Faisal H. M. Koua
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jose M. Martin-Garcia
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-1604, USA
- Institute of Physical Chemistry Rocasolano, Spanish National Research Council, Calle de Serrano 119, 28006 Madrid, Spain
| | - Ishwor Poudyal
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Jay-How Yang
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA
| | - Sasa Bajt
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Luca Gelisio
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Rebecca Jernigan
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Marco Kloos
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, California 94025, USA
| | - Mitchell D. Miller
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Grant Mills
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Jose L. Olmos
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alireza Sadri
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Weijun Xu
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Abbas Ourmazd
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - John C. H. Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Peter Schwander
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Anton Barty
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Petra Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - George N. Phillips
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| |
Collapse
|
18
|
Structure and dynamics of UBA5-UFM1 complex formation showing new insights in the UBA5 activation mechanism. J Struct Biol 2021; 213:107796. [PMID: 34508858 DOI: 10.1016/j.jsb.2021.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/17/2021] [Accepted: 09/05/2021] [Indexed: 11/21/2022]
Abstract
Ubiquitin fold modifier 1 (UFM1) is an ubiquitin-like protein (Ubl) involved especially in endoplasmic stress response. Activation occurs via a three-step mechanism like other Ubls. Data obtained reveal that UFM1 regulates the oligomeric state of ubiquitin activating enzyme 5 (UBA5) to initiate the activation step. Mixtures of homodimers and heterotrimers are observed in solution at the equilibrium state, demonstrating that the UBA5-UFM1 complex undergoes several concentration dependent oligomeric translational states to form a final functional complex. The oligomerization state of unbound UBA5 is also concentration dependent and shifts from the monomeric to the dimeric state. Data describing different oligomeric states are complemented with binding studies that reveal a negative cooperativity for the complex formation and thereby provide more detailed insights into the complex formation mechanism.
Collapse
|
19
|
Abstract
Serial crystallography (SX) is an emerging X-ray crystallographic method for determining macromolecule structures. It can address concerns regarding the limitations of data collected by conventional crystallography techniques, which require cryogenic-temperature environments and allow crystals to accumulate radiation damage. Time-resolved SX studies using the pump-probe methodology provide useful information for understanding macromolecular mechanisms and structure fluctuation dynamics. This Special Issue deals with the serial crystallography approach using an X-ray free electron laser (XFEL) and synchrotron X-ray source, and reviews recent SX research involving synchrotron use. These reports provide insights into future serial crystallography research trends and approaches.
Collapse
|
20
|
Gevorgyan S, Schubert R, Yeranosyan M, Gabrielyan L, Trchounian A, Lorenzen K, Trchounian K. Antibacterial activity of royal jelly-mediated green synthesized silver nanoparticles. AMB Express 2021; 11:51. [PMID: 33796941 PMCID: PMC8017077 DOI: 10.1186/s13568-021-01213-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
The application of green synthesis in nanotechnology is growing day by day. It's a safe and eco-friendly alternative to conventional methods. The current research aimed to study raw royal jelly's potential in the green synthesis of silver nanoparticles and their antibacterial activity. Royal jelly served as a reducing and oxidizing agent in the green synthesis technology of colloidal silver nanoparticles. The UV-Vis maximum absorption at ~ 430 nm and fluorescence emission peaks at ~ 487 nm confirmed the presence of Ag NPs. Morphology and structural properties of Ag NPs and the effect of ultrasound studies revealed: (i) the formation of polydispersed and spherical particles with different sizes; (ii) size reduction and homogeneity increase by ultrasound treatment. Antibacterial activity of different concentrations of green synthesized Ag NPs has been assessed on Gram-negative S. typhimurium and Gram-positive S. aureus, revealing higher sensitivity on Gram-negative bacteria.
Collapse
Affiliation(s)
- Susanna Gevorgyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Robin Schubert
- European X-ray Free Electron Laser GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Mkrtich Yeranosyan
- Institute of Chemical Physics, NAS RA, Paruir Sevak 5/2, 0014, Yerevan, Armenia
- Military Aviation University Named After Marshal A. Khamperyants, Arshakunyats 89, 0007, Yerevan, Armenia
| | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Armen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Kristina Lorenzen
- European X-ray Free Electron Laser GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia.
| |
Collapse
|