1
|
Carulla M, Barten R, Baruffaldi F, Bergamaschi A, Borghi G, Boscardin M, Brückner M, Butcher TA, Centis Vignali M, Dinapoli R, Ebner S, Ficorella F, Fröjdh E, Greiffenberg D, Hammad Ali O, Hasanaj S, Heymes J, Hinger V, King T, Kozlowski P, Lopez Cuenca C, Mezza D, Moustakas K, Mozzanica A, Paternoster G, Paton KA, Ronchin S, Ruder C, Schmitt B, Sieberer P, Thattil D, Vogelsang K, Xie X, Zhang J. Quantum Efficiency Measurement and Modeling of Silicon Sensors Optimized for Soft X-ray Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:942. [PMID: 38339659 PMCID: PMC10856868 DOI: 10.3390/s24030942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Hybrid pixel detectors have become indispensable at synchrotron and X-ray free-electron laser facilities thanks to their large dynamic range, high frame rate, low noise, and large area. However, at energies below 3 keV, the detector performance is often limited because of the poor quantum efficiency of the sensor and the difficulty in achieving single-photon resolution due to the low signal-to-noise ratio. In this paper, we address the quantum efficiency of silicon sensors by refining the design of the entrance window, mainly by passivating the silicon surface and optimizing the dopant profile of the n+ region. We present the measurement of the quantum efficiency in the soft X-ray energy range for silicon sensors with several process variations in the fabrication of planar sensors with thin entrance windows. The quantum efficiency for 250 eV photons is increased from almost 0.5% for a standard sensor to up to 62% as a consequence of these developments, comparable to the quantum efficiency of backside-illuminated scientific CMOS sensors. Finally, we discuss the influence of the various process parameters on quantum efficiency and present a strategy for further improvement.
Collapse
Affiliation(s)
- Maria Carulla
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Rebecca Barten
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Filippo Baruffaldi
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Anna Bergamaschi
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Giacomo Borghi
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Maurizio Boscardin
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Martin Brückner
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Tim A. Butcher
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Matteo Centis Vignali
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Roberto Dinapoli
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Simon Ebner
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Francesco Ficorella
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Erik Fröjdh
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Dominic Greiffenberg
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Omar Hammad Ali
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Shqipe Hasanaj
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Julian Heymes
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Viktoria Hinger
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Thomas King
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Pawel Kozlowski
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Carlos Lopez Cuenca
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Davide Mezza
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Konstantinos Moustakas
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Aldo Mozzanica
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Giovanni Paternoster
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Kirsty A. Paton
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Sabina Ronchin
- Fondazione Bruno Kessler, Via Sommarive 18, 38126 Povo, Italy; (G.B.); (M.B.); (M.C.V.); (F.F.); (O.H.A.); (G.P.); (S.R.)
| | - Christian Ruder
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Bernd Schmitt
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Patrick Sieberer
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Dhanya Thattil
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Konrad Vogelsang
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Xiangyu Xie
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| | - Jiaguo Zhang
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland (F.B.); (A.B.); (T.A.B.); (R.D.); (E.F.); (D.G.); (J.H.); (V.H.); (D.M.); (K.M.); (A.M.); (K.A.P.); (B.S.); (P.S.); (X.X.); (J.Z.)
| |
Collapse
|
2
|
Smolentsev G, Milne CJ, Guda A, Haldrup K, Szlachetko J, Azzaroli N, Cirelli C, Knopp G, Bohinc R, Menzi S, Pamfilidis G, Gashi D, Beck M, Mozzanica A, James D, Bacellar C, Mancini GF, Tereshchenko A, Shapovalov V, Kwiatek WM, Czapla-Masztafiak J, Cannizzo A, Gazzetto M, Sander M, Levantino M, Kabanova V, Rychagova E, Ketkov S, Olaru M, Beckmann J, Vogt M. Taking a snapshot of the triplet excited state of an OLED organometallic luminophore using X-rays. Nat Commun 2020; 11:2131. [PMID: 32358505 PMCID: PMC7195477 DOI: 10.1038/s41467-020-15998-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
OLED technology beyond small or expensive devices requires light-emitters, luminophores, based on earth-abundant elements. Understanding and experimental verification of charge transfer in luminophores are needed for this development. An organometallic multicore Cu complex comprising Cu–C and Cu–P bonds represents an underexplored type of luminophore. To investigate the charge transfer and structural rearrangements in this material, we apply complementary pump-probe X-ray techniques: absorption, emission, and scattering including pump-probe measurements at the X-ray free-electron laser SwissFEL. We find that the excitation leads to charge movement from C- and P- coordinated Cu sites and from the phosphorus atoms to phenyl rings; the Cu core slightly rearranges with 0.05 Å increase of the shortest Cu–Cu distance. The use of a Cu cluster bonded to the ligands through C and P atoms is an efficient way to keep structural rigidity of luminophores. Obtained data can be used to verify computational methods for the development of luminophores. OLED materials based on thermally activated delayed fluorescence have promising efficiency. Here, the authors investigate an organometallic multicore Cu complex as luminophore, by pump-probe X-ray techniques at three different facilities deriving a complete picture of the charge transfer in the triplet excited state.
Collapse
Affiliation(s)
| | | | - Alexander Guda
- The Smart Materials Research Institute, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Kristoffer Haldrup
- Physics Department, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Kraków, Poland
| | | | | | - Gregor Knopp
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Rok Bohinc
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Samuel Menzi
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Dardan Gashi
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Martin Beck
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Daniel James
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Camila Bacellar
- Paul Scherrer Institute, 5232, Villigen, Switzerland.,Laboratory for Ultrafast Spectroscopy, Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Giulia F Mancini
- Paul Scherrer Institute, 5232, Villigen, Switzerland.,Laboratory for Ultrafast Spectroscopy, Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Andrei Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Victor Shapovalov
- The Smart Materials Research Institute, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Kraków, Poland
| | | | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, 3012, Bern, Switzerland
| | - Michela Gazzetto
- Institute of Applied Physics, University of Bern, 3012, Bern, Switzerland
| | - Mathias Sander
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Matteo Levantino
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Victoria Kabanova
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Elena Rychagova
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina, 49, Nizhny Novgorod, 603950, Russia
| | - Sergey Ketkov
- G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina, 49, Nizhny Novgorod, 603950, Russia
| | - Marian Olaru
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobenerstr. 7, 28359, Bremen, Germany
| | - Jens Beckmann
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobenerstr. 7, 28359, Bremen, Germany
| | - Matthias Vogt
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobenerstr. 7, 28359, Bremen, Germany. .,Martin-Luther-Universität Halle-Wittenberg Naturwissenschaftliche Fakultät II, Institut für Chemie, Anorganische Chemie, D-06120, Halle, Germany.
| |
Collapse
|
3
|
Deng Y, Zerdane S, Xie X, Divall E, Johnson PJM, Arrell C, Lemke HT, Mankowsky R, Oggenfuss A, Svetina C, Erny C, Cirelli C, Milne C, Knopp G, Beaud P, Johnson SL. Optical second harmonic generation in LiB 3O 5 modulated by intense femtosecond X-ray pulses. OPTICS EXPRESS 2020; 28:11117-11127. [PMID: 32403629 DOI: 10.1364/oe.388911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Many of the scientific applications for X-ray free-electron lasers seek to exploit the ultrashort pulse durations of intense X-rays to obtain femtosecond time resolution of various processes in a "pump-probe" scheme. One of the limiting factors for such experiments is the timing jitter between the X-rays and ultrashort pulses from more conventional lasers operating at near-optical wavelengths. In this work, we investigate the potential of using X-ray-induced changes in the optical second harmonic generation efficiency of a nonlinear crystal to retrieve single-shot arrival times of X-ray pulses with respect to optical laser pulses. Our experimental results and simulations show changes to the efficiency of the second harmonic generation of 12%, approximately three times larger than the measured changes in the transmission of the 800 nm center-wavelength fundamental pulse. Further experiments showing even larger changes in the transmission of 400 nm center-wavelength pulses show that the mechanism of the second harmonic generation efficiency modulation is mainly the result of X-ray-induced changes in the linear absorption coefficients near 400 nm. We demonstrate and characterize a cross-correlation tool based on this effect in reference to a previously demonstrated method of X-ray/optical cross-correlation.
Collapse
|
4
|
Ingold G, Abela R, Arrell C, Beaud P, Böhler P, Cammarata M, Deng Y, Erny C, Esposito V, Flechsig U, Follath R, Hauri C, Johnson S, Juranic P, Mancini GF, Mankowsky R, Mozzanica A, Oggenfuss RA, Patterson BD, Patthey L, Pedrini B, Rittmann J, Sala L, Savoini M, Svetina C, Zamofing T, Zerdane S, Lemke HT. Experimental station Bernina at SwissFEL: condensed matter physics on femtosecond time scales investigated by X-ray diffraction and spectroscopic methods. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:874-886. [PMID: 31074452 PMCID: PMC6510206 DOI: 10.1107/s160057751900331x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/07/2019] [Indexed: 05/22/2023]
Abstract
The Bernina instrument at the SwissFEL Aramis hard X-ray free-electron laser is designed for studying ultrafast phenomena in condensed matter and material science. Ultrashort pulses from an optical laser system covering a large wavelength range can be used to generate specific non-equilibrium states, whose subsequent temporal evolution can be probed by selective X-ray scattering techniques in the range 2-12 keV. For that purpose, the X-ray beamline is equipped with optical elements which tailor the X-ray beam size and energy, as well as with pulse-to-pulse diagnostics that monitor the X-ray pulse intensity, position, as well as its spectral and temporal properties. The experiments can be performed using multiple interchangeable endstations differing in specialization, diffractometer and X-ray analyser configuration and load capacity for specialized sample environment. After testing the instrument in a series of pilot experiments in 2018, regular user operation begins in 2019.
Collapse
Affiliation(s)
- Gerhard Ingold
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Rafael Abela
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | | - Paul Beaud
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Pirmin Böhler
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Marco Cammarata
- Institut de Physique de Rennes, Université de Rennes, 35042 Rennes CEDEX, France
| | - Yunpei Deng
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Christian Erny
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Vincent Esposito
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Uwe Flechsig
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Rolf Follath
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Christoph Hauri
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Steven Johnson
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zurich, Switzerland
| | - Pavle Juranic
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | | - Roman Mankowsky
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Aldo Mozzanica
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | | | | - Luc Patthey
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Bill Pedrini
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jochen Rittmann
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Leonardo Sala
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Matteo Savoini
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8093 Zurich, Switzerland
| | - Cristian Svetina
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Thierry Zamofing
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Serhane Zerdane
- SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
5
|
Juranić P, Rehanek J, Arrell CA, Pradervand C, Ischebeck R, Erny C, Heimgartner P, Gorgisyan I, Thominet V, Tiedtke K, Sorokin A, Follath R, Makita M, Seniutinas G, David C, Milne CJ, Lemke H, Radovic M, Hauri CP, Patthey L. SwissFEL Aramis beamline photon diagnostics. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1238-1248. [PMID: 29979187 PMCID: PMC6038612 DOI: 10.1107/s1600577518005775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/13/2018] [Indexed: 05/22/2023]
Abstract
The SwissFEL Aramis beamline, covering the photon energies between 1.77 keV and 12.7 keV, features a suite of online photon diagnostics tools to help both users and FEL operators in analysing data and optimizing experimental and beamline performance. Scientists will be able to obtain information about the flux, spectrum, position, pulse length, and arrival time jitter versus the experimental laser for every photon pulse, with further information about beam shape and size available through the use of destructive screens. This manuscript is an overview of the diagnostics tools available at SwissFEL and presents their design, working principles and capabilities. It also features new developments like the first implementation of a THz-streaking based temporal diagnostics for a hard X-ray FEL, capable of measuring pulse lengths to 5 fs r.m.s. or better.
Collapse
Affiliation(s)
- Pavle Juranić
- SwissFEL, Paul Scherrer Institut, Villigen 5232, Switzerland
- Correspondence e-mail:
| | - Jens Rehanek
- SwissFEL, Paul Scherrer Institut, Villigen 5232, Switzerland
| | | | | | | | - Christian Erny
- SwissFEL, Paul Scherrer Institut, Villigen 5232, Switzerland
| | | | | | | | - Kai Tiedtke
- DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Andrey Sorokin
- DESY, Notkestrasse 85, Hamburg 22607, Germany
- Ioffe Physico-Technical Institute, Politekhnicheskaya 26, St Petersburg 194021, Russia
| | - Rolf Follath
- SwissFEL, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Mikako Makita
- European XFEL, Holzkoppel 4, Schenefeld 22869, Germany
| | | | | | | | - Henrik Lemke
- SwissFEL, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Milan Radovic
- SwissFEL, Paul Scherrer Institut, Villigen 5232, Switzerland
| | | | - Luc Patthey
- SwissFEL, Paul Scherrer Institut, Villigen 5232, Switzerland
| |
Collapse
|
6
|
Abela R, Beaud P, van Bokhoven JA, Chergui M, Feurer T, Haase J, Ingold G, Johnson SL, Knopp G, Lemke H, Milne CJ, Pedrini B, Radi P, Schertler G, Standfuss J, Staub U, Patthey L. Perspective: Opportunities for ultrafast science at SwissFEL. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061602. [PMID: 29376109 PMCID: PMC5758366 DOI: 10.1063/1.4997222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/17/2017] [Indexed: 05/03/2023]
Abstract
We present the main specifications of the newly constructed Swiss Free Electron Laser, SwissFEL, and explore its potential impact on ultrafast science. In light of recent achievements at current X-ray free electron lasers, we discuss the potential territory for new scientific breakthroughs offered by SwissFEL in Chemistry, Biology, and Materials Science, as well as nonlinear X-ray science.
Collapse
Affiliation(s)
- Rafael Abela
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Paul Beaud
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-FSB, Station 6, 1015 Lausanne, Switzerland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Johannes Haase
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Gerhard Ingold
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Steven L Johnson
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zurich, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Henrik Lemke
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chris J Milne
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bill Pedrini
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Peter Radi
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Urs Staub
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Luc Patthey
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
7
|
|