1
|
Bustillo JPO, Engels EEM, de Rover V, Roughley K, Posadas JRD, Inocencio ET, Warren D, Wallace GG, Tehei M, Rosenfeld AB, Lerch MLF. Three-dimensional bioprinted in vitro glioma tumor constructs for synchrotron microbeam radiotherapy dosimetry and biological study using gelatin methacryloyl hydrogel. Sci Rep 2025; 15:13868. [PMID: 40263410 PMCID: PMC12015499 DOI: 10.1038/s41598-025-88793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/30/2025] [Indexed: 04/24/2025] Open
Abstract
Synchrotron microbeam radiotherapy (MRT) is an innovative cancer treatment that uses micron-sized of ultra-high dose rate spatially fractionated X-rays to effectively control cancer growth while reducing the damage to surrounding healthy tissue. However, the current pre-clinical experiments are commonly limited with the use of conventional two-dimensional cell cultures which cannot accurately model in vivo tissue environment. This study aims to propose a three-dimensional (3D) bioprinting gelatin methacryloyl (GelMA) hydrogel protocol and to characterize 3D bioprinted glioma relative to cell monolayer and spheroid models for experimental MRT using 9L rat gliosarcoma and U87 human glioma. Synchrotron broad-beam (SBB) and MRT beams were delivered to all cell models using 5, 10, and 20 Gy. 3D bioprinting enables the creation of 3D cell models that mimic in vivo conditions using bioinks, biomaterials, and cells. Synchrotron dosimetry, Monte Carlo simulation, in vitro cell viability, and fluorescence microscopy were performed to understand the relationship of the radiation dosimetry with the radiobiological response of different cancer models. Encapsulated gliomas were placed inside 3D printed human and rat phantoms to mimic scattering conditions. Results showed that MRT kills more gliomas relative to SBB for all cell models. The 3D bioprinted culture detected the spatial clustering of dead cells due to MRT high peak doses as seen in fluorescence imaging. The result of this study progresses MRT research by integrating 3D bioprinting techniques in radiobiological experiments. The study's bioprinting protocol and results will help in reducing the use of animal experiments and possibly in clinical translation of MRT.
Collapse
Affiliation(s)
- John Paul O Bustillo
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia.
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila City, Metro Manila, 1000, Philippines.
| | - Elette E M Engels
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC, 3168, Australia
| | - Vincent de Rover
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia
| | - Kiarn Roughley
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia
| | - Julia Rebecca D Posadas
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila City, Metro Manila, 1000, Philippines
- Department of Radiology, University of the Philippines- Philippine General Hospital, Metro Manila, 1000, Philippines
| | - Elrick T Inocencio
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila City, Metro Manila, 1000, Philippines
- Department of Radiology, University of the Philippines- Philippine General Hospital, Metro Manila, 1000, Philippines
| | - Danielle Warren
- AIIM Facility, Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Gordon G Wallace
- AIIM Facility, Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Moeava Tehei
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW, 2522, Australia
| |
Collapse
|
2
|
Matsubayashi N, Hu N, Takata T, Sasaki A, Kumada H, Nakamura S, Masuda A, Tanaka H. Characterization of acrylic phantom for use in quality assurance of BNCT beam output procedure. JOURNAL OF RADIATION RESEARCH 2025; 66:10-15. [PMID: 39562159 PMCID: PMC11753832 DOI: 10.1093/jrr/rrae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Indexed: 11/21/2024]
Abstract
The accelerator-based boron neutron capture therapy (BNCT) system has been approved for specific cases covered by health insurance, and clinical trials for new cases in Japan are currently being conducted on other systems. Owing to the progress of accelerator-based BNCT, the operation of medical physics must be rendered more efficient. A water phantom is used for the quality assurance (QA) of the BNCT beam output procedure; however, a solid phantom is preferred for routine QA because of its ease of use. Additionally, because water phantoms cannot be readily used in some facilities owing to structural problems, solid phantoms are preferred for unified measurements at different facilities to compare beam outputs. In this study, we perform irradiation tests using an acrylic phantom and verify that an acrylic phantom can be used for QA. The distribution of thermal neutron flux and gamma-ray dose rate inside the acrylic phantom are evaluated through experiments and simulations. The results indicate that the acrylic phantom is suitable for routine QA and for comparing beam outputs among different systems. In the future, the same irradiation tests will be conducted at other facilities.
Collapse
Affiliation(s)
- Nishiki Matsubayashi
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Naonori Hu
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
- Kansai BNCT Medical Center, Educational Foundation of Osaka Medical and Pharmaceutical University, Daigakumachi, Takatsuki, Osaka 569-0801, Japan
| | - Takushi Takata
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Akinori Sasaki
- Kansai BNCT Medical Center, Educational Foundation of Osaka Medical and Pharmaceutical University, Daigakumachi, Takatsuki, Osaka 569-0801, Japan
| | - Hiroaki Kumada
- Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoshi Nakamura
- Division of Radiation Safety and Quality Assurance, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Akihiko Masuda
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hiroki Tanaka
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
3
|
Valceski M, Engels E, Vogel S, Paino J, Potter D, Hollis C, Khochaiche A, Barnes M, Cameron M, O'Keefe A, Roughley K, Rosenfeld A, Lerch M, Corde S, Tehei M. A novel approach to double-strand DNA break analysis through γ-H2AX confocal image quantification and bio-dosimetry. Sci Rep 2024; 14:27591. [PMID: 39528587 PMCID: PMC11554680 DOI: 10.1038/s41598-024-76683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
DNA damage occurs in all living cells. γ-H2AX imaging by fluorescent microscopy is widely used across disciplines in the analysis of double-strand break (DSB) DNA damage. Here we demonstrate a method for the quantitative analysis of such DBSs. Ionising radiation, well known to induce DSBs, is used in this demonstration, and additional DBSs are induced if high-Z nanoparticles are present during irradiation. As a deliberate test of the methodology, cells are exposed to a spatially fractionated ionising radiation field, characterised by regions of high and low absorbed radiation dose that are only ever qualitatively verified biologically via γ-H2AX imaging. Here we validate our bio-dosimetric quantification method using γ-H2AX assays in the assessment of DSB enhancement. Our method reliably quantifies DSB enhancement in cells when exposed to either a spatially contiguous or fractionated irradiation fields. Using the γ-H2AX assay, we deduce the biological dose response, and for the first time, demonstrate equivalence to the independently measured physical absorbed dose. Using our novel method, we are also able quantify the nanoparticle DSB enhancement at the cellular level, which is not possible using physical dose measurement techniques. Our method therefore provides a new paradigm in γ-H2AX image quantification of DSBs, as well as an independently validated bio-dosimetry technique.
Collapse
Affiliation(s)
- Michael Valceski
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Elette Engels
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Australian Synchrotron - Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Sarah Vogel
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jason Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Dylan Potter
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Carolyn Hollis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Abass Khochaiche
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Micah Barnes
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Matthew Cameron
- Australian Synchrotron - Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Alice O'Keefe
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Kiarn Roughley
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Stéphanie Corde
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Moeava Tehei
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
4
|
Bustillo JPO, Paino J, Barnes M, Cayley J, de Rover V, Cameron M, Engels EEM, Tehei M, Beirne S, Wallace GG, Rosenfeld AB, Lerch MLF. Design, construction, and dosimetry of 3D printed heterogeneous phantoms for synchrotron brain cancer radiation therapy quality assurance. Phys Med Biol 2024; 69:145003. [PMID: 38914107 DOI: 10.1088/1361-6560/ad5b48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
Objective.This study aims to design, manufacture, and test 3D printed quality assurance (QA) dosimetry phantoms for synchrotron brain cancer radiation therapy at the Australian synchrotron.Approach.Fabricated 3D printed phantoms from simple slab phantoms, a preclinical rat phantom, and an anthropomorphic head phantom were fabricated and characterized. Attenuation measurements of various polymers, ceramics and metals were acquired using synchrotron monochromatic micro-computed tomography (CT) imaging. Polylactic acid plus, VeroClear, Durable resin, and tricalcium phosphate were used in constructing the phantoms. Furthermore, 3D printed bone equivalent materials were compared relative to ICRU bone and hemihydrate plaster. Homogeneous and heterogeneous rat phantoms were designed and fabricated using tissue-equivalent materials. Geometric accuracy, CT imaging, and consistency were considered. Moreover, synchrotron broad-beam x-rays were delivered using a 3 Tesla superconducting multipole wiggler field for four sets of synchrotron radiation beam qualities. Dose measurements were acquired using a PinPoint ionization chamber and compared relative to a water phantom and a RMI457 Solid Water phantom. Experimental depth doses were compared relative to calculated doses using a Geant4 Monte Carlo simulation.Main results.Polylactic acid (PLA+) shows to have a good match with the attenuation coefficient of ICRU water, while both tricalcium phosphate and hydroxyapatite have good attenuation similarity with ICRU bone cortical. PLA+ material can be used as substitute to RMI457 slabs for reference dosimetry with a maximum difference of 1.84%. Percent depth dose measurement also shows that PLA+ has the best match with water and RMI457 within ±2.2% and ±1.6%, respectively. Overall, PLA+ phantoms match with RMI457 phantoms within ±3%.Significance and conclusion.The fabricated phantoms are excellent tissue equivalent equipment for synchrotron radiation dosimetry QA measurement. Both the rat and the anthropomorphic head phantoms are useful in synchrotron brain cancer radiotherapy dosimetry, experiments, and future clinical translation of synchrotron radiotherapy and imaging.
Collapse
Affiliation(s)
- John Paul O Bustillo
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila City 1000 Metro Manila, The Philippines
| | - Jason Paino
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Micah Barnes
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - James Cayley
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Vincent de Rover
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Matthew Cameron
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - Elette E M Engels
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - Moeava Tehei
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Stephen Beirne
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Bustillo JPO, Paino J, Barnes M, Cameron M, Rosenfeld AB, Lerch MLF. Characterization of selected additive manufacturing materials for synchrotron monochromatic imaging and broad-beam radiotherapy at the Australian synchrotron-imaging and medical beamline. Phys Med Biol 2024; 69:115055. [PMID: 38718813 DOI: 10.1088/1361-6560/ad48f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Objective.This study aims to characterize radiological properties of selected additive manufacturing (AM) materials utilizing both material extrusion and vat photopolymerization technologies. Monochromatic synchrotron x-ray images and synchrotron treatment beam dosimetry were acquired at the hutch 3B and 2B of the Australian Synchrotron-Imaging and Medical Beamline.Approach.Eight energies from 30 keV up to 65 keV were used to acquire the attenuation coefficients of the AM materials. Comparison of theoretical, and experimental attenuation data of AM materials and standard solid water for MV linac was performed. Broad-beam dosimetry experiment through attenuated dose measurement and a Geant4 Monte Carlo simulation were done for the studied materials to investigate its attenuation properties specific for a 4 tesla wiggler field with varying synchrotron radiation beam qualities.Main results.Polylactic acid (PLA) plus matches attenuation coefficients of both soft tissue and brain tissue, while acrylonitrile butadiene styrene, Acrylonitrile styrene acrylate, and Draft resin have close equivalence to adipose tissue. Lastly, PLA, co-polyester plus, thermoplastic polyurethane, and White resins are promising substitute materials for breast tissue. For broad-beam experiment and simulation, many of the studied materials were able to simulate RMI457 Solid Water and bolus within ±10% for the three synchrotron beam qualities. These results are useful in fabricating phantoms for synchrotron and other related medical radiation applications such as orthovoltage treatments.Significance and conclusion.These 3D printing materials were studied as potential substitutes for selected tissues such as breast tissue, adipose tissue, soft-tissue, and brain tissue useful in fabricating 3D printed phantoms for synchrotron imaging, therapy, and orthovoltage applications. Fabricating customizable heterogeneous anthropomorphic phantoms (e.g. breast, head, thorax) and pre-clinical animal phantoms (e.g. rodents, canine) for synchrotron imaging and radiotherapy using AM can be done based on the results of this study.
Collapse
Affiliation(s)
- John Paul O Bustillo
- Center for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila City 1000, Metro Manila, The Philippines
| | - Jason Paino
- Center for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Micah Barnes
- Center for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - Matthew Cameron
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - Anatoly B Rosenfeld
- Center for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Michael L F Lerch
- Center for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| |
Collapse
|
6
|
Uijtewaal P, Borman P, Cote B, LeChasseur Y, Therriault-Proulx F, Flores R, Smith S, Koenig G, Raaymakers B, Fast M. Performance characterization of a novel hybrid dosimetry insert for simultaneous spatial, temporal, and motion-included dosimetry for MR-linac. Med Phys 2024; 51:2983-2997. [PMID: 38088939 DOI: 10.1002/mp.16870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Several (online) adaptive radiotherapy procedures are available to maximize healthy tissue sparing in the presence of inter/intrafractional motion during stereotactic body radiotherapy (SBRT) on an MR-linac. The increased treatment complexity and the motion-delivery interplay during these treatments require MR-compatible motion phantoms with time-resolved dosimeters to validate end-to-end workflows. This is not possible with currently available phantoms. PURPOSE Here, we demonstrate a new commercial hybrid film-scintillator cassette, combining high spatial resolution radiochromic film with four time-resolved plastic scintillator dosimeters (PSDs) in an MRI-compatible motion phantom. METHODS First, the PSD's performance for consistency, dose linearity, and pulse repetition frequency (PRF) dependence was evaluated using an RW3 solid water slab phantom. We then demonstrated the MRI4D scintillator cassette's suitability for time-resolved and motion-included quality assurance for adapt-to-shape (ATS), trailing, gating, and multileaf collimator (MLC) tracking adaptations on a 1.5 T MR-linac. To do this, the cassette was inserted into the Quasar MRI4D phantom, which we used statically or programmed with artificial and patient-derived motion. Simultaneously with dose measurements, the beam-gating latency was estimated from the time difference between the target entering/leaving the gating window and the beam-on/off times derived from the time-resolved dose measurements. RESULTS Experiments revealed excellent detector consistency (standard deviation ≤ $\le$ 0.6%), dose linearity (R2 = 1), and only very low PRF dependence ( ≤ $\le$ 0.4%). The dosimetry cassette demonstrated a near-perfect agreement during an ATS workflow between the time-resolved PSD and treatment planning system (TPS) dose (0%-2%). The high spatial resolution film measurements confirmed this with a 1%/1-mm local gamma pass-rate of 90%. When trailing patient-derived prostate motion for a prostate SBRT delivery, the time-resolved cassette measurements demonstrated how trailing mitigated the motion-induced dose reductions from 1%-17% to 1%-2% compared to TPS dose. The cassette's simultaneously measured spatial dose distribution highlighted the dosimetric gain of trailing by improving the 3%/3-mm local gamma pass-rates from 80% to 97% compared to the static dose. Similarly, the cassette demonstrated the benefit of real-time adaptations when compensating patient-derived respiratory motion by showing how the TPS dose was restored from 2%-56% to 0%-12% (gating) and 1%-26% to 1%-7% (MLC tracking) differences. Larger differences are explainable by TPS-PSD coregistration uncertainty combined with a steep dose gradient outside the PTV. The cassette also demonstrated how the spatial dose distributions were drastically improved by the real-time adaptations with 1%/1-mm local gamma pass-rates that were increased from 8 to 79% (gating) and from 35 to 89% (MLC tracking). The cassette-determined beam-gating latency agreed within ≤ $\le$ 12 ms with the ground truth latency measurement. Film and PSD dose agreed well for most cases (differences relative to TPS dose < $<$ 4%), while film-PSD coregistration uncertainty caused relative differences of 5%-8%. CONCLUSIONS This study demonstrates the excellent suitability of a new commercial hybrid film-scintillator cassette for simultaneous spatial, temporal, and motion-included dosimetry.
Collapse
Affiliation(s)
- Prescilla Uijtewaal
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pim Borman
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Colson D, Blommaert J, Poels K, De Saint-Hubert M, Reniers B, Depuydt T. Extended in-field and out-of-field validation of a compact Monte Carlo model of an IBA PROTEUS ®ONE proton beam in TOPAS/GEANT4. Phys Med Biol 2023; 68:21NT02. [PMID: 37844576 DOI: 10.1088/1361-6560/ad03a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
Objective:This study evaluates a compact Monte Carlo (MC) model of a pencil beam scanning clinical proton beam using TOPAS to estimate the dose out-of-field (OOF). Compact modelling means that the model starts from a pristine proton beam at the nozzle exit, customised based on acceptance and commissioning data, instead of modelling the full treatment head and room.Approach: First, in-field validation tests were performed. Then, the OOF dose was validated in an RW3 phantom with bubble detectors for personal neutron dosimetry (measuring the neutron dose equivalent) and thermoluminiescent detectors (measuring the absorbed dose by protons and gammas). Measurements were performed at 15 and 35 cm from the distal edge of the field for five different irradiation plans, covering different beam orientations, proton energies and a 40 mm range shifter. TOPAS simulations were performed with QGSP Binary Cascade HP (BIC) and QGSP Bertini HP (Bertini) hadron physics lists.Main results: In-field validation shows that MC simulations agree with point dose measurements within -2.5 % and +1.5 % at locations on- and off-axis and before, in and after the Bragg peak or plateau. The gamma passing rate 2%/3mm of four simulated treatment plans compared to the dose distribution calculated by the TPS exceeds 97 % agreement score. OOF dose simulations showed an average overestimation of 27 % of the neutron dose equivalent for the BIC hadron physics list and an average underestimation of 20 % for the Bertini hadron physics list. The simulated absorbed dose of protons and gammas showed a systematic underestimation which was on average 21 % and 51 % for BIC and Bertini respectively.Significance: Our study demonstrates that a compact MC model can reliably produce in-field data, while out-of-field dose data are within the uncertainties of the detector systems and MC simulations nuclear models, and do so with shorter modelling and faster calculation time.
Collapse
Affiliation(s)
- Dries Colson
- Hasselt University, Faculty of Engineering Technology - Nuclear Technology (NuTeC), Hasselt, Belgium
| | | | - Kenneth Poels
- University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Marijke De Saint-Hubert
- Belgian Nuclear Research Centre (SCK CEN), Research in Dosimetric Applications, Mol, Belgium
| | - Brigitte Reniers
- Hasselt University, Faculty of Engineering Technology - Nuclear Technology (NuTeC), Hasselt, Belgium
| | - Tom Depuydt
- KU Leuven, department of Oncology, Leuven, Belgium
- University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|
8
|
Kim KT, Choi Y, Cho GS, Jang WI, Yang KM, Lee SS, Bahng J. Evaluation of the water-equivalent characteristics of the SP34 plastic phantom for film dosimetry in a clinical linear accelerator. PLoS One 2023; 18:e0293191. [PMID: 37871021 PMCID: PMC10593237 DOI: 10.1371/journal.pone.0293191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
In this study, some confusing points about electron film dosimetry using white polystyrene suggested by international protocols were verified using a clinical linear accelerator (LINAC). According to international protocol recommendations, ionometric measurements and film dosimetry were performed on an SP34 slab phantom at various electron energies. Scaling factor analysis using ionometric measurements yielded a depth scaling factor of 0.923 and a fluence scaling factor of 1.019 at an electron beam energy of <10 MeV (i.e., R50 < 4.0 g/cm2). It was confirmed that the water-equivalent characteristics were similar because they have values similar to white polystyrene (i.e., depth scaling factor of 0.922 and fluence scaling factor of 1.019) presented in international protocols. Furthermore, percentage depth dose (PDD) curve analysis using film dosimetry showed that when the density thickness of the SP34 slab phantom was assumed to be water-equivalent, it was found to be most similar to the PDD curve measured using an ionization chamber in water as a reference medium. Therefore, we proved that the international protocol recommendation that no correction for measured depth dose is required means that no scaling factor correction for the plastic phantom is necessary. This study confirmed two confusing points that could occur while determining beam characteristics using electron film dosimetry, and it is expected to be used as basic data for future research on clinical LINACs.
Collapse
Affiliation(s)
- Kyo-Tae Kim
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
- Research and Development team, Radexel Inc., Seoul, Korea
| | - Yona Choi
- Department of Accelerator Science, Korea University Sejong Campus, Sejong, Korea
| | - Gyu-Seok Cho
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Won-Il Jang
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Kwang-Mo Yang
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Soon-Sung Lee
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jungbae Bahng
- Research and Development team, Radexel Inc., Seoul, Korea
- Department of Radiation Oncology, Kangwon National University hospital, Chun-cheon, Korea
| |
Collapse
|
9
|
Comparison of the dosimetric response of two Sr salts irradiated with 60Co γ-rays and synchrotron X-rays at ultra-high dose rate. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
10
|
Baghani HR, Andreoli S, Robatjazi M. On the measurement of scaling factors in the RW3 plastic phantom during high energy electron beam dosimetry. Phys Eng Sci Med 2023; 46:185-195. [PMID: 36593380 DOI: 10.1007/s13246-022-01209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/05/2022] [Indexed: 01/04/2023]
Abstract
Ionometric electron dosimetry inside water-equivalent plastic phantoms demands special considerations including determination of depth scaling and fluence scaling factors (cpl and hpl) to shift from in-phantom measurements to those relevant to water. This study evaluates these scaling factors for RW3 slab phantom and also introduces a new coefficient, k(RW3), for direct conversion from RW3 measurements to water without involving scaling factors. The RW3 solid phantom developed by the PTW Company was used and the corresponding scaling factors including cpl, hpl, and k(RW3) were measured for conventional electron energies of 4, 6, 9, 12, and 16 MeV. Separate measurements were performed in water and the RW3 slab phantom using the Advanced Markus chamber. The validity of the reported scaling factors was confirmed by comparing the direct and indirect percentage depth dose (PDD) measurements in water and in the RW3 phantom. The cpl values for the RW3 phantom were respectively equal to 0.915, 0.927, 0.934, 0.937, and 0.937 for 4, 6, 9, 12, and 16 MeV electron energies. The hpl and k(RW3) values were dependent on the depth of investigation and electron energy. Application of the cpl-hpl factors and k(RW3) coefficients to measured data inside the RW3 can reliably reproduce the measured PDD curves in water. The mean difference between the PDDs measured directly and indirectly in water and in the RW3 phantom was less than 1.2% in both approaches for PDD conversion (cpl-hpl coupling and the use of k(RW3)). The measured scaling factors and k(RW3) coefficients are sufficiently relevant to mimic water-based dosimetry results through indirect measurements inside the RW3 slab phantom. Nevertheless, employing k(RW3) is more straightforward than the cpl-hpl approach because it does not involve scaling and it is also less time-consuming.
Collapse
Affiliation(s)
| | | | - Mostafa Robatjazi
- Medical Physics and Radiological Sciences Department, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
11
|
Zuber SH, Abdul Hadi MFR, Hashikin NAA, Yusof MFM, Aziz MZA, Hashim R, Oluwafemi SD, Isa NM. Estimation of linear and mass attenuation coefficients of soy-lignin bonded Rhizophora spp. particleboard as a potential phantom material using caesium-137 and cobalt-60. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:435-443. [PMID: 35776166 DOI: 10.1007/s00411-022-00978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, linear and mass attenuation coefficients of fabricated particleboards intended for use as phantom material were estimated using 137Cs and 60Co radiation sources. Particleboards made of Rhizophora spp. wood trunk bonded with soy flour and lignin were fabricated at a target density of 1.0 g cm-3, with and without gloss finish coating. Elemental composition of the particleboards was obtained by means of energy dispersive X-ray (EDX) spectroscopy. Experimental setups were simulated via the GATE Monte Carlo (MC) package, with particle histories of 1 × 106-1 × 107. Linear and mass attenuation coefficients obtained from measurements and GATE simulations were compared and discussed. The percentage differences between the measured and simulated linear and mass attenuation coefficients of the samples were reasonably small (2.05-4.88% for 137Cs and 3.24-5.38% for 60Co). It is shown that all the particleboards have the potential to be used as phantom materials as the attenuation coefficients measured were in good agreement with those of water (calculated with XCOM) and with those simulated with the GATE toolkit. The use of gloss finish coating also did not show any significant effect on the attenuation coefficient of the phantom material. Verification of experimental results via GATE simulations has been shown crucial in providing reliable data for energy transmission studies. Based on the results achieved in this study, it is concluded that the studied material-Rhizophora spp. wood trunk bonded with soy flour and lignin including gloss finish coating-can be used in radiation dosimetry studies.
Collapse
Affiliation(s)
- Siti Hajar Zuber
- School of Physics, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | | | | | - Mohd Fahmi Mohd Yusof
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Zahri Abdul Aziz
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Bertam, Penang, Malaysia
| | - Rokiah Hashim
- School of Industrial Technology, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | | | - Norriza Mohd Isa
- Medical Physics and Secondary Dosimetry Laboratory, Malaysian Nuclear Agency, 43000, Bangi, Selangor, Malaysia
| |
Collapse
|
12
|
Davis J, Dipuglia A, Cameron M, Paino J, Cullen A, Guatelli S, Petasecca M, Rosenfeld A, Lerch M. Evaluation of silicon strip detectors in transmission mode for online beam monitoring in microbeam radiation therapy at the Australian Synchrotron. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:125-137. [PMID: 34985430 PMCID: PMC8733993 DOI: 10.1107/s1600577521011140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/24/2021] [Indexed: 06/14/2023]
Abstract
Successful transition of synchrotron-based microbeam radiation therapy (MRT) from pre-clinical animal studies to human trials is dependent upon ensuring that there are sufficient and adequate measures in place for quality assurance purposes. Transmission detectors provide researchers and clinicians with a real-time quality assurance and beam-monitoring instrument to ensure safe and accurate dose delivery. In this work, the effect of transmission detectors of different thicknesses (10 and 375 µm) upon the photon energy spectra and dose deposition of spatially fractionated synchrotron radiation is quantified experimentally and by means of a dedicated Geant4 simulation study. The simulation and experimental results confirm that the presence of the 375 µm thick transmission detector results in an approximately 1-6% decrease in broad-beam and microbeam peak dose. The capability to account for the reduction in dose and change to the peak-to-valley dose ratio justifies the use of transmission detectors as thick as 375 µm in MRT provided that treatment planning systems are able to account for their presence. The simulation and experimental results confirm that the presence of the 10 µm thick transmission detector shows a negligible impact (<0.5%) on the photon energy spectra, dose delivery and microbeam structure for both broad-beam and microbeam cases. Whilst the use of 375 µm thick detectors would certainly be appropriate, based upon the idea of best practice the authors recommend that 10 µm thick transmission detectors of this sort be utilized as a real-time quality assurance and beam-monitoring tool during MRT.
Collapse
Affiliation(s)
- Jeremy Davis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Andrew Dipuglia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Matthew Cameron
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Jason Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ashley Cullen
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
13
|
Pimenta EB, Nogueira LB, de Campos TPR. Dose measurements in a thorax phantom at 3DCRT breast radiation therapy. ACTA ACUST UNITED AC 2021; 26:242-250. [PMID: 34211775 DOI: 10.5603/rpor.a2021.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/04/2021] [Indexed: 11/25/2022]
Abstract
Background The anthropomorphic and anthropometric phantom developed by the research group NRI (Núcleo de Radiações Ionizantes) can reproduce the effects of the interactions of radiation occurring in the human body. The whole internal radiation transport phenomena can be depicted by film dosimeters in breast RT. Our goal was to provide a dosimetric comparison of a radiation therapy (RT) plan in a 4MV 3D-conformal RT (4MV-3DCR T) and experimental data measured in a breast phantom. Materials and methods The RT modality was two parallel opposing fields for the left breast with a prescribed dose of 2.0 Gy in 25 fractions. The therapy planning system (TPS) was performed on CA T3D software. The dose readings at points of interest (POI) pre-established in TPS were recorded. An anthropometric thorax-phantom with removal breast was used. EBT2 radiochromic films were inserted into the ipisilateral breast, contralateral breast, lungs, heart and skin. The irradiation was carried out on 4/80 Varian linear accelerator at 4MV. Results The mean dose at the OAR's presented statistically significant differences (p < 0.001) of 34.24%, 37.96% and 63.47% for ipsilateral lung, contralateral lung, and heart, respectively. The films placed at the skin-surface interface in the ipsilateral breast also showed statistically significant differences (p < 0.001) of 16.43%, -10.16%, -14.79% and 15.67% in the four quadrants, respectively. In contrast, the PTV dosimeters, representative of the left breast volume, encompassed by the electronic equilibrium, presented a non-significant difference with TPS, p = 0.20 and p = 0.90. Conclusion There was a non-significant difference of doses in PTV with electronic equilibrium; although no match is achieved outside electronic equilibrium.
Collapse
Affiliation(s)
- Elsa Bifano Pimenta
- Department of Nuclear Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
14
|
Shaiju VS, Kumar R, Phani D, Rajasekhar KV, Zacharia G, Bhasi S, Nair RK. Design, Fabrication, and Validation of a Polymethyl Methacrylate Head Phantom for Dosimetric Verification of Cranial Radiotherapy Treatment Plans. J Med Phys 2020; 45:66-70. [PMID: 32831488 PMCID: PMC7416869 DOI: 10.4103/jmp.jmp_21_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose: The present study aims to design and fabricate a novel, versatile, and cost-effective Polymethyl Methacrylate (PMMA) head phantom for the dosimetric pretreatment verification of radiotherapy (RT) treatment plans. Materials and Methods: The head phantom designing involves slice-wise modeling of an adult head using PMMA. The phantom has provisions to hold detectors such as ionization chambers of different sizes, Gafchromic films, gel dosimeter, and optically stimulated luminescence dosimeter. For the point dose verification purpose, 15 volumetric modulated arc therapy patient plans were selected, and doses were measured using a CC13 ionization chamber. The percentage gamma passing rate was calculated for acceptance criteria 3%/3 mm and 2%/2 mm using OmniPro I’mRT film QA software, and Gafchromic EBT3 films were used for 2D planar dose verification. Results: Treatment planning system calculated, and the measured point doses showed a percentage deviation ranged from 0.26 to 1.92. The planar dose fluence measurements, for set acceptance criteria of 3%/3 mm and 2%/2 mm, percentages of points having gamma value <1 were in the range of 99.17 ± 0.25 to 99.88 ± 0.15 and 93.16 ± 0.38 to 98.89 ± 0.23, respectively. Measured dose verification indices were within the acceptable limit. Conclusions: The dosimetric study reveals that head phantom can be used for routine pretreatment verification for the cranial RT, especially for stereotactic radiosurgery/RT as a part of patient-specific quality assurance. The presently fabricated and validated phantom is novel, versatile, and cost-effective, and many institutes can afford it.
Collapse
Affiliation(s)
- V S Shaiju
- Department of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Rajesh Kumar
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Debjani Phani
- Department of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - K V Rajasekhar
- Department of Radio Diagnosis (Head), Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - George Zacharia
- Department of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Saju Bhasi
- Department of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Raghuram K Nair
- Department of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
15
|
Toward personalized synchrotron microbeam radiation therapy. Sci Rep 2020; 10:8833. [PMID: 32483249 PMCID: PMC7264143 DOI: 10.1038/s41598-020-65729-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Synchrotron facilities produce ultra-high dose rate X-rays that can be used for selective cancer treatment when combined with micron-sized beams. Synchrotron microbeam radiation therapy (MRT) has been shown to inhibit cancer growth in small animals, whilst preserving healthy tissue function. However, the underlying mechanisms that produce successful MRT outcomes are not well understood, either in vitro or in vivo. This study provides new insights into the relationships between dosimetry, radiation transport simulations, in vitro cell response, and pre-clinical brain cancer survival using intracerebral gliosarcoma (9LGS) bearing rats. As part of this ground-breaking research, a new image-guided MRT technique was implemented for accurate tumor targeting combined with a pioneering assessment of tumor dose-coverage; an essential parameter for clinical radiotherapy. Based on the results of our study, we can now (for the first time) present clear and reproducible relationships between the in vitro cell response, tumor dose-volume coverage and survival post MRT irradiation of an aggressive and radioresistant brain cancer in a rodent model. Our innovative and interdisciplinary approach is illustrated by the results of the first long-term MRT pre-clinical trial in Australia. Implementing personalized synchrotron MRT for brain cancer treatment will advance this international research effort towards clinical trials.
Collapse
|
16
|
A comparative dosimetry study of an alanine dosimeter with a PTW PinPoint chamber at ultra-high dose rates of synchrotron radiation. Phys Med 2020; 71:161-167. [DOI: 10.1016/j.ejmp.2020.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 01/01/2023] Open
|
17
|
Dipuglia A, Cameron M, Davis JA, Cornelius IM, Stevenson AW, Rosenfeld AB, Petasecca M, Corde S, Guatelli S, Lerch MLF. Validation of a Monte Carlo simulation for Microbeam Radiation Therapy on the Imaging and Medical Beamline at the Australian Synchrotron. Sci Rep 2019; 9:17696. [PMID: 31776395 PMCID: PMC6881291 DOI: 10.1038/s41598-019-53991-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023] Open
Abstract
Microbeam Radiation Therapy (MRT) is an emerging cancer treatment modality characterised by the use of high-intensity synchrotron-generated x-rays, spatially fractionated by a multi-slit collimator (MSC), to ablate target tumours. The implementation of an accurate treatment planning system, coupled with simulation tools that allow for independent verification of calculated dose distributions are required to ensure optimal treatment outcomes via reliable dose delivery. In this article we present data from the first Geant4 Monte Carlo radiation transport model of the Imaging and Medical Beamline at the Australian Synchrotron. We have developed the model for use as an independent verification tool for experiments in one of three MRT delivery rooms and therefore compare simulation results with equivalent experimental data. The normalised x-ray spectra produced by the Geant4 model and a previously validated analytical model, SPEC, showed very good agreement using wiggler magnetic field strengths of 2 and 3 T. However, the validity of absolute photon flux at the plane of the Phase Space File (PSF) for a fixed number of simulated electrons was unable to be established. This work shows a possible limitation of the G4SynchrotronRadiation process to model synchrotron radiation when using a variable magnetic field. To account for this limitation, experimentally derived normalisation factors for each wiggler field strength determined under reference conditions were implemented. Experimentally measured broadbeam and microbeam dose distributions within a Gammex RMI457 Solid Water® phantom were compared to simulated distributions generated by the Geant4 model. Simulated and measured broadbeam dose distributions agreed within 3% for all investigated configurations and measured depths. Agreement between the simulated and measured microbeam dose distributions agreed within 5% for all investigated configurations and measured depths.
Collapse
Affiliation(s)
- Andrew Dipuglia
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Matthew Cameron
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Jeremy A Davis
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Iwan M Cornelius
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Andrew W Stevenson
- CSIRO, Clayton, 3168, Australia
- Imaging and Medical Beamline, ANSTO/Australian Synchrotron, Melbourne, 3168, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Marco Petasecca
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Stéphanie Corde
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
- Department of Radiation Oncology, Prince of Wales Hospital, Randwick, 2031, Australia
| | - Susanna Guatelli
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia
| | - Michael L F Lerch
- Centre for Medical and Radiation Physics, University of Wollongong, Wollongong, 2522, Australia.
| |
Collapse
|
18
|
First experimental measurement of the effect of cardio‐synchronous brain motion on the dose distribution during microbeam radiation therapy. Med Phys 2019; 47:213-222. [DOI: 10.1002/mp.13899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/16/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023] Open
|
19
|
Spiga J, Pellicioli P, Manger SP, Duffy JA, Bravin A. Experimental benchmarking of Monte Carlo simulations for radiotherapy dosimetry using monochromatic X-ray beams in the presence of metal-based compounds. Phys Med 2019; 66:45-54. [DOI: 10.1016/j.ejmp.2019.09.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/03/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022] Open
|
20
|
Film dosimetry studies for patient specific quality assurance in microbeam radiation therapy. Phys Med 2019; 65:227-237. [DOI: 10.1016/j.ejmp.2019.09.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 09/05/2019] [Indexed: 11/21/2022] Open
|
21
|
Luthjens LH, Yao T, Warman JM. A Polymer-Gel Eye-Phantom for 3D Fluorescent Imaging of Millimetre Radiation Beams. Polymers (Basel) 2018; 10:E1195. [PMID: 30961120 PMCID: PMC6290594 DOI: 10.3390/polym10111195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022] Open
Abstract
We have filled a 24 mm diameter glass sphere with a transparent polymer-gel that is radio-fluorogenic, i.e., it becomes (permanently) fluorescent when irradiated, with an intensity proportional to the local dose deposited. The gel consists of >99.9% tertiary-butyl acrylate (TBA), pre-polymerized to ~15% conversion, and ~100 ppm maleimido-pyrene (MPy). Its dimensions and physical properties are close to those of the vitreous body of the human eye. We have irradiated the gel with a 3 mm diameter, 200 kVp X-ray beam with a dose rate of ~1 Gy/min. A three-dimensional (3D) (video) view of the beam within the gel has been constructed from tomographic images obtained by scanning the sample through a thin sheet of UV light. To minimize optical artefacts, the cell was immersed in a square tank containing a refractive-index-matching medium. The 20⁻80% penumbra of the beam was determined to be ~0.4 mm. This research was a preparatory investigation of the possibility of using this method to monitor the millimetre diameter proton pencil beams used in ocular radiotherapy.
Collapse
Affiliation(s)
- Leonard H Luthjens
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Section Radiation and Isotopes for Health, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - Tiantian Yao
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Section Radiation and Isotopes for Health, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - John M Warman
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, Section Radiation and Isotopes for Health, Mekelweg 15, 2629 JB Delft, The Netherlands.
| |
Collapse
|
22
|
Davis JA, Paino JR, Dipuglia A, Cameron M, Siegele R, Pastuovic Z, Petasecca M, Perevertaylo VL, Rosenfeld AB, Lerch MLF. Characterisation and evaluation of a PNP strip detector for synchrotron microbeam radiation therapy. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab10c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Archer J, Li E, Petasecca M, Stevenson A, Livingstone J, Dipuglia A, Davis J, Rosenfeld A, Lerch M. Synchrotron X-ray microbeam dosimetry with a 20 micrometre resolution scintillator fibre-optic dosimeter. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:826-832. [PMID: 29714194 DOI: 10.1107/s1600577518003016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
Cancer is one of the leading causes of death worldwide. External beam radiation therapy is one of the most important modalities for the treatment of cancers. Synchrotron microbeam radiation therapy (MRT) is a novel pre-clinical therapy that uses highly spatially fractionated X-ray beams to target tumours, allowing doses much higher than conventional radiotherapies to be delivered. A dosimeter with a high spatial resolution is required to provide the appropriate quality assurance for MRT. This work presents a plastic scintillator fibre optic dosimeter with a one-dimensional spatial resolution of 20 µm, an improvement on the dosimeter with a resolution of 50 µm that was demonstrated in previous work. The ability of this probe to resolve microbeams of width 50 µm has been demonstrated. The major limitations of this method were identified, most notably the low-light signal resulting from the small sensitive volume, which made valley dose measurements very challenging. A titanium-based reflective paint was used as a coating on the probe to improve the light collection, but a possible effect of the high-Z material on the probes water-equivalence has been identified. The effect of the reflective paint was a 28.5 ± 4.6% increase in the total light collected; it did not affect the shape of the depth-dose profile, nor did it explain an over-response observed when used to probe at low depths, when compared with an ionization chamber. With improvements to the data acquisition, this probe design has the potential to provide a water-equivalent, inexpensive dosimetry tool for MRT.
Collapse
Affiliation(s)
- James Archer
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Enbang Li
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Andrew Stevenson
- Imaging and Medical Beam-Line, Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Jayde Livingstone
- Imaging and Medical Beam-Line, Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Andrew Dipuglia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jeremy Davis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|