1
|
Maugeri L, Jankovski A, Malucelli E, Mangini F, Vandeweerd JM, Gilloteaux J, De Swert K, Brun F, Begani Provinciali G, DiNuzzo M, Mittone A, Bravin A, Gigli G, Giove F, Cedola A, Nicaise C, Fratini M. Lesion extension and neuronal loss following spinal cord injury using X-ray phase-contrast tomography in mice. J Neurotrauma 2022; 40:939-951. [PMID: 36074949 DOI: 10.1089/neu.2021.0451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Following a spinal cord injury (SCI) the degree of functional (motor, autonomous or sensory) correlates with the severity of nervous tissue disruption. An imaging technique able to capture non-invasively and simultaneously the complex mechanisms of neuronal loss, vascular damages and perilesional tissue reorganization is currently lacking in experimental SCI studies. Synchrotron X-ray phase-contrast Tomography (SXPCT) has emerged as a non-destructive 3D neuroimaging technique with high contrast and spatial resolution. In this framework, we developed a multimodal approach combining SXPCT, histology and correlative methods to study neuro-vascular architecture in normal and C4-contused mouse spinal cords (C57BL/6J mice, age 2-3 months). The evolution of SCI lesion was imaged at the cell resolution level during the acute (30 minutes) and subacute (7 days) phases. Spared motor neurons were segmented and quantified in different volumes localized at and away from the epicenter. SXPCT was able to capture neuronal loss and blood-brain barrier breakdown following SCI. 3D quantification based on SXPCT acquisitions showed no additional motor neuron loss between 30 minutes and 7 days post-SCI. In addition, the analysis of hemorrhagic (at 30 minutes) and lesion (at 7 days) volumes revealed a high similarity in size, suggesting no extension of tissue degeneration between early and later time points. Moreover, glial scar borders were unevenly distributed, with rostral edges being the most extended. In conclusion, SXPCT capability to image at high-resolution cellular changes in 3D enables understanding the relationship between hemorrhagic events and nervous structure damages in SCI.
Collapse
Affiliation(s)
- Laura Maugeri
- CNR NANOTEC, Lecce, Lecce, Italy.,Santa Lucia Foundation, Roma, Lazio, Italy;
| | - Aleksandar Jankovski
- Université catholique de Louvain, Institute of NeuroScience (IoNS), NEUR division, Brussels, Walloon Brabant, Belgium.,Universite catholique de Louvain, Department of Neurosurgery, CHU UCL Namur, Yvoir, Walloon Brabant, Belgium;
| | - Emil Malucelli
- University of Bologna, Department of Pharmacy and Biotechnology, Bologna, Emilia-Romagna, Italy;
| | | | | | - Jacques Gilloteaux
- Universite de Namur, URPhyM - NARILIS, Namur, Belgium.,St George's University School of Medicine, Department of Anatomical Sciences, St George's, St George's, Grenada;
| | | | - Francesco Brun
- University of Trieste, Department of Engineering and Architecture, Trieste, Friuli-Venezia Giulia, Italy;
| | - Ginevra Begani Provinciali
- Istituto di Nanotecnologia Consiglio Nazionale delle Ricerche Sede di Roma , Rome, Italy.,Laboratoire d'Optique Appliquee, Palaiseau, Île-de-France, France;
| | | | - Alberto Mittone
- Consorcio para la Construccion Equipamiento y Explotacion del Laboratorio de Luz Sincrotron, Barcelona, Catalunya, Spain;
| | - Alberto Bravin
- Università degli Studi di Milano-Bicocca Facoltà di Scienze Matematiche Fisiche e Naturali, Dipartimento di Fisica U2 , Milano, Lombardia, Italy.,European Synchrotron Radiation Facility, Grenoble, Rhône-Alpes , France;
| | | | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Lazio, Italy;
| | - Alessia Cedola
- Istituto di Nanotecnologia Consiglio Nazionale delle Ricerche Sede di Roma , Rome, Italy;
| | | | - Michela Fratini
- Istituto di Nanotecnologia Consiglio Nazionale delle Ricerche Sede di Roma , Rome, Rome, Italy.,Santa Lucia Foundation, NEUROIMAGE, Roma, RM, Italy;
| |
Collapse
|
2
|
Tang R, Li Y, Qin L, Yan F, Yang GY, Chen KM. Phase retrieval-based phase-contrast CT for vascular imaging with microbubble contrast agent. Med Phys 2021; 48:3459-3469. [PMID: 33657645 DOI: 10.1002/mp.14819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The introduction of microbubble contrast agent into tissues can create significant phase shifts. Phase retrieval (PR)-based phase-contrast computed tomography (PCCT) is an imaging method for retrieving and reconstructing the phase shifts within an object. This study aimed to evaluate the feasibility of PR-based PCCT with microbubble contrast agent for vascular imaging. METHODS Projection phase-contrast images of individual microbubbles and a cluster of microbubbles were captured and compared. Contrast enhancement from microbubbles was evaluated by comparing to the gold standard iodine-based contrast agent in vitro. The arterial systems of 14 Sprague-Dawley rats were perfused with microbubbles or saline. The rat hearts and the arterial systems were excised and imaged ex vivo. CT imaging was performed at the energy of 22 keV. PR was performed using the phase-attenuation duality (PAD) method with different δ/β values (PAD property). The contrast-to-noise ratio (CNR) was used for quantitatively assessing the contrast enhancement. RESULTS Individual microbubbles functioned as a lens to focus the x rays, whereas, a cluster of microbubbles scattered the x rays. In the in vitro experiment, the contrast enhancement from iodine was significantly greater than that from microbubbles (P < 0.05). In the heart samples, the CNRs for microbubbles on PR-based PCCT were significantly greater than those on absorption-contrast CT (ACCT) and PR-free PCCT (both P < 0.001). The CNRs for microbubbles were also significantly greater than those for saline on PR-based PCCT in the samples (P < 0.001). Although they provided weaker contrast enhancement than that from iodine, microbubbles could still provide sufficient contrast enhancement to clearly show the 3D architecture of rat aortas and their main branches. CONCLUSION The imaging modality can currently be used as a complement or alternative to absorption-based microCT for imaging vessels in biological samples.
Collapse
Affiliation(s)
- Rongbiao Tang
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Le Qin
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ke-Min Chen
- Department of Radiology, Rui Jin Hospital, Shanghai Jiao Tong University, and School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Bighinati A, Khalajzeyqami Z, Baldassarro VA, Lorenzini L, Cescatti M, Moretti M, Giardino L, Calzà L. Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury-A Data-Driven Approach. Int J Mol Sci 2021; 22:ijms22041744. [PMID: 33572341 PMCID: PMC7916102 DOI: 10.3390/ijms22041744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the “core” area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury.
Collapse
Affiliation(s)
- Andrea Bighinati
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Zahra Khalajzeyqami
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Vito Antonio Baldassarro
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Luca Lorenzini
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
| | - Maura Cescatti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Marzia Moretti
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
| | - Luciana Giardino
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (L.L.); (L.G.)
- Fondazione IRET, Ozzano dell’Emilia, 40064 Bologna, Italy; (Z.K.); (M.C.); (M.M.)
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Laura Calzà
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Montecatone Rehabilitation Institute, 40026 Imola (BO), Italy
- Correspondence:
| |
Collapse
|
4
|
Farrag M, Pukale DD, Leipzig ND. Micro-computed tomography utility for estimation of intraparenchymal spinal cord cystic lesions in small animals. Neural Regen Res 2021; 16:2293-2298. [PMID: 33818515 PMCID: PMC8354136 DOI: 10.4103/1673-5374.310690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Precise assessment of spinal cord cystic lesions is crucial to formulate effective therapeutic strategies, yet histological assessment of the lesion remains the primary method despite numerous studies showing inconsistent results regarding estimation of lesion size via histology. On the other hand, despite numerous advances in micro-computed tomography (micro-CT) imaging and analysis that have allowed precise measurements of lesion size, there is not enough published data on its application to estimate intraspinal lesion size in laboratory animal models. This work attempts to show that micro-CT can be valuable for spinal cord injury research by demonstrating accurate estimation of syrinx size and compares between micro-CT and traditional histological analysis. We used a post-traumatic syringomyelia rat model to compare micro-CT analysis to conventional histological analysis. The study showed that micro-CT can detect lesions within the spinal cord very similar to histology. Importantly, micro-CT appears to provide more accurate estimates of the lesions with more measures (e.g., surface area), can detect compounds within the cord, and can be done with the tissue of interest (spinal cord) intact. In summary, the experimental work presented here provides one of the first investigations of the use of micro-CT for estimating the size of intraparenchymal cysts and detecting materials within the spinal cord. All animal procedures were approved by the University of Akron Institutional Animal Care and Use Committee (IACUC) (protocol # LRE 16-05-09 approved on May 14, 2016).
Collapse
Affiliation(s)
- Mahmoud Farrag
- Integrated Bioscience Program, The University of Akron, Akron, OH, USA
| | - Dipak D Pukale
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, USA
| | - Nic D Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, Integrated Bioscience Program, The University of Akron, Akron, OH, USA
| |
Collapse
|
5
|
Chronic extradural compression of spinal cord leads to syringomyelia in rat model. Fluids Barriers CNS 2020; 17:50. [PMID: 32736591 PMCID: PMC7393857 DOI: 10.1186/s12987-020-00213-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022] Open
Abstract
Background Syringomyelia is a common spinal cord lesion. However, whether CSF blockage is linked to the formation and enlargement of syringomyelia is still controversial. The current model of syringomyelia needs modification to more closely mimic the clinical situation. Methods We placed cotton strips under the T13 lamina of 40 8-week-old rats and blocked CSF flow by extradural compression. After 4 and 8 weeks, MRI was performed to evaluate the morphology of syringomyelia and the ratio of spinal cord diameter to syrinx diameter calculated. Locomotor function was evaluated weekly. Spinal cord sections, staining and immunohistochemistry were performed 8 weeks after surgery, the ratio of the central canal to the spinal cord area was calculated, and ependymal cells were counted. In another experiment, we performed decompression surgery for 8 rats with induced syringomyelia at the 8th week after surgery. During the surgery, the cotton strip was completely removed without damaging the dura mater. Then, the rats received MRI imaging during the following weeks and were sacrificed for pathological examination at the end of the experiment. Results Syringomyelia formed in 82.5% (33/40) of rats at the 8-week follow-up. The Basso, Beattie and Bresnahan (BBB) scores of rats in the experimental group decreased from 21.0±0.0 to 18.0 ±3.9 in the first week after operation but returned to normal in later weeks. The BBB score indicated that the locomotor deficit caused by compression is temporary and can spontaneously recover. MRI showed that the syrinx is located in the center of the spinal cord, which is very similar to the most common syringomyelia in humans. The ratio of the central canal to the spinal cord area reached (2.9 ± 2.0) × 10−2, while that of the sham group was (5.4 ± 1.5) × 10−4. The number of ependymal cells lining the central canal was significantly increased (101.9 ± 39.6 vs 54.5 ± 3.4). There was no syrinx or proliferative inflammatory cells in the spinal cord parenchyma. After decompression, the syringomyelia size decreased in 50% (4/8) of the rats and increased in another 50% (4/8). Conclusion Extradural blockade of CSF flow can induce syringomyelia in rats. Temporary locomotor deficit occurred in some rats. This reproducible rat model of syringomyelia, which mimics syringomyelia in humans, can provide a good model for the study of disease mechanisms and therapies.
Collapse
|
6
|
Shi S, Zhang H, Yin X, Wang Z, Tang B, Luo Y, Ding H, Chen Z, Cao Y, Wang T, Xiao B, Zhang M. 3D digital anatomic angioarchitecture of the mouse brain using synchrotron-radiation-based propagation phase-contrast imaging. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1742-1750. [PMID: 31490166 DOI: 10.1107/s160057751900674x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Thorough investigation of the three-dimensional (3D) configuration of the vasculature of mouse brain remains technologically difficult because of its complex anatomical structure. In this study, a systematic analysis is developed to visualize the 3D angioarchitecture of mouse brain at ultrahigh resolution using synchrotron-radiation-based propagation phase-contrast imaging. This method provides detailed restoration of the intricate brain microvascular network in a precise 3D manner. In addition to depicting the delicate 3D arrangements of the vascular network, 3D virtual micro-endoscopy is also innovatively performed to visualize randomly a selected vessel within the brain for both external 3D micro-imaging and endoscopic visualization of any targeted microvessels, which improves the understanding of the intrinsic properties of the mouse brain angioarchitecture. Based on these data, hierarchical visualization has been established and a systematic assessment on the 3D configuration of the mouse brain microvascular network has been achieved at high resolution which will aid in advancing the understanding of the role of vasculature in the perspective of structure and function in depth. This holds great promise for wider application in various models of neurovascular diseases.
Collapse
Affiliation(s)
- Shupeng Shi
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Haoran Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Zhuolu Wang
- Department of Breast Surgery, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, People's Republic of China
| | - Bin Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yuebei Luo
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Tiantian Wang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
7
|
Duan J, Hu C, Qiu Q, Zhang J, Meng H, Wang K, Dong H, Wei H, Yin Y. Characterization of microvessels and parenchyma in in-line phase contrast imaging CT: healthy liver, cirrhosis and hepatocellular carcinoma. Quant Imaging Med Surg 2019; 9:1037-1046. [PMID: 31367557 DOI: 10.21037/qims.2019.06.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is a cancer with a poor prognosis, and approximately 80% of HCC cases develop from cirrhosis. Imaging techniques in the clinic seem to be insufficient for revealing the microstructures of liver disease. In recent years, phase contrast imaging CT (PCI-CT) has opened new avenues for biomedical applications owing to its unprecedented spatial and contrast resolution. The aim of this study was to present three-dimensional (3D) visualization of human healthy liver, cirrhosis and HCC using a PCI-CT technique called in-line phase contrast imaging CT (ILPCI-CT) and to quantitatively evaluate the variations of these tissues, focusing on the liver parenchyma and microvasculature. Methods Tissue samples from 9 surgical specimens of normal liver (n=3), cirrhotic liver (n=2), and HCC (n=4) were imaged using ILPCI-CT at the Shanghai Synchrotron Radiation Facility (SSRF) without contrast agents. 3D visualization of all ex vivo liver samples are presented. To quantitatively evaluate the vessel features, the vessel branch angles of each sample were clearly depicted. Additionally, radiomic features of the liver parenchyma extracted from the 3D images were measured. To evaluate the stability of the features, the percent coefficient of variation (%COV) was calculated for each radiomic feature. A %COV <30 was considered to be low variation. Finally, one-way ANOVA, followed by Tukey's test, was used to determine significant changes among the different liver specimens. Results ILPCI-CT allows for a clearer view of the architecture of the vessels and reveals more structural details than does conventional radiography. Combined with the 3D visualization technique, ILPCI-CT enables the acquisition of an accurate description of the 3D vessel morphology in liver samples. Qualitative descriptions and quantitative assessment of microvessels demonstrated clear differences among human healthy liver, cirrhotic liver and HCC. In total, 38 (approximately 51%) radiomic features had low variation, including 11 first-order features, 16 GLCM features, 6 GLRLM features and 5 GLSZM features. The differences in the mean vessel branch angles and 3 radiomic features (first-order entropy, GLCM-inverse variance and GLCM-sum entropy) were statistically significant among the three groups of samples. Conclusions ILPCI-CT may allow for morphologic descriptions and quantitative evaluation of vessel microstructures and parenchyma in human healthy liver, cirrhotic liver and HCC. Vessel branch angles and radiomic features extracted from liver parenchyma images can be used to distinguish the three kinds of liver tissues.
Collapse
Affiliation(s)
- Jinghao Duan
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Chunhong Hu
- College of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Qingtao Qiu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Jing Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Huipeng Meng
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Keqiang Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Huajiang Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Hong Wei
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| | - Yong Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan 250117, China
| |
Collapse
|