1
|
Schaeper JJ, Kampshoff CA, Wolf BJ, Roos L, Michanski S, Ruhwedel T, Eckermann M, Meyer A, Jeschke M, Wichmann C, Moser T, Salditt T. 3D virtual histology of rodent and primate cochleae with multi-scale phase-contrast X-ray tomography. Sci Rep 2025; 15:7933. [PMID: 40050327 PMCID: PMC11885485 DOI: 10.1038/s41598-025-89431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Multi-scale X-ray phase contrast tomography (XPCT) enables three-dimensional (3D), non-destructive imaging of intact small animal cochlea and apical cochlear turns. Here we report on post-mortem imaging of excised non-human primate and rodent cochleae at different [Formula: see text]-CT and nano-CT synchrotron instruments. We explore different sample embeddings, stainings and imaging regimes. Under optimized conditions of sample preparation, instrumentation, imaging protocol, and phase retrieval, high image quality and detail level can be achieved in 3D reconstructions. The showcased instrumentation and imaging protocols along with the reconstucted volumes can serve as benchmarks and reference for multi-scale microanatomy and 3D histology. The provided benchmarks and imaging protocols of this work cover a wide range of scales and are intended as augmented imaging tools for auditory research.
Collapse
Affiliation(s)
- Jannis J Schaeper
- Institute for X-Ray Physics, University of Göttingen, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, 37075, Göttingen, Germany
| | - Christoph A Kampshoff
- Department of Otolaryngology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Bettina J Wolf
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Else-Kröner-Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, 37075, Göttingen, Germany
| | - Lennart Roos
- Department of Otolaryngology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Else-Kröner-Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, 37075, Göttingen, Germany
| | - Susann Michanski
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Torben Ruhwedel
- Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Marina Eckermann
- Beamline ID16A, European Synchrotron Radiation Facility, 38000, Grenoble, France
| | - Alexander Meyer
- Department of Otolaryngology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Marcus Jeschke
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Cognitive Hearing in Primates Group, German Primate Center, 37077, Göttingen, Germany
- Else-Kröner-Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, 37075, Göttingen, Germany
| | - Tobias Moser
- Department of Otolaryngology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Else-Kröner-Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, 37075, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
2
|
Reichmann J, Schnurpfeil A, Mittelstädt S, Jensen PM, Dahl VA, Dahl AB, Weide C, von Campenhausen E, Dejea H, Tafforeau P, Werlein C, Jonigk D, Ackermann M, Engel K, Gallwas J, Dietz A, Hasanov MF, Salditt T. 3D multiscale characterization of the human placenta: Bridging anatomy and histology by X-ray phase-contrast tomography. PNAS NEXUS 2025; 4:pgae583. [PMID: 39831153 PMCID: PMC11740730 DOI: 10.1093/pnasnexus/pgae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025]
Abstract
The human placenta exhibits a complex three-dimensional (3D) structure with a interpenetrating vascular tree and large internal interfacial area. In a unique and yet insufficiently explored way, this parenchymal structure enables its multiple functions as a respiratory, renal, and gastrointestinal multiorgan. The histopathological states are highly correlated with complications and health issues of mother, and fetus or newborn. Macroscopic and microscopic examination has so far been challenging to reconcile on the entire organ. Here we show that anatomical and histological scales can be bridged with the advent of hierarchical phase-contrast tomography and highly brilliant synchrotron radiation. To this end, we are exploiting the new capabilities offered by the BM18 beamline at ESRF, Grenoble for whole organ as well as the coherence beamline P10 at DESY, Hamburg for high-resolution, creating unique multiscale datasets. We also show that within certain limits, translation to μCT instrumentation for 3D placenta examination becomes possible based on advanced preparation and CT protocols, while segmentation of the datasets by machine learning now remains the biggest challenge.
Collapse
Affiliation(s)
- Jakob Reichmann
- Institute for X-ray Physics, University of Göttingen, Göttingen 37077, Germany
| | - Anne Schnurpfeil
- Institute for X-ray Physics, University of Göttingen, Göttingen 37077, Germany
| | - Sylvia Mittelstädt
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen 37973, Germany
| | | | | | | | - Carina Weide
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen 37973, Germany
| | | | - Hector Dejea
- ESRF, The European Synchrotron Radiation Facility, Grenoble 38000, France
| | - Paul Tafforeau
- ESRF, The European Synchrotron Radiation Facility, Grenoble 38000, France
| | | | - Danny Jonigk
- Institute of Pathology, RWTH Aachen Medical Faculty, Aachen 52074, Germany
- German Center for Lung Research (DZL), BREATH, Hanover 30625, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal 42283, Germany
| | - Klaus Engel
- Siemens Healthineers AG, Erlangen 91052, Germany
| | - Julia Gallwas
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen 37973, Germany
| | - Alexander Dietz
- Institute of Pathology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Mir Fuad Hasanov
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen 37973, Germany
| | - Tim Salditt
- Institute for X-ray Physics, University of Göttingen, Göttingen 37077, Germany
| |
Collapse
|
3
|
Li KYC, Syrris P, Bonnin A, Treibel TA, Budhram-Mahadeo V, Dejea H, Cook AC. Cryo-X-Ray Phase Contrast Imaging Enables Combined 3D Structural Quantification and Nucleic Acid Analysis of Myocardial Biopsies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409163. [PMID: 39478309 DOI: 10.1002/advs.202409163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/09/2024] [Indexed: 12/28/2024]
Abstract
Snap-frozen biopsies serve as a valuable clinical resource of archival material for disease research, as they enable a comprehensive array of downstream analyses to be performed, including extraction and sequencing of nucleic acids. Obtaining three-dimensional (3D) structural information before multi-omics is more challenging but can potentially allow for better characterization of tissues and targeting of clinically relevant cells. Conventional histological techniques are limited in this regard due to their destructive nature and the reconstruction artifacts produced by sectioning, dehydration, and chemical processing. These limitations are particularly notable in soft tissues such as the heart. In this study, the feasibility of using synchrotron-based cryo-X-ray phase contrast imaging (cryo-X-PCI) of snap-frozen myocardial biopsies is assessed and 3D structure tensor analysis of aggregated myocytes, followed by nucleic acid (DNA and RNA) extraction and analysis. It is shown that optimal sample preparation is the key driver for successful structural and nucleic acid preservation which is unaffected by the process of cryo-X-PCI. It is proposed that cryo-X-PCI has clinical value for 3D tissue analysis of cardiac and potentially non-cardiac soft tissue biopsies before nucleic acid investigation.
Collapse
Affiliation(s)
- Kan Yan Chloe Li
- Institute of Cardiovascular Science, University College London, London, WC1N 1DZ, UK
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, WC1N 1DZ, UK
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, London, WC1N 1DZ, UK
- Department of Cardiology, St Bartholomew's Hospital, London, EC1A 7BE, UK
| | | | - Hector Dejea
- European Synchrotron Radiation Facility, 71 Av des Martyrs, Grenoble, 3800, France
| | - Andrew C Cook
- Institute of Cardiovascular Science, University College London, London, WC1N 1DZ, UK
| |
Collapse
|
4
|
Albers J, Svetlove A, Duke E. Synchrotron X-ray imaging of soft biological tissues - principles, applications and future prospects. J Cell Sci 2024; 137:jcs261953. [PMID: 39440473 PMCID: PMC11529875 DOI: 10.1242/jcs.261953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Synchrotron-based tomographic phase-contrast X-ray imaging (SRµCT or SRnCT) is a versatile isotropic three-dimensional imaging technique that can be used to study biological samples spanning from single cells to human-sized specimens. SRµCT and SRnCT take advantage of the highly brilliant and coherent X-rays produced by a synchrotron light source. This enables fast data acquisition and enhanced image contrast for soft biological samples owing to the exploitation of phase contrast. In this Review, we provide an overview of the basics behind the technique, discuss its applications for biologists and provide an outlook on the future of this emerging technique for biology. We introduce the latest advances in the field, such as whole human organs imaged with micron resolution, using X-rays as a tool for virtual histology and resolving neuronal connections in the brain.
Collapse
Affiliation(s)
- Jonas Albers
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Angelika Svetlove
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Elizabeth Duke
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
5
|
Avachat AV, Mahmoud KH, Leja AG, Xu JJ, Anastasio MA, Sivaguru M, Di Fulvio A. Ortho-positronium lifetime for soft-tissue classification. Sci Rep 2024; 14:21155. [PMID: 39256482 PMCID: PMC11387643 DOI: 10.1038/s41598-024-71695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
The objective of this work is to showcase the ortho-positronium lifetime as a probe for soft-tissue characterization. We employed positron annihilation lifetime spectroscopy to experimentally measure the three components of the positron annihilation lifetime-para-positronium (p-Ps), positron, and ortho-positronium (o-Ps)-for three types of porcine, non-fixated soft tissues ex vivo: adipose, hepatic, and muscle. Then, we benchmarked our measurements with X-ray phase-contrast imaging, which is the current state-of-the-art for soft-tissue analysis. We found that the o-Ps lifetime in adipose tissues (2.54 ± 0.12 ns) was approximately 20% longer than in hepatic (2.04 ± 0.09 ns) and muscle (2.03 ± 0.12 ns) tissues. In addition, the separation between the measurements for adipose tissue and the other tissues was better from o-Ps lifetime measurement than from X-ray phase-contrast imaging. This experimental study proved that the o-Ps lifetime is a viable non-invasive probe for characterizing and classifying the different soft tissues. Specifically, o-Ps lifetime as a soft-tissue characterization probe had a strong sensitivity to the lipid content that can be potentially implemented in commercial positron emission tomography scanners that feature list-mode data acquisition.
Collapse
Affiliation(s)
- Ashish V Avachat
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, USA.
| | - Kholod H Mahmoud
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois Urbana-Champaign, Champaign, USA
| | - Anthony G Leja
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois Urbana-Champaign, Champaign, USA
| | - Jiajie J Xu
- Department of Clinical Medicine, University of Illinois Urbana-Champaign, Champaign, USA
- Animal Care Program, University of Illinois Urbana-Champaign, Champaign, USA
| | - Mark A Anastasio
- Department of Bioengineering, University of Illinois Urbana-Champaign, Champaign, USA
| | - Mayandi Sivaguru
- Cytometry and Microscopy to Omics Facility, Roy J Carver Biotechnology Center, University of Illinois Urbana-Champaign, Champaign, USA
| | - Angela Di Fulvio
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois Urbana-Champaign, Champaign, USA.
| |
Collapse
|
6
|
Peruzzi N, Eckermann M, Frohn J, Salditt T, Ohlsson B, Bech M. Volumetric changes of the enteric nervous system under physiological and pathological conditions measured using x-ray phase-contrast tomography. JGH Open 2024; 8:e70027. [PMID: 39295850 PMCID: PMC11408747 DOI: 10.1002/jgh3.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Background and Aim Full-thickness biopsies of the intestinal wall may be used to study and assess damage to the neurons of the enteric nervous system (ENS), that is, enteric neuropathy. The ENS is difficult to examine due to its localization deep in the intestinal wall and its organization with several connections in diverging directions. Histological sections used in clinical practice only visualize the sample in a two-dimensional way. X-ray phase-contrast micro-computed tomography (PC-μCT) has shown potential to assess the cross-sectional thickness and volume of the ENS in three dimensions (3D). The aim of this study was to explore the potential of PC-μCT to evaluate its use to determine the size of the ENS. Methods Full-thickness biopsies of ileum obtained during surgery from five controls and six patients clinically diagnosed with enteric neuropathy and dysmotility were included. Punch biopsies of 1 mm in diameter and 1 cm in length, from an area containing myenteric plexus, were extracted from paraffin blocks, and scanned with synchrotron-based PC-μCT without any staining. Results The microscopic volumetric structure of the neural tissue (consisting of both ganglia and fascicles) could be determined in all samples. The ratio of neural tissue volume/total tissue volume was higher in controls than in patients with enteric neuropathy (P = 0.013). The patient with the longest disease duration had the lowest ratio. Conclusion The assessment of neural tissue can be performed in an objective, standardized way, to ensure reproducibility and comparison under physiological and pathological conditions. Further evaluation is needed to examine the role of this method in the diagnosis of enteric neuropathy.
Collapse
Affiliation(s)
- Niccolò Peruzzi
- Medical Radiation Physics, Department of Clinical Sciences Lund Lund University Lund Sweden
| | - Marina Eckermann
- ESRF, The European Synchrotron Grenoble France
- Institute for X-Ray Physics, University of Göttingen Göttingen Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen Göttingen Germany
| | - Jasper Frohn
- Institute for X-Ray Physics, University of Göttingen Göttingen Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen Göttingen Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen Göttingen Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen Göttingen Germany
| | - Bodil Ohlsson
- Department of Clinical Sciences Malmö Lund University Lund Sweden
- Department of Internal Medicine Skåne University Hospital Malmö Sweden
| | - Martin Bech
- Medical Radiation Physics, Department of Clinical Sciences Lund Lund University Lund Sweden
- LINXS Institute of advanced Neutron and X-ray Science (LINXS) Lund Sweden
| |
Collapse
|
7
|
Laundon D, Lane T, Katsamenis OL, Norman J, Brewer L, Harris SE, Basford PJ, Shotton J, Free D, Constable-Dakeyne G, Gostling NJ, Chavatte-Palmer P, Lewis RM. Correlative three-dimensional X-ray histology (3D-XRH) as a tool for quantifying mammalian placental structure. Placenta 2024:S0143-4004(24)00607-6. [PMID: 39097490 DOI: 10.1016/j.placenta.2024.07.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Mammalian placentas exhibit unparalleled structural diversity, despite sharing a common ancestor and principal functions. The bulk of structural studies in placental research has used two-dimensional (2D) histology sectioning, allowing significant advances in our understanding of mammalian placental structure. However, 2D histology sectioning may be limited if it does not provide accurate information of three-dimensional (3D) tissue architecture. Here, we propose correlative 3D X-ray histology (3D-XRH) as a tool with great potential for resolving mammalian placental structures. 3D-XRH involves scanning a formaldehyde-fixed, paraffin embedded (FFPE) tissue block with 3D X-ray microscopy (microCT) prior to histological sectioning to generate a 3D image volume of the embedded tissue piece. The subsequent 2D histology sections can then be correlated back into the microCT image volume to couple histology staining (or immunolabelling) with 3D tissue architecture. 3D-XRH is non-destructive and requires no additional sample preparation than standard FFPE histology sectioning, however the image volume provides 3D morphometric data and can be used to guide microtomy. As such, 3D-XRH introduces additional information to standard histological workflows with minimal effort or disruption. Using primary examples from porcine, bovine, equine, and canine placental samples, we demonstrate the application of 3D-XRH to quantifying placental structure as well as discussing the limitations and future directions of the methodology. The wealth of information derived from 2D histological sectioning in the biomedical, veterinary, and comparative reproductive sciences provides a rich foundation from which 3D-XRH can build on to advance the study of placental structure and function.
Collapse
Affiliation(s)
- Davis Laundon
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK; Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK.
| | - Thomas Lane
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK
| | - Orestis L Katsamenis
- Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK; μ-VIS X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jeanette Norman
- Histochemistry Research Facility, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Lois Brewer
- School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Shelley E Harris
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Philip J Basford
- Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK; μ-VIS X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK; School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Justine Shotton
- Marwell Wildlife, Thompson's Ln, Colden Common, Winchester, SO21 1JH, UK
| | - Danielle Free
- Marwell Wildlife, Thompson's Ln, Colden Common, Winchester, SO21 1JH, UK
| | | | - Neil J Gostling
- Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK; School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Rohan M Lewis
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK; Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
8
|
Reichmann J, Sarrazin C, Schmale S, Blaurock C, Balkema-Buschmann A, Schmitzer B, Salditt T. 3D imaging of SARS-CoV-2 infected hamster lungs by X-ray phase contrast tomography enables drug testing. Sci Rep 2024; 14:12348. [PMID: 38811688 PMCID: PMC11137149 DOI: 10.1038/s41598-024-61746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
X-ray Phase Contrast Tomography (XPCT) based on wavefield propagation has been established as a high resolution three-dimensional (3D) imaging modality, suitable to reconstruct the intricate structure of soft tissues, and the corresponding pathological alterations. However, for biomedical research, more is needed than 3D visualisation and rendering of the cytoarchitecture in a few selected cases. First, the throughput needs to be increased to cover a statistically relevant number of samples. Second, the cytoarchitecture has to be quantified in terms of morphometric parameters, independent of visual impression. Third, dimensionality reduction and classification are required for identification of effects and interpretation of results. To address these challenges, we here design and implement a novel integrated and high throughput XPCT imaging and analysis workflow for 3D histology, pathohistology and drug testing. Our approach uses semi-automated data acquisition, reconstruction and statistical quantification. We demonstrate its capability for the example of lung pathohistology in Covid-19. Using a small animal model, different Covid-19 drug candidates are administered after infection and tested in view of restoration of the physiological cytoarchitecture, specifically the alveolar morphology. To this end, we then use morphometric parameter determination followed by a dimensionality reduction and classification based on optimal transport. This approach allows efficient discrimination between physiological and pathological lung structure, thereby providing quantitative insights into the pathological progression and partial recovery due to drug treatment. Finally, we stress that the XPCT image chain implemented here only used synchrotron radiation for validation, while the data used for analysis was recorded with laboratory μ CT radiation, more easily accessible for pre-clinical research.
Collapse
Affiliation(s)
- Jakob Reichmann
- Georg-August-University of Göttingen, Institute for X-Ray Physics, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Clement Sarrazin
- Georg-August-University of Göttingen, Institute of Computer Science, Goldschmidtstraße 7, 37077, Göttingen, Germany
- Equipe RAPSODI, Centre INRIA de l'université de Lille, F-59000, Lille, France
| | - Sebastian Schmale
- Georg-August-University of Göttingen, Institute of Computer Science, Goldschmidtstraße 7, 37077, Göttingen, Germany
| | - Claudia Blaurock
- Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | | | - Bernhard Schmitzer
- Georg-August-University of Göttingen, Institute of Computer Science, Goldschmidtstraße 7, 37077, Göttingen, Germany.
| | - Tim Salditt
- Georg-August-University of Göttingen, Institute for X-Ray Physics, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
| |
Collapse
|
9
|
Song AH, Williams M, Williamson DFK, Chow SSL, Jaume G, Gao G, Zhang A, Chen B, Baras AS, Serafin R, Colling R, Downes MR, Farré X, Humphrey P, Verrill C, True LD, Parwani AV, Liu JTC, Mahmood F. Analysis of 3D pathology samples using weakly supervised AI. Cell 2024; 187:2502-2520.e17. [PMID: 38729110 PMCID: PMC11168832 DOI: 10.1016/j.cell.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024]
Abstract
Human tissue, which is inherently three-dimensional (3D), is traditionally examined through standard-of-care histopathology as limited two-dimensional (2D) cross-sections that can insufficiently represent the tissue due to sampling bias. To holistically characterize histomorphology, 3D imaging modalities have been developed, but clinical translation is hampered by complex manual evaluation and lack of computational platforms to distill clinical insights from large, high-resolution datasets. We present TriPath, a deep-learning platform for processing tissue volumes and efficiently predicting clinical outcomes based on 3D morphological features. Recurrence risk-stratification models were trained on prostate cancer specimens imaged with open-top light-sheet microscopy or microcomputed tomography. By comprehensively capturing 3D morphologies, 3D volume-based prognostication achieves superior performance to traditional 2D slice-based approaches, including clinical/histopathological baselines from six certified genitourinary pathologists. Incorporating greater tissue volume improves prognostic performance and mitigates risk prediction variability from sampling bias, further emphasizing the value of capturing larger extents of heterogeneous morphology.
Collapse
Affiliation(s)
- Andrew H Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mane Williams
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Drew F K Williamson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sarah S L Chow
- Department of Mechanical Engineering, Bioengineering, and Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Guillaume Jaume
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gan Gao
- Department of Mechanical Engineering, Bioengineering, and Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Andrew Zhang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bowen Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander S Baras
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Serafin
- Department of Mechanical Engineering, Bioengineering, and Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Richard Colling
- Nuffield Department of Surgical Sciences, University of Oxford, UK; Department of Cellular Pathology, Oxford University Hospitals NHS Foundations Trust, John Radcliffe Hospital, Oxford, UK
| | - Michelle R Downes
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Xavier Farré
- Public Health Agency of Catalonia, Lleida, Spain
| | - Peter Humphrey
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Clare Verrill
- Nuffield Department of Surgical Sciences, University of Oxford, UK; Department of Cellular Pathology, Oxford University Hospitals NHS Foundations Trust, John Radcliffe Hospital, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lawrence D True
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Anil V Parwani
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Jonathan T C Liu
- Department of Mechanical Engineering, Bioengineering, and Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA.
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
10
|
Salg GA, Steinle V, Labode J, Wagner W, Studier-Fischer A, Reiser J, Farjallah E, Guettlein M, Albers J, Hilgenfeld T, Giese NA, Stiller W, Nickel F, Loos M, Michalski CW, Kauczor HU, Hackert T, Dullin C, Mayer P, Kenngott HG. Multiscale and multimodal imaging for three-dimensional vascular and histomorphological organ structure analysis of the pancreas. Sci Rep 2024; 14:10136. [PMID: 38698049 PMCID: PMC11065985 DOI: 10.1038/s41598-024-60254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
Exocrine and endocrine pancreas are interconnected anatomically and functionally, with vasculature facilitating bidirectional communication. Our understanding of this network remains limited, largely due to two-dimensional histology and missing combination with three-dimensional imaging. In this study, a multiscale 3D-imaging process was used to analyze a porcine pancreas. Clinical computed tomography, digital volume tomography, micro-computed tomography and Synchrotron-based propagation-based imaging were applied consecutively. Fields of view correlated inversely with attainable resolution from a whole organism level down to capillary structures with a voxel edge length of 2.0 µm. Segmented vascular networks from 3D-imaging data were correlated with tissue sections stained by immunohistochemistry and revealed highly vascularized regions to be intra-islet capillaries of islets of Langerhans. Generated 3D-datasets allowed for three-dimensional qualitative and quantitative organ and vessel structure analysis. Beyond this study, the method shows potential for application across a wide range of patho-morphology analyses and might possibly provide microstructural blueprints for biotissue engineering.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Germany.
| | - Verena Steinle
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jonas Labode
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Willi Wagner
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Alexander Studier-Fischer
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Johanna Reiser
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Elyes Farjallah
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Michelle Guettlein
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Jonas Albers
- Hamburg Unit, European Molecular Biology Laboratory, c/o Deutsches Elektronen-Synchrotron DESY Hamburg, Notkestr. 85, 22607, Hamburg, Germany
| | - Tim Hilgenfeld
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Nathalia A Giese
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Wolfram Stiller
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Felix Nickel
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Loos
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Christoph W Michalski
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Thilo Hackert
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Clinic for General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Dullin
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Robert-Koch-Str. 40, Goettingen, Germany
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, Göttingen, Germany
| | - Philipp Mayer
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Hannes Goetz Kenngott
- Clinic for General-, Visceral- and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Albers J, Nikolova M, Svetlove A, Darif N, Lawson MJ, Schneider TR, Schwab Y, Bourenkov G, Duke E. High Throughput Tomography (HiTT) on EMBL beamline P14 on PETRA III. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:186-194. [PMID: 37971957 PMCID: PMC10833423 DOI: 10.1107/s160057752300944x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Here, high-throughput tomography (HiTT), a fast and versatile phase-contrast imaging platform for life-science samples on the EMBL beamline P14 at DESY in Hamburg, Germany, is presented. A high-photon-flux undulator beamline is used to perform tomographic phase-contrast acquisition in about two minutes which is linked to an automated data processing pipeline that delivers a 3D reconstructed data set less than a minute and a half after the completion of the X-ray scan. Combining this workflow with a sophisticated robotic sample changer enables the streamlined collection and reconstruction of X-ray imaging data from potentially hundreds of samples during a beam-time shift. HiTT permits optimal data collection for many different samples and makes possible the imaging of large sample cohorts thus allowing population studies to be attempted. The successful application of HiTT on various soft tissue samples in both liquid (hydrated and also dehydrated) and paraffin-embedded preparations is demonstrated. Furthermore, the feasibility of HiTT to be used as a targeting tool for volume electron microscopy, as well as using HiTT to study plant morphology, is demonstrated. It is also shown how the high-throughput nature of the work has allowed large numbers of `identical' samples to be imaged to enable statistically relevant sample volumes to be studied.
Collapse
Affiliation(s)
- Jonas Albers
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marina Nikolova
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Angelika Svetlove
- Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Nedal Darif
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Collaboration for joint PhD degree between the European Molecular Biology Laboratory and the Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Matthew J. Lawson
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas R. Schneider
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Elizabeth Duke
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
12
|
Reichmann J, Ruhwedel T, Möbius W, Salditt T. Neodymium acetate as a contrast agent for X-ray phase-contrast tomography. J Med Imaging (Bellingham) 2023; 10:056001. [PMID: 37885921 PMCID: PMC10599332 DOI: 10.1117/1.jmi.10.5.056001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/08/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Purpose X-ray phase-contrast tomography (XPCT) is a non-destructive, three-dimensional imaging modality that provides higher contrast in soft tissue than absorption-based CT and allows one to cover the cytoarchitecture from the centi- and millimeter scale down to the nanoscale. To further increase contrast and resolution of XPCT, for example, in view of addressing connectivity issues in the central nervous system (CNS), metal staining is indispensable. However, currently used protocols, for example, based on osmium and/or uranium are less suited for XPCT, due to an excessive β / δ -ratio. In this work, we explore the suitability of different staining agents for XPCT. Particularly, neodymium(III)-acetate (NdAc), which has recently been proposed as a non-toxic, non-radioactive easy to use alternative contrast agent for uranyl acetate (UAc) in electron microscopy, is investigated. Due to its vertical proximity to UAc in the periodic table, similar chemical but better suited optical properties for phase contrast can be expected. Approach Differently stained whole eye samples of wild type mouse and tissues of the CNS are embedded into EPON epoxy resin and scanned using synchrotron as well as with laboratory radiation. Phase retrieval is performed on the projection images, followed by tomographic reconstruction, which enables a quantitative analysis based on the reconstructed electron densities. Segmentation techniques and rendering software is used to visualize structures of interest in the sample. Results We show that staining neuronal samples with NdAc enhances contrast, in particular for laboratory scans, allowing high-resolution imaging of biological soft tissue in-house. For the example of murine retina, specifically rods and cones as well as the sclera and the Ganglion cell layer seem to be targeted by the stain. A comparison of electron density by the evaluation of histograms allowed to determine quantitative measures to describe the difference between the examined stains. Conclusion The results suggest NdAc to be an effective stain for XPCT, with a preferential binding to anionic groups, such as phosphate and carboxyl groups at cell surfaces, targeting certain layers of the retina with a stronger selectivity compared to other staining agents. Due to the advantageous X-ray optical properties, the stain seems particularly well-suited for phase contrast, with a comparably small number density and an overall superior image quality at laboratory sources.
Collapse
Affiliation(s)
| | - Torben Ruhwedel
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Tim Salditt
- Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Schaeper JJ, Liberman MC, Salditt T. Imaging of excised cochleae by micro-CT: staining, liquid embedding, and image modalities. J Med Imaging (Bellingham) 2023; 10:053501. [PMID: 37753271 PMCID: PMC10519431 DOI: 10.1117/1.jmi.10.5.053501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Purpose Assessing the complex three-dimensional (3D) structure of the cochlea is crucial to understanding the fundamental aspects of signal transduction in the inner ear and is a prerequisite for the development of novel cochlear implants. X-ray phase-contrast computed tomography offers destruction-free 3D imaging with little sample preparation, thus preserving the delicate structure of the cochlea. The use of heavy metal stains enables higher contrast and resolution and facilitates segmentation of the cochlea. Approach For μ-CT of small animal and human cochlea, we explore the heavy metal osmium tetroxide (OTO) as a radiocontrast agent and delineate laboratory μ - CT from synchrotron CT. We investigate how phase retrieval can be used to improve the image quality of the reconstructions, both for stained and unstained specimens. Results Image contrast for soft tissue in an aqueous solution is insufficient under the in-house conditions, whereas the OTO stain increases contrast for lipid-rich tissue components, such as the myelin sheaths in nervous tissue, enabling contrast-based rendering of the different components of the auditory nervous system. The overall morphology of the cochlea with the three scalae and membranes is very well represented. Further, the image quality of the reconstructions improves significantly when a phase retrieval scheme is used, which is also suitable for non-ideal laboratory μ - CT settings. With highly brilliant synchrotron radiation (SR), we achieve high contrast for unstained whole cochleae at the cellular level. Conclusions The OTO stain is suitable for 3D imaging of small animal and human cochlea with laboratory μ - CT , and relevant pathologies, such as a loss of sensory cells and neurons, can be visualized. With SR and optimized phase retrieval, the cellular level can be reached even for unstained samples in aqueous solution, as demonstrated by the high visibility of single hair cells and spiral ganglion neurons.
Collapse
Affiliation(s)
- Jannis Justus Schaeper
- University of Göttingen, Institute for X-ray Physics, Göttingen, Germany
- University of Göttingen, Cluster of Excellence “Multiscale Bioimaging: Molecular Machines to Networks of Excitable Cells,” Göttingen, Germany
| | - Michael Charles Liberman
- Massachusetts Eye and Ear Infirmary, Eaton-Peabody Laboratories, Boston, Massachusetts, United States
- Harvard Medical School, Department of Otolaryngology, Head and Neck Surgery, Boston, Massachusetts, United States
| | - Tim Salditt
- University of Göttingen, Institute for X-ray Physics, Göttingen, Germany
- University of Göttingen, Cluster of Excellence “Multiscale Bioimaging: Molecular Machines to Networks of Excitable Cells,” Göttingen, Germany
| |
Collapse
|
14
|
Arana Peña LM, Donato S, Bonazza D, Brombal L, Martellani F, Arfelli F, Tromba G, Longo R. Multiscale X-ray phase-contrast tomography: From breast CT to micro-CT for virtual histology. Phys Med 2023; 112:102640. [PMID: 37441823 DOI: 10.1016/j.ejmp.2023.102640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/31/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Phase-contrast imaging techniques address the issue of poor soft-tissue contrast encountered in traditional X-ray imaging. This can be accomplished with the propagation-based phase-contrast technique by employing a coherent photon beam, which is available at synchrotron facilities, as well as long sample-to-detector distances. This study demonstrates the optimization of propagation-based phase-contrast computed tomography (CT) techniques for multiscale X-ray imaging of the breast at the Elettra synchrotron facility (Trieste, Italy). Two whole breast mastectomy samples were acquired with propagation-based breast-CT using a monochromatic synchrotron beam at a pixel size of 60 µm. Paraffin-embedded blocks sampled from the same tissues were scanned with propagation-based micro-CT imaging using a polychromatic synchrotron beam at a pixel size of 4 µm. Images of both methodologies and of the same sample were spatially registered. The resulting images showed the transition from whole breast imaging with propagation-based breast-CT methodology to virtual histology with propagation-based micro-CT imaging of the same sample. Additionally, conventional histological images were matched to virtual histology images. Phase-contrast images offer a high resolution with low noise, which allows for a highly precise match between virtual and conventional histology. Furthermore, those techniques allow a clear discernment of breast structures, lesions, and microcalcifications, being a promising clinically-compatible tool for breast imaging in a multiscale approach, to either assist in the detection of cancer in full volume breast samples or to complement structure identification in paraffin-embedded breast tissue samples.
Collapse
Affiliation(s)
- L M Arana Peña
- Department of Physics, University of Trieste, Via Alfonso Valerio 2, Trieste I-34127, Italy; INFN Division of Trieste, 34127 Trieste, Italy; Elettra-Sincrotrone Trieste, SS 14 Km 163,5, AREA Science Park, 34149 Basovizza, (Trieste), Italy
| | - S Donato
- Department of Physics and STAR Lab, University of Calabria, Via P. Bucci 31C, Rende, (CS), I-87036, Italy; INFN Division of Frascati, Via E. Fermi 54, Frascati I-00044, Italy.
| | - D Bonazza
- Unit of Surgical Pathology, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliana Isontina (ASUGI), Strada di Fiume, 447, Trieste I-34149, Italy
| | - L Brombal
- Department of Physics, University of Trieste, Via Alfonso Valerio 2, Trieste I-34127, Italy; INFN Division of Trieste, 34127 Trieste, Italy
| | - F Martellani
- Unit of Surgical Pathology, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliana Isontina (ASUGI), Strada di Fiume, 447, Trieste I-34149, Italy
| | - F Arfelli
- Department of Physics, University of Trieste, Via Alfonso Valerio 2, Trieste I-34127, Italy; INFN Division of Trieste, 34127 Trieste, Italy
| | - G Tromba
- Elettra-Sincrotrone Trieste, SS 14 Km 163,5, AREA Science Park, 34149 Basovizza, (Trieste), Italy
| | - R Longo
- Department of Physics, University of Trieste, Via Alfonso Valerio 2, Trieste I-34127, Italy; INFN Division of Trieste, 34127 Trieste, Italy
| |
Collapse
|
15
|
Pinkert-Leetsch D, Frohn J, Ströbel P, Alves F, Salditt T, Missbach-Guentner J. Three-dimensional analysis of human pancreatic cancer specimens by phase-contrast based X-ray tomography - the next dimension of diagnosis. Cancer Imaging 2023; 23:43. [PMID: 37131262 PMCID: PMC10152799 DOI: 10.1186/s40644-023-00559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The worldwide increase of pancreatic ductal adenocarcinoma (PDAC), which still has one of the lowest survival rates, requires novel imaging tools to improve early detection and to refine diagnosis. Therefore, the aim of this study was to assess the feasibility of propagation-based phase-contrast X-ray computed tomography of already paraffin-embedded and unlabeled human pancreatic tumor tissue to achieve a detailed three-dimensional (3D) view of the tumor sample in its entirety. METHODS Punch biopsies of areas of particular interest were taken from paraffin blocks after initial histological analysis of hematoxylin and eosin stained tumor sections. To cover the entire 3.5 mm diameter of the punch biopsy, nine individual tomograms with overlapping regions were acquired in a synchrotron parallel beam configuration and stitched together after data reconstruction. Due to the intrinsic contrast based on electron density differences of tissue components and a voxel size of 1.3 μm achieved PDAC and its precursors were clearly identified. RESULTS Characteristic tissue structures for PDAC and its precursors, such as dilated pancreatic ducts, altered ductal epithelium, diffuse immune cell infiltrations, increased occurrence of tumor stroma and perineural invasion were clearly identified. Certain structures of interest were visualized in three dimensions throughout the tissue punch. Pancreatic duct ectasia of different caliber and atypical shape as well as perineural infiltration could be contiguously traced by viewing serial tomographic slices and by applying semi-automatic segmentation. Histological validation of corresponding sections confirmed the former identified PDAC features. CONCLUSION In conclusion, virtual 3D histology via phase-contrast X-ray tomography visualizes diagnostically relevant tissue structures of PDAC in their entirety, preserving tissue integrity in label-free, paraffin embedded tissue biopsies. In the future, this will not only enable a more comprehensive diagnosis but also a possible identification of new 3D imaging tumor markers.
Collapse
Affiliation(s)
- Diana Pinkert-Leetsch
- Department of Diagnostic and Interventional Radiology, University Medical Center, Goettingen, Germany.
| | - Jasper Frohn
- Institute for X-ray Physics, Georg-August-University, Goettingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Medical Center, Goettingen, Germany
| | - Frauke Alves
- Department of Diagnostic and Interventional Radiology, University Medical Center, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
- Department of Hematology and Medical Oncology, University Medical Center, Goettingen, Germany
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, Georg-August-University, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | | |
Collapse
|
16
|
Frost J, Schmitzer B, Töpperwien M, Eckermann M, Franz J, Stadelmann C, Salditt T. 3d virtual histology reveals pathological alterations of cerebellar granule cells in multiple sclerosis. Neuroscience 2023; 520:18-38. [PMID: 37061161 DOI: 10.1016/j.neuroscience.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
We investigate structural properties of neurons in the granular layer of human cerebellum with respect to their involvement in multiple sclerosis (MS). To this end we analyze data recorded by X-ray phase contrast tomography from tissue samples collected post mortem from a MS and a healthy control group. Using automated segmentation and histogram analysis based on optimal transport theory (OT) we find that the distributions representing nuclear structure in the granular layer move to a more compact nuclear state, i.e. smaller, denser and more heterogeneous nuclei in MS. We have previously made a similar observation for neurons of the dentate gyrus in Alzheimer's disease, suggesting that more compact structure of neuronal nuclei which we attributed to increased levels of heterochromatin, may possibly represent a more general phenomenon of cellular senescence associated with neurodegeneration.
Collapse
Affiliation(s)
- Jakob Frost
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany
| | - Bernhard Schmitzer
- Institute of Computer Science, Georg-August Universität Göttingen, Germany
| | - Mareike Töpperwien
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany; Present address: ESRF, Grenoble, France; Present adress: YXLON GmbH, Hamburg, Germany
| | - Marina Eckermann
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany; Present address: ESRF, Grenoble, France
| | - Jonas Franz
- Institute of Neuropathology, Universical Medical Center Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, Universical Medical Center Göttingen, Germany; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg-August Universität Göttingen, Germany
| | - Tim Salditt
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg-August Universität Göttingen, Germany
| |
Collapse
|
17
|
A meta-analysis of the three-dimensional reconstruction visualization technology for hepatectomy. Asian J Surg 2023; 46:669-676. [PMID: 35843827 DOI: 10.1016/j.asjsur.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/05/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023] Open
Abstract
This meta-analysis was conducted to systematically evaluate the short-term efficacy and safety of the three-dimensional (3D) reconstruction visualization technology (3D-RVT) technique for hepatectomy. A systematic literature search was used to gather information on the 3D reconstruction visualization technology technique for hepatectomy from retrospective cohort studies and comparative studies. The retrieval period was up to March 2022. Publications and conference papers in English were manually searched and references in bibliographies traced. After evaluating the quality of selected studies, a meta-analysis was conducted using Review Manager 5.1 software. We included 12 studies comprising 2053 patients with liver disease. Our meta-results showed that 3D-RVT significantly shortened operation times [weighted mean differences (WMD) = -29.36; 95% confidence interval (CI): -55.20 to -3.51; P = 0.03], reduced intraoperative bleeding [WMD = -93.53; 95% CI: -152.32 to -34.73; P = 0.002], reduced blood transfusion volume [WMD = -66.06; 95% CI: -109.13 to -22.99; P = 0.003], and shortened hospital stays [WMD = -1.90; 95% CI: -3.05 to -0.74; P = 0.001]. Additionally, the technique reduced the use of hepatic inflow occlusion and avoided overall postoperative complications [odds ratio (OR) = 0.60; 95% CI: 0.46 to 0.79; P < 0.001]. 3D-RVT is safe and effective for liver surgery and provides safety assessments before anatomical hepatectomy.
Collapse
|
18
|
Dejea H, Schlepütz CM, Méndez-Carmona N, Arnold M, Garcia-Canadilla P, Longnus SL, Stampanoni M, Bijnens B, Bonnin A. A tomographic microscopy-compatible Langendorff system for the dynamic structural characterization of the cardiac cycle. Front Cardiovasc Med 2022; 9:1023483. [PMID: 36620622 PMCID: PMC9815149 DOI: 10.3389/fcvm.2022.1023483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Cardiac architecture has been extensively investigated ex vivo using a broad spectrum of imaging techniques. Nevertheless, the heart is a dynamic system and the structural mechanisms governing the cardiac cycle can only be unveiled when investigating it as such. Methods This work presents the customization of an isolated, perfused heart system compatible with synchrotron-based X-ray phase contrast imaging (X-PCI). Results Thanks to the capabilities of the developed setup, it was possible to visualize a beating isolated, perfused rat heart for the very first time in 4D at an unprecedented 2.75 μm pixel size (10.6 μm spatial resolution), and 1 ms temporal resolution. Discussion The customized setup allows high-spatial resolution studies of heart architecture along the cardiac cycle and has thus the potential to serve as a tool for the characterization of the structural dynamics of the heart, including the effects of drugs and other substances able to modify the cardiac cycle.
Collapse
Affiliation(s)
- Hector Dejea
- Paul Scherrer Institute, Villigen, Switzerland,Institute for Biomedical Engineering, University and ETH Zürich, Zurich, Switzerland,*Correspondence: Hector Dejea ✉
| | | | - Natalia Méndez-Carmona
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, Bern, Switzerland,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria Arnold
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, Bern, Switzerland,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Patricia Garcia-Canadilla
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, Barcelona, Spain,Cardiovascular Diseases and Child Development, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Sarah L. Longnus
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, Bern, Switzerland,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Marco Stampanoni
- Paul Scherrer Institute, Villigen, Switzerland,Institute for Biomedical Engineering, University and ETH Zürich, Zurich, Switzerland
| | - Bart Bijnens
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain,Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Anne Bonnin
- Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
19
|
Pinkert-Leetsch D, Rost JU, Schmiedeknecht MUH, Stadelmann C, Alves F, Missbach-Guentner J. The murine male reproductive organ at a glance: Three-dimensional insights and virtual histology using label-free light sheet microcopy. Andrology 2022; 10:1660-1672. [PMID: 36082398 DOI: 10.1111/andr.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The unique anatomy of the male reproductive organ reflects its complex function from sperm maturation to their storage for months until emission. Since light microscopy in two dimensions (2d) cannot sufficiently demonstrate its complex morphology, a comprehensive visualization is required to identify pathologic alterations in its entire anatomical context. OBJECTIVES Aim of this study was to use three-dimensional (3d) light sheet fluorescence microscopy (LSFM) to visualize entire murine testes in 3d, label-free and at subcellular resolution, and to assign local autofluorescence to testicular and deferent structures. MATERIALS AND METHODS Murine testes were fixed with four different fixatives and subsequently cleared with benzoic acid/benzyl benzoate. Hereafter, complete murine testes were scanned with LSFM with different fluorescence filter sets and subsequently embedded in paraffin for further conventional planar histology. RESULTS Autofluorescence signals of the murine reproductive organ allowed the unambiguous identification of the testicular anatomy from the seminiferous tubules to the vas deferens with their specific stratification independent of the used fixative. Blood vessels were visualized from the pampiniform plexus to the small capillaries of single tubules. Moreover, due to the specific intrinsic fluorescence properties of the efferent ducts and the epididymis, luminal caliber, the epithelial stratification and retronuclear cytoplasmic inclusions gave a unique insight into the interface of both morphological structures. Subsequent 2d histology confirmed the identified morphological structures. DISCUSSION LSFM analysis of the murine reproductive organ allows due to its intrinsic fluorescence a simple, label-free 3d assessment of its entire duct morphology, the epithelial composition and the associated blood supply in its anatomical relation. CONCLUSION LSFM provides the technical basis for comprehensive analyses of pathologically altered murine testes in its entirety by depicting specific autofluorescence. Thereby it facilitates mouse studies of testicular disease or their drug related alterations in more detail potentially for clinical translation assessing human testicular biopsies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Diana Pinkert-Leetsch
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - John Uwe Rost
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany
| | - Frauke Alves
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany.,Department of Hematology and Medical Oncology, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany
| | - Jeannine Missbach-Guentner
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
20
|
Veress B, Peruzzi N, Eckermann M, Frohn J, Salditt T, Bech M, Ohlsson B. Structure of the myenteric plexus in normal and diseased human ileum analyzed by X-ray virtual histology slices. World J Gastroenterol 2022; 28:3994-4006. [PMID: 36157532 PMCID: PMC9367237 DOI: 10.3748/wjg.v28.i29.3994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The enteric nervous system (ENS) is situated along the entire gastrointestinal tract and is divided into myenteric and submucosal plexuses in the small and large intestines. The ENS consists of neurons, glial cells, and nerves assembled into ganglia, surrounded by telocytes, interstitial cells of Cajal, and connective tissue. Owing to the complex spatial organization of several interconnections with nerve fascicles, the ENS is difficult to examine in conventional histological sections of 3-5 μm.
AIM To examine human ileum full-thickness biopsies using X-ray phase-contrast nanotomography without prior staining to visualize the ENS.
METHODS Six patients were diagnosed with gastrointestinal dysmotility and neuropathy based on routine clinical and histopathological examinations. As controls, full-thickness biopsies were collected from healthy resection ileal regions after hemicolectomy for right colon malignancy. From the paraffin blocks, 4-µm thick sections were prepared and stained with hematoxylin and eosin for localization of the myenteric ganglia under a light microscope. A 1-mm punch biopsy (up to 1 cm in length) centered on the myenteric plexus was taken and placed into a Kapton® tube for mounting in the subsequent investigation. X-ray phase-contrast tomography was performed using two custom-designed laboratory setups with micrometer resolution for overview scanning. Subsequently, selected regions of interest were scanned at a synchrotron-based end-station, and high-resolution slices were reported. In total, more than 6000 virtual slices were analyzed from nine samples.
RESULTS In the overview scans, the general architecture and quality of the samples were studied, and the myenteric plexus was localized. High-resolution scans revealed details, including the ganglia, interganglional nerve fascicles, and surrounding tissue. The ganglia were irregular in shape and contained neurons and glial cells. Spindle-shaped cells with very thin cellular projections could be observed on the surface of the ganglia, which appeared to build a network. In the patients, there were no alterations in the general architecture of the myenteric ganglia. Nevertheless, several pathological changes were observed, including vacuolar degeneration, autophagic activity, the appearance of sequestosomes, chromatolysis, and apoptosis. Furthermore, possible expulsion of pyknotic neurons and defects in the covering cellular network could be observed in serial slices. These changes partly corresponded to previous light microscopy findings.
CONCLUSION The analysis of serial virtual slices could provide new information that cannot be obtained by classical light microscopy. The advantages, disadvantages, and future possibilities of this method are also discussed.
Collapse
Affiliation(s)
- Bela Veress
- Department of Pathology, Skåne Universiity Hospital, Malmö 205 02, Sweden
| | - Niccolò Peruzzi
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund 221 00, Sweden
| | - Marina Eckermann
- Institute for X-Ray Physics, University of Göttingen, Göttingen 37077, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen 37077, Germany
- ESRF, The European Synchrotron, Grenoble 38043, France
| | - Jasper Frohn
- Institute for X-Ray Physics, University of Göttingen, Göttingen 37077, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Göttingen 37077, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen 37077, Germany
| | - Martin Bech
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund 221 00, Sweden
| | - Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, Lund University, Malmö S-205 02, Sweden
| |
Collapse
|
21
|
Reichardt M, Moller Jensen P, Andersen Dahl V, Bjorholm Dahl A, Ackermann M, Shah H, Länger F, Werlein C, Kuehnel MP, Jonigk D, Salditt T. 3D virtual histopathology of cardiac tissue from Covid-19 patients based on phase-contrast X-ray tomography. eLife 2021; 10:e71359. [PMID: 34930527 PMCID: PMC8747495 DOI: 10.7554/elife.71359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
For the first time, we have used phase-contrast X-ray tomography to characterize the three-dimensional (3d) structure of cardiac tissue from patients who succumbed to Covid-19. By extending conventional histopathological examination by a third dimension, the delicate pathological changes of the vascular system of severe Covid-19 progressions can be analyzed, fully quantified and compared to other types of viral myocarditis and controls. To this end, cardiac samples with a cross-section of 3.5mm were scanned at a laboratory setup as well as at a parallel beam setup at a synchrotron radiation facility the synchrotron in a parallel beam configuration. The vascular network was segmented by a deep learning architecture suitable for 3d datasets (V-net), trained by sparse manual annotations. Pathological alterations of vessels, concerning the variation of diameters and the amount of small holes, were observed, indicative of elevated occurrence of intussusceptive angiogenesis, also confirmed by high-resolution cone beam X-ray tomography and scanning electron microscopy. Furthermore, we implemented a fully automated analysis of the tissue structure in the form of shape measures based on the structure tensor. The corresponding distributions show that the histopathology of Covid-19 differs from both influenza and typical coxsackie virus myocarditis.
Collapse
Affiliation(s)
- Marius Reichardt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| | | | | | | | - Maximilian Ackermann
- Institute of Anatomy and Cell Biology, University Medical Center of the Johannes Gutenberg-University MainzMainzGermany
| | - Harshit Shah
- Medizinische Hochschule Hannover (MHH)HannoverGermany
- Deutsches Zentrum für Lungenforschung (DZL), Hannover (BREATH)HannoverGermany
| | - Florian Länger
- Medizinische Hochschule Hannover (MHH)HannoverGermany
- Deutsches Zentrum für Lungenforschung (DZL), Hannover (BREATH)HannoverGermany
| | | | - Mark P Kuehnel
- Medizinische Hochschule Hannover (MHH)HannoverGermany
- Deutsches Zentrum für Lungenforschung (DZL), Hannover (BREATH)HannoverGermany
| | - Danny Jonigk
- Medizinische Hochschule Hannover (MHH)HannoverGermany
- Deutsches Zentrum für Lungenforschung (DZL), Hannover (BREATH)HannoverGermany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| |
Collapse
|
22
|
Eckermann M, van der Meer F, Cloetens P, Ruhwedel T, Möbius W, Stadelmann C, Salditt T. Three-dimensional virtual histology of the cerebral cortex based on phase-contrast X-ray tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:7582-7598. [PMID: 35003854 PMCID: PMC8713656 DOI: 10.1364/boe.434885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 05/09/2023]
Abstract
In this work, we optimize the setups and experimental parameters of X-ray phase-contrast computed-tomography for the three-dimensional imaging of the cyto- and myeloarchitecture of cerebral cortex, including both human and murine tissue. We present examples for different optical configurations using state-of-the art synchrotron instruments for holographic tomography, as well as compact laboratory setups for phase-contrast tomography in the direct contrast (edge-enhancement) regime. Apart from unstained and paraffin-embedded tissue, we tested hydrated tissue, as well as heavy metal stained and resin-embedded tissue using two different protocols. Further, we show that the image quality achieved allows to assess the neuropathology of multiple sclerosis in a biopsy sample collected during surgery.
Collapse
Affiliation(s)
- Marina Eckermann
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | | | - Peter Cloetens
- ESRF, the European Synchrotron, 71, avenue des Martyrs, 38043 Grenoble Cedex 9, France
| | - Torben Ruhwedel
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Wiebke Möbius
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Christine Stadelmann
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Institut für Neuropathologie, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| |
Collapse
|
23
|
Birnbacher L, Braig EM, Pfeiffer D, Pfeiffer F, Herzen J. Quantitative X-ray phase contrast computed tomography with grating interferometry : Biomedical applications of quantitative X-ray grating-based phase contrast computed tomography. Eur J Nucl Med Mol Imaging 2021; 48:4171-4188. [PMID: 33846846 PMCID: PMC8566444 DOI: 10.1007/s00259-021-05259-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
The ability of biomedical imaging data to be of quantitative nature is getting increasingly important with the ongoing developments in data science. In contrast to conventional attenuation-based X-ray imaging, grating-based phase contrast computed tomography (GBPC-CT) is a phase contrast micro-CT imaging technique that can provide high soft tissue contrast at high spatial resolution. While there is a variety of different phase contrast imaging techniques, GBPC-CT can be applied with laboratory X-ray sources and enables quantitative determination of electron density and effective atomic number. In this review article, we present quantitative GBPC-CT with the focus on biomedical applications.
Collapse
Affiliation(s)
- Lorenz Birnbacher
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Eva-Maria Braig
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Pfeiffer
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Herzen
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
24
|
Three-dimensional virtual histology of the human hippocampus based on phase-contrast computed tomography. Proc Natl Acad Sci U S A 2021; 118:2113835118. [PMID: 34819378 PMCID: PMC8640721 DOI: 10.1073/pnas.2113835118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
We demonstrate multiscale phase-contrast X-ray computed tomography (CT) of postmortem human brain tissue. Large tissue volumes can be covered by parallel-beam CT and combined with subcellular detail for selected regions scanned at high magnification. This has been repeated identically for a larger number of individuals, including both Alzheimer’s-diseased patients and a control group. Optimized phase retrieval, followed by automated segmentation based on machine learning, as well as feature identification and classification based on optimal transport theory, indicates a pathway from healthy to pathological structure without prior hypothesis. This study provides a blueprint for studying the cytoarchitecture of the human brain and its alterations associated with neurodegenerative diseases. We have studied the three-dimensional (3D) cytoarchitecture of the human hippocampus in neuropathologically healthy and Alzheimer’s disease (AD) individuals, based on phase-contrast X-ray computed tomography of postmortem human tissue punch biopsies. In view of recent findings suggesting a nuclear origin of AD, we target in particular the nuclear structure of the dentate gyrus (DG) granule cells. Tissue samples of 20 individuals were scanned and evaluated using a highly automated approach of measurement and analysis, combining multiscale recordings, optimized phase retrieval, segmentation by machine learning, representation of structural properties in a feature space, and classification based on the theory of optimal transport. Accordingly, we find that the prototypical transformation between a structure representing healthy granule cells and the pathological state involves a decrease in the volume of granule cell nuclei, as well as an increase in the electron density and its spatial heterogeneity. The latter can be explained by a higher ratio of heterochromatin to euchromatin. Similarly, many other structural properties can be derived from the data, reflecting both the natural polydispersity of the hippocampal cytoarchitecture between different individuals in the physiological context and the structural effects associated with AD pathology.
Collapse
|
25
|
Albers J, Svetlove A, Alves J, Kraupner A, di Lillo F, Markus MA, Tromba G, Alves F, Dullin C. Elastic transformation of histological slices allows precise co-registration with microCT data sets for a refined virtual histology approach. Sci Rep 2021; 11:10846. [PMID: 34035350 PMCID: PMC8149420 DOI: 10.1038/s41598-021-89841-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 11/24/2022] Open
Abstract
Although X-ray based 3D virtual histology is an emerging tool for the analysis of biological tissue, it falls short in terms of specificity when compared to conventional histology. Thus, the aim was to establish a novel approach that combines 3D information provided by microCT with high specificity that only (immuno-)histochemistry can offer. For this purpose, we developed a software frontend, which utilises an elastic transformation technique to accurately co-register various histological and immunohistochemical stainings with free propagation phase contrast synchrotron radiation microCT. We demonstrate that the precision of the overlay of both imaging modalities is significantly improved by performing our elastic registration workflow, as evidenced by calculation of the displacement index. To illustrate the need for an elastic co-registration approach we examined specimens from a mouse model of breast cancer with injected metal-based nanoparticles. Using the elastic transformation pipeline, we were able to co-localise the nanoparticles to specifically stained cells or tissue structures into their three-dimensional anatomical context. Additionally, we performed a semi-automated tissue structure and cell classification. This workflow provides new insights on histopathological analysis by combining CT specific three-dimensional information with cell/tissue specific information provided by classical histology.
Collapse
Affiliation(s)
- Jonas Albers
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany.
| | - Angelika Svetlove
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany.,Translational Molecular Imaging, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Justus Alves
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | - M Andrea Markus
- Translational Molecular Imaging, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | | | - Frauke Alves
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany.,Translational Molecular Imaging, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany.,Clinic for Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Eckermann M, Frohn J, Reichardt M, Osterhoff M, Sprung M, Westermeier F, Tzankov A, Werlein C, Kühnel M, Jonigk D, Salditt T. 3D virtual pathohistology of lung tissue from Covid-19 patients based on phase contrast X-ray tomography. eLife 2020; 9:e60408. [PMID: 32815517 PMCID: PMC7473770 DOI: 10.7554/elife.60408] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/17/2020] [Indexed: 01/25/2023] Open
Abstract
We present a three-dimensional (3D) approach for virtual histology and histopathology based on multi-scale phase contrast x-ray tomography, and use this to investigate the parenchymal architecture of unstained lung tissue from patients who succumbed to Covid-19. Based on this first proof-of-concept study, we propose multi-scale phase contrast x-ray tomography as a tool to unravel the pathophysiology of Covid-19, extending conventional histology by a third dimension and allowing for full quantification of tissue remodeling. By combining parallel and cone beam geometry, autopsy samples with a maximum cross section of 8 mm are scanned and reconstructed at a resolution and image quality, which allows for the segmentation of individual cells. Using the zoom capability of the cone beam geometry, regions-of-interest are reconstructed with a minimum voxel size of 167 nm. We exemplify the capability of this approach by 3D visualization of diffuse alveolar damage (DAD) with its prominent hyaline membrane formation, by mapping the 3D distribution and density of lymphocytes infiltrating the tissue, and by providing histograms of characteristic distances from tissue interior to the closest air compartment.
Collapse
Affiliation(s)
- Marina Eckermann
- Institut für Röntgenphysik, Georg-August-UniversitätGöttingenGermany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of GöttingenGöttingenGermany
| | - Jasper Frohn
- Institut für Röntgenphysik, Georg-August-UniversitätGöttingenGermany
| | - Marius Reichardt
- Institut für Röntgenphysik, Georg-August-UniversitätGöttingenGermany
| | - Markus Osterhoff
- Institut für Röntgenphysik, Georg-August-UniversitätGöttingenGermany
| | | | | | - Alexandar Tzankov
- Institut für Medizinische Genetik und Pathologie, Universitätsspital BaselBaselSwitzerland
| | - Christopher Werlein
- Medizinische Hochschule Hannover (MHH)HannoverGermany
- Deutsches Zentrum für Lungenforschung (DZL)Hannover (BREATH)Germany
| | - Mark Kühnel
- Medizinische Hochschule Hannover (MHH)HannoverGermany
- Deutsches Zentrum für Lungenforschung (DZL)Hannover (BREATH)Germany
| | - Danny Jonigk
- Medizinische Hochschule Hannover (MHH)HannoverGermany
- Deutsches Zentrum für Lungenforschung (DZL)Hannover (BREATH)Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-UniversitätGöttingenGermany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of GöttingenGöttingenGermany
| |
Collapse
|