1
|
Ng MY, Wang H, Zhang H, Prucker I, Perera L, Goncharova E, Wamiru A, Jessen HJ, Stanley RE, Shears SB, Luo J, O'Keefe BR, Wilson BAP. Biochemical and biophysical characterization of inositol-tetrakisphosphate 1-kinase inhibitors. J Biol Chem 2025; 301:108274. [PMID: 39922495 PMCID: PMC11927698 DOI: 10.1016/j.jbc.2025.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/10/2025] Open
Abstract
Inositol phosphates (IPs) and inositol pyrophosphate play critical roles in many biological processes such as signaling molecules in pathways responsible for cellular functions involved in growth and maintenance. The biosynthesis of IPs is carried out by a family of inositol phosphate kinases. In mammals, Inositol tetrakisphosphate kinase-1 (ITPK1) phosphorylates inositol-1,3,4-trisphosphate (Ins(1,3,4)P3) and inositol-3,4,5,6-tetrakisphosphate (IP4), generating inositol-1,3,4,5,6-pentakisphosphate (IP5), which can be further phosphorylated to become inositol hexakisphosphate (IP6). ITPK1 also possesses phosphatase activity that can convert IP5 back to IP4; therefore, ITPK1 may serve as a regulatory step in IP6 production. IP6 utilization has been implicated in processes fundamental to cellular sustainability that are severely perturbed in many disease states including RNA editing, DNA repair, chromatin structure organization, and ubiquitin ligation. Therefore, ITPK1, with no known inhibitors in the literature, is a potential molecular target for modulating important processes in several human diseases. By independently coupling ITPK1 phosphatase and kinase activities to luciferase activity, we have developed and used biochemical high-throughput assays to discover eight ITPK1 inhibitors. Further analysis revealed that three of these leads inhibit ITPK1 in an ATP-competitive manner, with low micromolar to nanomolar affinities. We further demonstrate that the most potent ITPK1 inhibitor can regulate cellular ITPK1 activity. We determined the crystal structure of ITPK1 in complex with this inhibitor at a resolution of 2.25 Å. This work provides insight into the design of potential next-generation inhibitors.
Collapse
Affiliation(s)
- Martin Y Ng
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Huanchen Wang
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Haibo Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Isabel Prucker
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Ekaterina Goncharova
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Antony Wamiru
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Robin E Stanley
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Stephen B Shears
- Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA; Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, USA.
| | - Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
2
|
Jiang Z, Jiang H, He Y, He Y, Liang D, Yu H, Li A, Signorato R. Development and testing of a dual-frequency real-time hardware feedback system for the hard X-ray nanoprobe beamline of the SSRF. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:100-108. [PMID: 39642103 PMCID: PMC11708843 DOI: 10.1107/s1600577524010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/18/2024] [Indexed: 12/08/2024]
Abstract
A novel dual-frequency real-time feedback system has been developed to simultaneously optimize and stabilize beam position and energy at the hard X-ray nanoprobe beamline of the Shanghai Synchrotron Radiation Facility. A user-selected cut-off frequency is used to separate the beam position signal obtained from an X-ray beam position monitor into two parts, i.e. high-frequency and low-frequency components. They can be real-time corrected and optimized by two different optical components, one chromatic and the other achromatic, of very different inertial mass, such as Bragg monochromator dispersive elements and a pre-focusing total external reflection mirror. The experimental results shown in this article demonstrate a significant improvement in position and energy stabilities. The long-term beam angular stability clearly improved from 2.21 to 0.92 µrad RMS in the horizontal direction and from 0.72 to 0.10 µrad RMS in the vertical direction.
Collapse
Affiliation(s)
- Zhisen Jiang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Hui Jiang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jialuo Road, Jiading DistrictShanghai201800People’s Republic of China
| | - Yinghua He
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Yan He
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Dongxu Liang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Huaina Yu
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Aiguo Li
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jialuo Road, Jiading DistrictShanghai201800People’s Republic of China
| | | |
Collapse
|
3
|
Warren AJ, Trincao J, Crawshaw AD, Beale EV, Duller G, Stallwood A, Lunnon M, Littlewood R, Prescott A, Foster A, Smith N, Rehm G, Gayadeen S, Bloomer C, Alianelli L, Laundy D, Sutter J, Cahill L, Evans G. VMXm - A sub-micron focus macromolecular crystallography beamline at Diamond Light Source. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1593-1608. [PMID: 39475835 PMCID: PMC11542661 DOI: 10.1107/s1600577524009160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/18/2024] [Indexed: 11/08/2024]
Abstract
VMXm joins the suite of operational macromolecular crystallography beamlines at Diamond Light Source. It has been designed to optimize rotation data collections from protein crystals less than 10 µm and down to below 1 µm in size. The beamline has a fully focused beam of 0.3 × 2.3 µm (vertical × horizontal) with a tuneable energy range (6-28 keV) and high flux (1.6 × 1012 photons s-1 at 12.5 keV). The crystals are housed within a vacuum chamber to minimize background scatter from air. Crystals are plunge-cooled on cryo-electron microscopy grids, allowing much of the liquid surrounding the crystals to be removed. These factors improve the signal-to-noise during data collection and the lifetime of the microcrystals can be prolonged by exploiting photoelectron escape. A novel in vacuo sample environment has been designed which also houses a scanning electron microscope to aid with sample visualization. This combination of features at VMXm allows measurements at the physical limits of X-ray crystallography on biomacromolecules to be explored and exploited.
Collapse
Affiliation(s)
- Anna J. Warren
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Jose Trincao
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Adam D. Crawshaw
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Emma V. Beale
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
- Paul Scherrer InstitutForschungsstrasse 111 5232 Villigen PSISwitzerland
| | - Graham Duller
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Andrew Stallwood
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
- Rosalind Franklin InstituteRutherford Appleton LaboratoryHarwell CampusDidcotOxfordshireOX11 0QXUnited Kingdom
| | - Mark Lunnon
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Richard Littlewood
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Adam Prescott
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Andrew Foster
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Neil Smith
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Guenther Rehm
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
- Helmholtz-Zentrum BerlinHahn-Meitner-Platz 1 14109 BerlinGermany
| | - Sandira Gayadeen
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Christopher Bloomer
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Lucia Alianelli
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - David Laundy
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - John Sutter
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Leo Cahill
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
| | - Gwyndaf Evans
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOxfordshireOX11 0DEUnited Kingdom
- Rosalind Franklin InstituteRutherford Appleton LaboratoryHarwell CampusDidcotOxfordshireOX11 0QXUnited Kingdom
| |
Collapse
|
4
|
Harshbarger WD, Holzapfel G, Seraj N, Tian S, Chesterman C, Fu Z, Pan Y, Harelson C, Peng D, Huang Y, Chandramouli S, Malito E, Bottomley MJ, Williams J. Structures of the Varicella Zoster Virus Glycoprotein E and Epitope Mapping of Vaccine-Elicited Antibodies. Vaccines (Basel) 2024; 12:1111. [PMID: 39460278 PMCID: PMC11511291 DOI: 10.3390/vaccines12101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Varicella zoster virus (VZV) is the causative agent for chickenpox and herpes zoster (HZ, shingles). HZ is a debilitating disease affecting elderly and immunocompromised populations. Glycoprotein E (gE) is indispensable for viral replication and cell-to-cell spread and is the primary target for anti-VZV antibodies. Importantly, gE is the sole antigen in Shingrix, a highly efficacious, AS01B-adjuvanted vaccine approved in multiple countries for the prevention of HZ, yet the three-dimensional (3D) structure of gE remains elusive. Objectives: We sought to determine the structure of VZV gE and to understand in detail its interactions with neutralizing antibodies. Methods: We used X-ray crystallography and cryo-electron microscopy to elucidate structures of gE bound by recombinant Fabs of antibodies previously elicited through vaccination with Zostavax, a live, attenuated vaccine. Results: The 3D structures resolve distinct central and C-terminal antigenic domains, presenting an array of diverse conformational epitopes. The central domain has two beta-sheets and two alpha helices, including an IgG-like fold. The C-terminal domain exhibits 3 beta-sheets and an Ig-like fold and high structural similarity to HSV1 gE. Conclusions: gE from VZV-infected cells elicits a human antibody response with a preference for the gI binding domain of gE. These results yield insights to VZV gE structure and immunogenicity, provide a framework for future studies, and may guide the design of additional herpesvirus vaccine antigens. Teaser: Structures of varicella zoster virus glycoprotein E reveal distinct antigenic domains and define epitopes for vaccine-elicited human antibodies.
Collapse
Affiliation(s)
| | | | - Nishat Seraj
- GSK, Rockville, MD 20850, USA (N.S.); (D.P.); (Y.H.); (E.M.)
| | - Sai Tian
- GSK, Rockville, MD 20850, USA (N.S.); (D.P.); (Y.H.); (E.M.)
| | | | - Zongming Fu
- GSK, Rockville, MD 20850, USA (N.S.); (D.P.); (Y.H.); (E.M.)
| | - Yan Pan
- GSK, Rockville, MD 20850, USA (N.S.); (D.P.); (Y.H.); (E.M.)
| | - Claire Harelson
- GSK, Rockville, MD 20850, USA (N.S.); (D.P.); (Y.H.); (E.M.)
| | - Dongjun Peng
- GSK, Rockville, MD 20850, USA (N.S.); (D.P.); (Y.H.); (E.M.)
| | - Ying Huang
- GSK, Rockville, MD 20850, USA (N.S.); (D.P.); (Y.H.); (E.M.)
- WuXi Biologics, Cranbury, NJ 08512, USA
| | - Sumana Chandramouli
- GSK, Rockville, MD 20850, USA (N.S.); (D.P.); (Y.H.); (E.M.)
- Moderna Therapeutics Inc., Cambridge, MA 02142, USA
| | - Enrico Malito
- GSK, Rockville, MD 20850, USA (N.S.); (D.P.); (Y.H.); (E.M.)
- Schrödinger, Inc., New York City, NY 10036, USA
| | - Matthew James Bottomley
- GSK, Rockville, MD 20850, USA (N.S.); (D.P.); (Y.H.); (E.M.)
- Dynavax Technologies Corporation, Emeryville, CA 94608, USA
| | - James Williams
- GSK, Rockville, MD 20850, USA (N.S.); (D.P.); (Y.H.); (E.M.)
| |
Collapse
|
5
|
Brosey CA, Link TM, Shen R, Moiani D, Burnett K, Hura GL, Jones DE, Tainer JA. Chemical screening by time-resolved X-ray scattering to discover allosteric probes. Nat Chem Biol 2024; 20:1199-1209. [PMID: 38671223 PMCID: PMC11358040 DOI: 10.1038/s41589-024-01609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Drug discovery relies on efficient identification of small-molecule leads and their interactions with macromolecular targets. However, understanding how chemotypes impact mechanistically important conformational states often remains secondary among high-throughput discovery methods. Here, we present a conformational discovery pipeline integrating time-resolved, high-throughput small-angle X-ray scattering (TR-HT-SAXS) and classic fragment screening applied to allosteric states of the mitochondrial import oxidoreductase apoptosis-inducing factor (AIF). By monitoring oxidized and X-ray-reduced AIF states, TR-HT-SAXS leverages structure and kinetics to generate a multidimensional screening dataset that identifies fragment chemotypes allosterically stimulating AIF dimerization. Fragment-induced dimerization rates, quantified with time-resolved SAXS similarity analysis (kVR), capture structure-activity relationships (SAR) across the top-ranked 4-aminoquinoline chemotype. Crystallized AIF-aminoquinoline complexes validate TR-SAXS-guided SAR, supporting this conformational chemotype for optimization. AIF-aminoquinoline structures and mutational analysis reveal active site F482 as an underappreciated allosteric stabilizer of AIF dimerization. This conformational discovery pipeline illustrates TR-HT-SAXS as an effective technology for targeting chemical leads to important macromolecular states.
Collapse
Affiliation(s)
- Chris A Brosey
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Todd M Link
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Runze Shen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davide Moiani
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathryn Burnett
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Greg L Hura
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Darin E Jones
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Shweta H, Gupta K, Zhou Y, Cui X, Li S, Lu Z, Goldman YE, Dantzig JA. Characterization and structural basis for the brightness of mCLIFY: a novel monomeric and circularly permuted bright yellow fluorescent protein. RESEARCH SQUARE 2024:rs.3.rs-4638282. [PMID: 39070629 PMCID: PMC11276004 DOI: 10.21203/rs.3.rs-4638282/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We present mCLIFY: a monomeric, bright, yellow, and long-lived fluorescent protein (FP) created by circular permutation of YPet, the brightest yellow FP from Aequorea Victoria for use in cellular and in vitro single molecule studies. mCLIFY retains the enhanced photophysical properties of YPET as a monomer at concentrations ≤ 40 μM. In contrast, we determined that YPet has a dimerization dissociation constant (K D 1-2) of 3.4 μM. Dimerization of YPet can cause homo-FRET, which underlies quantitative errors due to dimerization and homo-FRET. We determined the atomic structure of mCLIFY at 1.57 Å resolution and used its similarity with Venus for guided chromophore-targeted substitution studies to provide insights into its enhanced photophysical properties. The mutation V58L within the chromophore pocket improved quantum yield and extinction coefficient, making mCLIFY ~30% brighter than Venus. The extensive characterization of the photophysical and structural properties of YPet and mCLIFY presented here allowed us to reveal the basis of their long lifetimes and enhanced brightness and the basis of YPet's dimerization.
Collapse
Affiliation(s)
- Him Shweta
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Center for Engineering Mechanobiology (CEMB), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Present address: Departments of Pharmacology and Cellular and Molecular Biology, University of California, Davis, CA-95616
| | - Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Yufeng Zhou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Xiaonan Cui
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Selene Li
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Zhe Lu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Yale E. Goldman
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Center for Engineering Mechanobiology (CEMB), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Present address: Departments of Pharmacology and Cellular and Molecular Biology, University of California, Davis, CA-95616
| | - Jody A. Dantzig
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| |
Collapse
|
7
|
Kelley EH, Osipiuk J, Korbas M, Endres M, Bland A, Ehrman V, Joachimiak A, Olsen KW, Becker DP. N α -acetyl-L-ornithine deacetylase from Escherichia coli and a ninhydrin-based assay to enable inhibitor identification. Front Chem 2024; 12:1415644. [PMID: 39055043 PMCID: PMC11270798 DOI: 10.3389/fchem.2024.1415644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 07/27/2024] Open
Abstract
Bacteria are becoming increasingly resistant to antibiotics, therefore there is an urgent need for new classes of antibiotics to fight antibiotic resistance. Mammals do not express N ɑ -acetyl-L-ornithine deacetylase (ArgE), an enzyme that is critical for bacterial survival and growth, thus ArgE represents a promising new antibiotic drug target, as inhibitors would not suffer from mechanism-based toxicity. A new ninhydrin-based assay was designed and validated that included the synthesis of the substrate analog N 5, N 5-di-methyl N α-acetyl-L-ornithine (kcat/Km = 7.32 ± 0.94 × 104 M-1s-1). This new assay enabled the screening of potential inhibitors that absorb in the UV region, and thus is superior to the established 214 nm assay. Using this new ninhydrin-based assay, captopril was confirmed as an ArgE inhibitor (IC50 = 58.7 μM; Ki = 37.1 ± 0.85 μM), and a number of phenylboronic acid derivatives were identified as inhibitors, including 4-(diethylamino)phenylboronic acid (IC50 = 50.1 μM). Selected inhibitors were also tested in a thermal shift assay with ArgE using SYPRO Orange dye against Escherichia coli ArgE to observe the stability of the enzyme in the presence of inhibitors (captopril Ki = 35.9 ± 5.1 μM). The active site structure of di-Zn EcArgE was confirmed using X-ray absorption spectroscopy, and we reported two X-ray crystal structures of E. coli ArgE. In summary, we describe the development of a new ninhydrin-based assay for ArgE, the identification of captopril and phenylboronic acids as ArgE inhibitors, thermal shift studies with ArgE + captopril, and the first two published crystal structures of ArgE (mono-Zn and di-Zn).
Collapse
Affiliation(s)
- Emma H. Kelley
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Jerzy Osipiuk
- Structural Biology Center, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- eBERlight, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
| | | | - Michael Endres
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
| | - Alayna Bland
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Victoria Ehrman
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Andrzej Joachimiak
- Structural Biology Center, Argonne National Laboratory, X-ray Science Division, Lemont, IL, United States
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Kenneth W. Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Ferens FG, Taber CC, Stuart S, Hubert M, Tarade D, Lee JE, Ohh M. Deficiency in PHD2-mediated hydroxylation of HIF2α underlies Pacak-Zhuang syndrome. Commun Biol 2024; 7:240. [PMID: 38418569 PMCID: PMC10902354 DOI: 10.1038/s42003-024-05904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Pacak-Zhuang syndrome is caused by mutations in the EPAS1 gene, which encodes for one of the three hypoxia-inducible factor alpha (HIFα) paralogs HIF2α and is associated with defined but varied phenotypic presentations including neuroendocrine tumors and polycythemia. However, the mechanisms underlying the complex genotype-phenotype correlations remain incompletely understood. Here, we devised a quantitative method for determining the dissociation constant (Kd) of the HIF2α peptides containing disease-associated mutations and the catalytic domain of prolyl-hydroxylase (PHD2) using microscale thermophoresis (MST) and showed that neuroendocrine-associated Class 1 HIF2α mutants have distinctly higher Kd than the exclusively polycythemia-associated Class 2 HIF2α mutants. Based on the co-crystal structure of PHD2/HIF2α peptide complex at 1.8 Å resolution, we showed that the Class 1 mutated residues are localized to the critical interface between HIF2α and PHD2, adjacent to the PHD2 active catalytic site, while Class 2 mutated residues are localized to the more flexible region of HIF2α that makes less contact with PHD2. Concordantly, Class 1 mutations were found to significantly increase HIF2α-mediated transcriptional activation in cellulo compared to Class 2 counterparts. These results reveal a structural mechanism in which the strength of the interaction between HIF2α and PHD2 is at the root of the general genotype-phenotype correlations observed in Pacak-Zhuang syndrome.
Collapse
Affiliation(s)
- Fraser G Ferens
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Cassandra C Taber
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Sarah Stuart
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada
| | - Mia Hubert
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Daniel Tarade
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Michael Ohh
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Biochemistry, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
9
|
Wittlinger F, Ogboo BC, Shevchenko E, Damghani T, Pham CD, Schaeffner IK, Oligny BT, Chitnis SP, Beyett TS, Rasch A, Buckley B, Urul DA, Shaurova T, May EW, Schaefer EM, Eck MJ, Hershberger PA, Poso A, Laufer SA, Heppner DE. Linking ATP and allosteric sites to achieve superadditive binding with bivalent EGFR kinase inhibitors. Commun Chem 2024; 7:38. [PMID: 38378740 PMCID: PMC10879502 DOI: 10.1038/s42004-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Bivalent molecules consisting of groups connected through bridging linkers often exhibit strong target binding and unique biological effects. However, developing bivalent inhibitors with the desired activity is challenging due to the dual motif architecture of these molecules and the variability that can be introduced through differing linker structures and geometries. We report a set of alternatively linked bivalent EGFR inhibitors that simultaneously occupy the ATP substrate and allosteric pockets. Crystal structures show that initial and redesigned linkers bridging a trisubstituted imidazole ATP-site inhibitor and dibenzodiazepinone allosteric-site inhibitor proved successful in spanning these sites. The re-engineered linker yielded a compound that exhibited significantly higher potency (~60 pM) against the drug-resistant EGFR L858R/T790M and L858R/T790M/C797S, which was superadditive as compared with the parent molecules. The enhanced potency is attributed to factors stemming from the linker connection to the allosteric-site group and informs strategies to engineer linkers in bivalent agent design.
Collapse
Affiliation(s)
- Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Blessing C Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ekaterina Shevchenko
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany
| | - Tahereh Damghani
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Calvin D Pham
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ilse K Schaeffner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brandon T Oligny
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Surbhi P Chitnis
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Tyler S Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 5119 Rollins Research Center, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | - Alexander Rasch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Brian Buckley
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Daniel A Urul
- AssayQuant Technologies, Inc., Marlboro, MA, 01752, USA
| | - Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Earl W May
- AssayQuant Technologies, Inc., Marlboro, MA, 01752, USA
| | | | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Antti Poso
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, 70210, Kuopio, Finland
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany.
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany.
| | - David E Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.
- Department of Structural Biology, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
10
|
Wranik M, Kepa MW, Beale EV, James D, Bertrand Q, Weinert T, Furrer A, Glover H, Gashi D, Carrillo M, Kondo Y, Stipp RT, Khusainov G, Nass K, Ozerov D, Cirelli C, Johnson PJM, Dworkowski F, Beale JH, Stubbs S, Zamofing T, Schneider M, Krauskopf K, Gao L, Thorn-Seshold O, Bostedt C, Bacellar C, Steinmetz MO, Milne C, Standfuss J. A multi-reservoir extruder for time-resolved serial protein crystallography and compound screening at X-ray free-electron lasers. Nat Commun 2023; 14:7956. [PMID: 38042952 PMCID: PMC10693631 DOI: 10.1038/s41467-023-43523-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/10/2023] [Indexed: 12/04/2023] Open
Abstract
Serial crystallography at X-ray free-electron lasers (XFELs) permits the determination of radiation-damage free static as well as time-resolved protein structures at room temperature. Efficient sample delivery is a key factor for such experiments. Here, we describe a multi-reservoir, high viscosity extruder as a step towards automation of sample delivery at XFELs. Compared to a standard single extruder, sample exchange time was halved and the workload of users was greatly reduced. In-built temperature control of samples facilitated optimal extrusion and supported sample stability. After commissioning the device with lysozyme crystals, we collected time-resolved data using crystals of a membrane-bound, light-driven sodium pump. Static data were also collected from the soluble protein tubulin that was soaked with a series of small molecule drugs. Using these data, we identify low occupancy (as little as 30%) ligands using a minimal amount of data from a serial crystallography experiment, a result that could be exploited for structure-based drug design.
Collapse
Affiliation(s)
- Maximilian Wranik
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen-PSI, Villigen, 5232, Switzerland.
| | - Michal W Kepa
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen-PSI, Villigen, 5232, Switzerland.
| | - Emma V Beale
- Laboratory for Synchrotron Radiation and Femtochemistry, Photon Science Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
| | - Daniel James
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen-PSI, Villigen, 5232, Switzerland
| | - Quentin Bertrand
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen-PSI, Villigen, 5232, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen-PSI, Villigen, 5232, Switzerland
| | - Antonia Furrer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen-PSI, Villigen, 5232, Switzerland
| | - Hannah Glover
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen-PSI, Villigen, 5232, Switzerland
| | - Dardan Gashi
- Laboratory for Synchrotron Radiation and Femtochemistry, Photon Science Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
| | - Melissa Carrillo
- Laboratory of Nanoscale Biology, Photon Science Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
| | - Yasushi Kondo
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen-PSI, Villigen, 5232, Switzerland
| | - Robin T Stipp
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen-PSI, Villigen, 5232, Switzerland
| | - Georgii Khusainov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen-PSI, Villigen, 5232, Switzerland
| | - Karol Nass
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
| | - Dmitry Ozerov
- Scientific Computing, Theory and Data Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
| | - Claudio Cirelli
- Laboratory for Synchrotron Radiation and Femtochemistry, Photon Science Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
| | - Philip J M Johnson
- Laboratory for Nonlinear Optics, Photon Science Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
| | - Florian Dworkowski
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
| | - John H Beale
- Laboratory for Macromolecules and Bioimaging, Photon Science Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
| | - Scott Stubbs
- Large Research Facilities Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
| | - Thierry Zamofing
- Large Research Facilities Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
| | - Marco Schneider
- Large Research Facilities Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
| | - Kristina Krauskopf
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstr. 7, Munich, 81377, Germany
| | - Li Gao
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstr. 7, Munich, 81377, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstr. 7, Munich, 81377, Germany
| | - Christoph Bostedt
- Laboratory for Synchrotron Radiation and Femtochemistry, Photon Science Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Camila Bacellar
- Laboratory for Synchrotron Radiation and Femtochemistry, Photon Science Division, Paul Scherrer Institut, Villigen-PSI, 5232, Villigen, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen-PSI, Villigen, 5232, Switzerland
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Christopher Milne
- Femtosecond X-ray Experiments Instrument, European XFEL GmbH, Schenefeld, Germany
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen-PSI, Villigen, 5232, Switzerland
| |
Collapse
|
11
|
Sinatra L, Vogelmann A, Friedrich F, Tararina MA, Neuwirt E, Colcerasa A, König P, Toy L, Yesiloglu TZ, Hilscher S, Gaitzsch L, Papenkordt N, Zhai S, Zhang L, Romier C, Einsle O, Sippl W, Schutkowski M, Gross O, Bendas G, Christianson DW, Hansen FK, Jung M, Schiedel M. Development of First-in-Class Dual Sirt2/HDAC6 Inhibitors as Molecular Tools for Dual Inhibition of Tubulin Deacetylation. J Med Chem 2023; 66:14787-14814. [PMID: 37902787 PMCID: PMC10641818 DOI: 10.1021/acs.jmedchem.3c01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
Dysregulation of both tubulin deacetylases sirtuin 2 (Sirt2) and the histone deacetylase 6 (HDAC6) has been associated with the pathogenesis of cancer and neurodegeneration, thus making these two enzymes promising targets for pharmaceutical intervention. Herein, we report the design, synthesis, and biological characterization of the first-in-class dual Sirt2/HDAC6 inhibitors as molecular tools for dual inhibition of tubulin deacetylation. Using biochemical in vitro assays and cell-based methods for target engagement, we identified Mz325 (33) as a potent and selective inhibitor of both target enzymes. Inhibition of both targets was further confirmed by X-ray crystal structures of Sirt2 and HDAC6 in complex with building blocks of 33. In ovarian cancer cells, 33 evoked enhanced effects on cell viability compared to single or combination treatment with the unconjugated Sirt2 and HDAC6 inhibitors. Thus, our dual Sirt2/HDAC6 inhibitors are important new tools to study the consequences and the therapeutic potential of dual inhibition of tubulin deacetylation.
Collapse
Affiliation(s)
- Laura Sinatra
- Institute
for Drug Discovery, Medical Faculty, Leipzig
University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Anja Vogelmann
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Florian Friedrich
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Margarita A. Tararina
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emilia Neuwirt
- Institute
of Neuropathology, Medical Center−University of Freiburg, Faculty
of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
- CIBSS−Centre
for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Arianna Colcerasa
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Philipp König
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lara Toy
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Talha Z. Yesiloglu
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
| | - Sebastian Hilscher
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
- Department
of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry
and Biotechnology, Martin-Luther-University
Halle-Wittenberg, 06120 Halle, Germany
| | - Lena Gaitzsch
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Niklas Papenkordt
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Shiyang Zhai
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Lin Zhang
- Institute
of Biochemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Christophe Romier
- Institut
de Génétique et de Biologie Moléculaire et Cellulaire
(IGBMC), Université de Strasbourg,
CNRS UMR 7104, Inserm UMR-S 1258, 1 rue Laurent Fries, F-67400 Illkirch, France
| | - Oliver Einsle
- Institute
of Biochemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Wolfgang Sippl
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Straße 2-4, 06120 Halle (Saale), Germany
| | - Mike Schutkowski
- Department
of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry
and Biotechnology, Martin-Luther-University
Halle-Wittenberg, 06120 Halle, Germany
| | - Olaf Gross
- Institute
of Neuropathology, Medical Center−University of Freiburg, Faculty
of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
- CIBSS−Centre
for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Center
for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106 Freiburg, Germany
| | - Gerd Bendas
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - David W. Christianson
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Finn K. Hansen
- Institute
for Drug Discovery, Medical Faculty, Leipzig
University, Brüderstraße 34, 04103 Leipzig, Germany
- Department
of Pharmaceutical & Cell Biological Chemistry, Pharmaceutical
Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Manfred Jung
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Heppner D, Wittlinger F, Ogboo B, Shevchenko E, Damghani T, Pham C, Schaeffner I, Oligny B, Chitnis S, Beyett T, Rasch A, Buckley B, Urul D, Shaurova T, May E, Schaefer E, Eck M, Hershberger P, Poso A, Laufer S. Linking ATP and allosteric sites to achieve superadditive binding with bivalent EGFR kinase inhibitors. RESEARCH SQUARE 2023:rs.3.rs-3286949. [PMID: 37790373 PMCID: PMC10543509 DOI: 10.21203/rs.3.rs-3286949/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Bivalent molecules consisting of groups connected through bridging linkers often exhibit strong target binding and unique biological effects. However, developing bivalent inhibitors with the desired activity is challenging due to the dual motif architecture of these molecules and the variability that can be introduced through differing linker structures and geometries. We report a set of alternatively linked bivalent EGFR inhibitors that simultaneously occupy the ATP substrate and allosteric pockets. Crystal structures show that initial and redesigned linkers bridging a trisubstituted imidazole ATP-site inhibitor and dibenzodiazepinone allosteric-site inhibitor proved successful in spanning these sites. The reengineered linker yielded a compound that exhibited significantly higher potency (~60 pM) against the drug-resistant EGFR L858R/T790M and L858R/T790M/C797S, which was superadditive as compared with the parent molecules. The enhanced potency is attributed to factors stemming from the linker connection to the allosteric-site group and informs strategies to engineer linkers in bivalent agent design.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michael Eck
- Dana-Farber Cancer Institute & Department of Biological Chemistry and Molecular Pharmacology at Harvard Medical School
| | | | | | | |
Collapse
|
13
|
Thorne RE. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Acta Crystallogr D Struct Biol 2023; 79:78-94. [PMID: 36601809 PMCID: PMC9815097 DOI: 10.1107/s2059798322011652] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023] Open
Abstract
For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q. Rev. Biophys. 54, e1]. Here, the key advantages and physical principles of, and methods for, crystallographic data collection at noncryogenic temperatures and some factors relevant to interpreting the resulting data are discussed. For room-temperature data collection to realize its potential within the structural biology toolkit, streamlined and standardized methods for delivering crystals prepared in the home laboratory to the synchrotron and for automated handling and data collection, similar to those for cryocrystallography, should be implemented.
Collapse
Affiliation(s)
- Robert E. Thorne
- Physics Department, Cornell University, Ithaca, NY 14853, USA
- MiTeGen LLC, PO Box 3867, Ithaca, NY 14850, USA
| |
Collapse
|
14
|
Heppner DE, Wittlinger F, Beyett TS, Shaurova T, Urul DA, Buckley B, Pham CD, Schaeffner IK, Yang B, Ogboo BC, May EW, Schaefer EM, Eck MJ, Laufer SA, Hershberger PA. Structural Basis for Inhibition of Mutant EGFR with Lazertinib (YH25448). ACS Med Chem Lett 2022; 13:1856-1863. [DOI: 10.1021/acsmedchemlett.2c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- David E. Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tyler S. Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Daniel A. Urul
- AssayQuant Technologies, Inc., 260 Cedar Hill St., Marlboro, Massachusetts 01752, United States
| | - Brian Buckley
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Calvin D. Pham
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ilse K. Schaeffner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Bo Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Blessing C. Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Earl W. May
- AssayQuant Technologies, Inc., 260 Cedar Hill St., Marlboro, Massachusetts 01752, United States
| | - Erik M. Schaefer
- AssayQuant Technologies, Inc., 260 Cedar Hill St., Marlboro, Massachusetts 01752, United States
| | - Michael J. Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Stefan A. Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Pamela A. Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| |
Collapse
|
15
|
Schneider DK, Soares AS, Lazo EO, Kreitler DF, Qian K, Fuchs MR, Bhogadi DK, Antonelli S, Myers SS, Martins BS, Skinner JM, Aishima J, Bernstein HJ, Langdon T, Lara J, Petkus R, Cowan M, Flaks L, Smith T, Shea-McCarthy G, Idir M, Huang L, Chubar O, Sweet RM, Berman LE, McSweeney S, Jakoncic J. AMX - the highly automated macromolecular crystallography (17-ID-1) beamline at the NSLS-II. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1480-1494. [PMID: 36345756 PMCID: PMC9641562 DOI: 10.1107/s1600577522009377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The highly automated macromolecular crystallography beamline AMX/17-ID-1 is an undulator-based high-intensity (>5 × 1012 photons s-1), micro-focus (7 µm × 5 µm), low-divergence (1 mrad × 0.35 mrad) energy-tunable (5-18 keV) beamline at the NSLS-II, Brookhaven National Laboratory, Upton, NY, USA. It is one of the three life science beamlines constructed by the NIH under the ABBIX project and it shares sector 17-ID with the FMX beamline, the frontier micro-focus macromolecular crystallography beamline. AMX saw first light in March 2016 and started general user operation in February 2017. At AMX, emphasis has been placed on high throughput, high capacity, and automation to enable data collection from the most challenging projects using an intense micro-focus beam. Here, the current state and capabilities of the beamline are reported, and the different macromolecular crystallography experiments that are routinely performed at AMX/17-ID-1 as well as some plans for the near future are presented.
Collapse
Affiliation(s)
| | | | - Edwin O. Lazo
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | | | - Kun Qian
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Martin R. Fuchs
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Dileep K. Bhogadi
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Steve Antonelli
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Stuart S. Myers
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | | | - John M. Skinner
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Jun Aishima
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Herbert J. Bernstein
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
- Ronin Institute, Montclair, New Jersey, USA
| | - Thomas Langdon
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - John Lara
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Robert Petkus
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Matt Cowan
- CSI, Brookhaven National Laboratory, Upton, New York, USA
| | - Leonid Flaks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Thomas Smith
- Physics Department, Brookhaven National Laboratory, Upton, New York, USA
| | | | - Mourad Idir
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Lei Huang
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Oleg Chubar
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Robert M. Sweet
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Lonny E. Berman
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Sean McSweeney
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Jean Jakoncic
- NSLS-II, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
16
|
Karasawa A, Andi B, Fuchs MR, Shi W, McSweeney S, Hendrickson WA, Liu Q. Multi-crystal native-SAD phasing at 5 keV with a helium environment. IUCRJ 2022; 9:768-777. [PMID: 36381147 PMCID: PMC9634608 DOI: 10.1107/s205225252200971x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
De novo structure determination from single-wavelength anomalous diffraction using native sulfur or phospho-rus in biomolecules (native-SAD) is an appealing method to mitigate the labor-intensive production of heavy-atom derivatives and seleno-methio-nyl substitutions. The native-SAD method is particularly attractive for membrane proteins, which are difficult to produce and often recalcitrant to grow into decent-sized crystals. Native-SAD uses lower-energy X-rays to enhance anomalous signals from sulfur or phospho-rus. However, at lower energies, the scattering and absorption of air contribute to the background noise, reduce the signals and are thus adverse to native-SAD phasing. We have previously demonstrated native-SAD phasing at an energy of 5 keV in air at the NSLS-II FMX beamline. Here, the use of a helium path developed to reduce both the noise from background scattering and the air absorption of the diffracted X-ray beam are described. The helium path was used for collection of anomalous diffraction data at 5 keV for two proteins: thaumatin and the membrane protein TehA. Although anomalous signals from each individual crystal are very weak, robust anomalous signals are obtained from data assembled from micrometre-sized crystals. The thaumatin structure was determined from 15 microcrystals and the TehA structure from 18 microcrystals. These results demonstrate the usefulness of a helium environment in support of native-SAD phasing at 5 keV.
Collapse
Affiliation(s)
- Akira Karasawa
- Center on Membrane Protein Production and Analysis, New York Structural Biology Center, New York, NY 10027, USA
| | - Babak Andi
- Photon Sciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Martin R. Fuchs
- Photon Sciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wuxian Shi
- Photon Sciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sean McSweeney
- Photon Sciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wayne A. Hendrickson
- Center on Membrane Protein Production and Analysis, New York Structural Biology Center, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Qun Liu
- Photon Sciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
17
|
Ebrahim A, Riley BT, Kumaran D, Andi B, Fuchs MR, McSweeney S, Keedy DA. The temperature-dependent conformational ensemble of SARS-CoV-2 main protease (M pro). IUCRJ 2022; 9:682-694. [PMID: 36071812 PMCID: PMC9438506 DOI: 10.1107/s2052252522007497] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 05/12/2023]
Abstract
The COVID-19 pandemic, instigated by the SARS-CoV-2 coronavirus, continues to plague the globe. The SARS-CoV-2 main protease, or Mpro, is a promising target for the development of novel antiviral therapeutics. Previous X-ray crystal structures of Mpro were obtained at cryogenic tem-per-ature or room tem-per-ature only. Here we report a series of high-resolution crystal structures of unliganded Mpro across multiple tem-per-atures from cryogenic to physiological, and another at high humidity. We inter-rogate these data sets with parsimonious multiconformer models, multi-copy ensemble models, and isomorphous difference density maps. Our analysis reveals a perturbation-dependent conformational landscape for Mpro, including a mobile zinc ion inter-leaved between the catalytic dyad, mercurial conformational heterogeneity at various sites including a key substrate-binding loop, and a far-reaching intra-molecular network bridging the active site and dimer inter-face. Our results may inspire new strategies for antiviral drug development to aid preparation for future coronavirus pandemics.
Collapse
Affiliation(s)
- Ali Ebrahim
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, England, United Kingdom
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Blake T. Riley
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Babak Andi
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA
| | - Martin R. Fuchs
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sean McSweeney
- Center for BioMolecular Structure, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, USA
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA
- PhD Programs in Biochemistry, Biology, and Chemistry, The Graduate Center–City University of New York, New York, NY 10016, USA
| |
Collapse
|
18
|
Mou TC, Zeng B, Doukov TI, Sprang SR. Application of sulfur SAD to small crystals with a large asymmetric unit and anomalous substructure. Acta Crystallogr D Struct Biol 2022; 78:1021-1031. [PMID: 35916226 PMCID: PMC9344479 DOI: 10.1107/s2059798322005848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
The application of sulfur single-wavelength anomalous dispersion (S-SAD) to determine the crystal structures of macromolecules can be challenging if the asymmetric unit is large, the crystals are small, the size of the anomalously scattering sulfur structure is large and the resolution at which the anomalous signals can be accurately measured is modest. Here, as a study of such a case, approaches to the SAD phasing of orthorhombic Ric-8A crystals are described. The structure of Ric-8A was published with only a brief description of the phasing process [Zeng et al. (2019), Structure, 27, 1137-1141]. Here, alternative approaches to determining the 40-atom sulfur substructure of the 103 kDa Ric-8A dimer that composes the asymmetric unit are explored. At the data-collection wavelength of 1.77 Å measured at the Frontier micro-focusing Macromolecular Crystallography (FMX) beamline at National Synchrotron Light Source II, the sulfur anomalous signal strength, |Δano|/σΔano (d''/sig), approaches 1.4 at 3.4 Å resolution. The highly redundant, 11 000 000-reflection data set measured from 18 crystals was segmented into isomorphous clusters using BLEND in the CCP4 program suite. Data sets within clusters or sets of clusters were scaled and merged using AIMLESS from CCP4 or, alternatively, the phenix.scale_and_merge tool from the Phenix suite. The latter proved to be the more effective in extracting anomalous signals. The HySS tool in Phenix, SHELXC/D and PRASA as implemented in the CRANK2 program suite were each employed to determine the sulfur substructure. All of these approaches were effective, although HySS, as a component of the phenix.autosol tool, required data from all crystals to find the positions of the sulfur atoms. Critical contributors in this case study to successful phase determination by SAD included (i) the high-flux FMX beamline, featuring helical-mode data collection and a helium-filled beam path, (ii) as recognized by many authors, a very highly redundant, multiple-crystal data set and (iii) the inclusion within that data set of data from crystals that were scanned over large ω ranges, yielding highly isomorphous and highly redundant intensity measurements.
Collapse
Affiliation(s)
- Tung-Chung Mou
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Baisen Zeng
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Tzanko I. Doukov
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
| | - Stephen R. Sprang
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
19
|
Divergent evolution of extreme production of variant plant monounsaturated fatty acids. Proc Natl Acad Sci U S A 2022; 119:e2201160119. [PMID: 35867834 PMCID: PMC9335243 DOI: 10.1073/pnas.2201160119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dietary and oleochemical value of vegetable oils is determined by their component fatty acids. Double bonds or “unsaturation” in fatty acids are critical for vegetable oil functionality. Seeds containing vegetable oils with extremely high levels of a single fatty acid have provided insights into enzyme-substrate recognition and metabolic plasticity and genes for biotechnological improvement of oilseeds. We report the discovery of species with seed oils containing >90% of an unusual monounsaturated fatty acid. We identified the variant enzyme that produces this fatty acid and elucidated its three-dimensional structure. We used this information to develop enzymes that produce nonnaturally occurring monounsaturated fatty acids and sourced genes from these species to engineer oilseeds and bacteria for modified fatty acid compositions. Metabolic extremes provide opportunities to understand enzymatic and metabolic plasticity and biotechnological tools for novel biomaterial production. We discovered that seed oils of many Thunbergia species contain up to 92% of the unusual monounsaturated petroselinic acid (18:1Δ6), one of the highest reported levels for a single fatty acid in plants. Supporting the biosynthetic origin of petroselinic acid, we identified a Δ6-stearoyl-acyl carrier protein (18:0-ACP) desaturase from Thunbergia laurifolia, closely related to a previously identified Δ6-palmitoyl-ACP desaturase that produces sapienic acid (16:1Δ6)-rich oils in Thunbergia alata seeds. Guided by a T. laurifolia desaturase crystal structure obtained in this study, enzyme mutagenesis identified key amino acids for functional divergence of Δ6 desaturases from the archetypal Δ9-18:0-ACP desaturase and mutations that result in nonnative enzyme regiospecificity. Furthermore, we demonstrate the utility of the T. laurifolia desaturase for the production of unusual monounsaturated fatty acids in engineered plant and bacterial hosts. Through stepwise metabolic engineering, we provide evidence that divergent evolution of extreme petroselinic acid and sapienic acid production arises from biosynthetic and metabolic functional specialization and enhanced expression of specific enzymes to accommodate metabolism of atypical substrates.
Collapse
|
20
|
Stepanov S, Kissick D, Makarov O, Hilgart M, Becker M, Venugopalan N, Xu S, Smith JL, Fischetti RF. Fast automated energy changes at synchrotron radiation beamlines equipped with transfocator or focusing mirrors. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:393-399. [PMID: 35254302 PMCID: PMC8900858 DOI: 10.1107/s1600577522001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Algorithms and procedures to fully automate retuning of synchrotron radiation beamlines over wide energy ranges are discussed. The discussion is based on the implementation at the National Institute of General Medical Sciences and the National Cancer Institute Structural Biology Facility at the Advanced Photon Source. When a user selects a new beamline energy, software synchronously controls the beamline monochromator and undulator to maintain the X-ray beam flux after the monochromator, preserves beam attenuation by determining a new set of attenuator foils, changes, as needed, mirror reflecting stripes and the undulator harmonic, preserves beam focal distance of compound refractive lens focusing by changing the In/Out combination of lenses in the transfocator, and, finally, restores beam position at the sample by on-the-fly scanning of either the Kirkpatrick-Baez mirror angles or the transfocator up/down and inboard/outboard positions. The sample is protected from radiation damage by automatically moving it out of the beam during the energy change and optimization.
Collapse
Affiliation(s)
- Sergey Stepanov
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - David Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - Oleg Makarov
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - Mark Hilgart
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - Michael Becker
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - Nagarajan Venugopalan
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - Shenglan Xu
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Robert F. Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| |
Collapse
|
21
|
Nanao M, Basu S, Zander U, Giraud T, Surr J, Guijarro M, Lentini M, Felisaz F, Sinoir J, Morawe C, Vivo A, Beteva A, Oscarsson M, Caserotto H, Dobias F, Flot D, Nurizzo D, Gigmes J, Foos N, Siebrecht R, Roth T, Theveneau P, Svensson O, Papp G, Lavault B, Cipriani F, Barrett R, Clavel C, Leonard G. ID23-2: an automated and high-performance microfocus beamline for macromolecular crystallography at the ESRF. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:581-590. [PMID: 35254323 PMCID: PMC8900849 DOI: 10.1107/s1600577522000984] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/28/2022] [Indexed: 05/30/2023]
Abstract
ID23-2 is a fixed-energy (14.2 keV) microfocus beamline at the European Synchrotron Radiation Facility (ESRF) dedicated to macromolecular crystallography. The optics and sample environment have recently been redesigned and rebuilt to take full advantage of the upgrade of the ESRF to the fourth generation Extremely Brilliant Source (ESRF-EBS). The upgraded beamline now makes use of two sets of compound refractive lenses and multilayer mirrors to obtain a highly intense (>1013 photons s-1) focused microbeam (minimum size 1.5 µm × 3 µm full width at half-maximum). The sample environment now includes a FLEX-HCD sample changer/storage system, as well as a state-of-the-art MD3Up high-precision multi-axis diffractometer. Automatic data reduction and analysis are also provided for more advanced protocols such as synchrotron serial crystallographic experiments.
Collapse
Affiliation(s)
- Max Nanao
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Shibom Basu
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Ulrich Zander
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Thierry Giraud
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - John Surr
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Matias Guijarro
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Mario Lentini
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Franck Felisaz
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Jeremy Sinoir
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Christian Morawe
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Amparo Vivo
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Antonia Beteva
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Marcus Oscarsson
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Hugo Caserotto
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Fabien Dobias
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - David Flot
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Didier Nurizzo
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Jonathan Gigmes
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Nicolas Foos
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | | | - Thomas Roth
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Pascal Theveneau
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Olof Svensson
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Gergely Papp
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | | | - Florent Cipriani
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Ray Barrett
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Carole Clavel
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Gordon Leonard
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
22
|
Ebrahim A, Riley BT, Kumaran D, Andi B, Fuchs MR, McSweeney S, Keedy DA. The temperature-dependent conformational ensemble of SARS-CoV-2 main protease (M pro). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.03.437411. [PMID: 33972941 PMCID: PMC8109201 DOI: 10.1101/2021.05.03.437411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The COVID-19 pandemic, instigated by the SARS-CoV-2 coronavirus, continues to plague the globe. The SARS-CoV-2 main protease, or Mpro, is a promising target for development of novel antiviral therapeutics. Previous X-ray crystal structures of Mpro were obtained at cryogenic temperature or room temperature only. Here we report a series of high-resolution crystal structures of unliganded Mpro across multiple temperatures from cryogenic to physiological, and another at high humidity. We interrogate these datasets with parsimonious multiconformer models, multi-copy ensemble models, and isomorphous difference density maps. Our analysis reveals a temperature-dependent conformational landscape for Mpro, including mobile solvent interleaved between the catalytic dyad, mercurial conformational heterogeneity in a key substrate-binding loop, and a far-reaching intramolecular network bridging the active site and dimer interface. Our results may inspire new strategies for antiviral drug development to counter-punch COVID-19 and combat future coronavirus pandemics.
Collapse
Affiliation(s)
- Ali Ebrahim
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Blake T. Riley
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
| | - Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973
| | - Babak Andi
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, United States
| | - Martin R. Fuchs
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
| | - Sean McSweeney
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
- National Virtual Biotechnology Laboratory (NVBL), US Department of Energy, Washington, DC, United States
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- Ph.D. Programs in Biochemistry, Biology, and Chemistry, The Graduate Center – City University of New York, New York, NY 10016
| |
Collapse
|
23
|
Lazo EO, Antonelli S, Aishima J, Bernstein HJ, Bhogadi D, Fuchs MR, Guichard N, McSweeney S, Myers S, Qian K, Schneider D, Shea-McCarthy G, Skinner J, Sweet R, Yang L, Jakoncic J. Robotic sample changers for macromolecular X-ray crystallography and biological small-angle X-ray scattering at the National Synchrotron Light Source II. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1649-1661. [PMID: 34475312 PMCID: PMC8415329 DOI: 10.1107/s1600577521007578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/24/2021] [Indexed: 05/13/2023]
Abstract
Here we present two robotic sample changers integrated into the experimental stations for the macromolecular crystallography (MX) beamlines AMX and FMX, and the biological small-angle scattering (bioSAXS) beamline LiX. They enable fully automated unattended data collection and remote access to the beamlines. The system designs incorporate high-throughput, versatility, high-capacity, resource sharing and robustness. All systems are centered around a six-axis industrial robotic arm coupled with a force torque sensor and in-house end effectors (grippers). They have the same software architecture and the facility standard EPICS-based BEAST alarm system. The MX system is compatible with SPINE bases and Unipucks. It comprises a liquid nitrogen dewar holding 384 samples (24 Unipucks) and a stay-cold gripper, and utilizes machine vision software to track the sample during operations and to calculate the final mount position on the goniometer. The bioSAXS system has an in-house engineered sample storage unit that can hold up to 360 samples (20 sample holders) which keeps samples at a user-set temperature (277 K to 300 K). The MX systems were deployed in early 2017 and the bioSAXS system in early 2019.
Collapse
Affiliation(s)
- Edwin O. Lazo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Stephen Antonelli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jun Aishima
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Herbert J. Bernstein
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Dileep Bhogadi
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Martin R. Fuchs
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Sean McSweeney
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Stuart Myers
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kun Qian
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Dieter Schneider
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Grace Shea-McCarthy
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John Skinner
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Robert Sweet
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jean Jakoncic
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
24
|
Abstract
Serial crystallography (SX) is an emerging X-ray crystallographic method for determining macromolecule structures. It can address concerns regarding the limitations of data collected by conventional crystallography techniques, which require cryogenic-temperature environments and allow crystals to accumulate radiation damage. Time-resolved SX studies using the pump-probe methodology provide useful information for understanding macromolecular mechanisms and structure fluctuation dynamics. This Special Issue deals with the serial crystallography approach using an X-ray free electron laser (XFEL) and synchrotron X-ray source, and reviews recent SX research involving synchrotron use. These reports provide insights into future serial crystallography research trends and approaches.
Collapse
|