1
|
Yuan YT, Guo TC, Wu CY, Yeh YQ, Wu CT, Hsu SY, Weng ZW, Ho MR, Hsu STD, Chen YC, Chang CR, Wu KP, Jeng US, Sue SC. Filamentous chemokine CCL5 structure and the functional aspects. Sci Rep 2025; 15:13552. [PMID: 40253490 PMCID: PMC12009402 DOI: 10.1038/s41598-025-98114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/09/2025] [Indexed: 04/21/2025] Open
Abstract
Human inflammation-related CC chemokine ligand 5 (hCCL5) has significant self-assembly property under physiological conditions. The mechanism and function of hCCL5 oligomerization remain unclear. Different intermolecular interactions, such as E66-K25 or E66-R44/K45, have been reported to mediate hCCL5 oligomerization. This complexity makes structural determination difficult. Based on a K25S mutation to eliminate the E66-K25 interaction, we observed hCCL5 forming a helical-sharped filament in transmission electron microscopy (TEM). The filamentous polymerization is a dominant process when the concentration reaches ~ 100 nM and the filaments further form a higher-order assembly when concentration increases. In this large filament, a combination of X-ray solution scattering and cryo-EM analysis determined the structure; NMR further confirmed the filament packing, in which the interactions of residues R44 and K45 are critically involved. The sequence 43TRKNR47 was found to be essential for CCL5 trafficking inside the cells and for glycosaminoglycan binding outside the cells. The functional aspects of the chemokine filament are discussed.
Collapse
Affiliation(s)
- Yi-Ting Yuan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tzu-Ching Guo
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chu-Ya Wu
- Instrumentation Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Ching-Tse Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Yao Hsu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zi-Wen Weng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Higashihiroshima, Japan
| | - Yi-Chen Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chuang-Rung Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - U-Ser Jeng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, Taiwan.
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan.
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
2
|
Chou CK, Tseng CC, Chiang CH, Chen YH, Liu YC, Huang CY, Chao CH, Huang CH. The current status and future prospects of the Synchrotron Radiation Protein Crystallography Core Facility at NSRRC: a focus on the TPS 05A, TPS 07A and TLS 15A1 beamlines. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:457-465. [PMID: 39913306 PMCID: PMC11892912 DOI: 10.1107/s1600577525000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/08/2025] [Indexed: 03/11/2025]
Abstract
The Synchrotron Radiation Protein Crystallography Core Facility (SPXF) at the National Synchrotron Radiation Research Center has been pivotal in advancing structural biology research in Taiwan. Since the 1990s, Taiwan has invested in the development of synchrotron light sources, including the Taiwan Light Source and the Taiwan Photon Source, which have profoundly enhanced protein structure analysis capability. Through the high-performance beamlines, SPXF has enabled significant scientific achievements, contributing to disease research and drug development. The facility's move towards automation and its integration of advanced techniques, such as in situ serial synchrotron crystallography, underscore its commitment to meeting the evolving needs of the research community. The SPXF continues to foster innovation and collaboration, providing world-class resources for both domestic and international users.
Collapse
Affiliation(s)
- Chung-Kuang Chou
- Protein Diffraction Group, Experimental Facility DivisionNational Synchrotron Radiation Research Center101 Hsin-Ann Road, Hsinchu Science ParkHsinchu300092Taiwan
| | - Chien-Chang Tseng
- Protein Diffraction Group, Experimental Facility DivisionNational Synchrotron Radiation Research Center101 Hsin-Ann Road, Hsinchu Science ParkHsinchu300092Taiwan
| | - Cheng-Hung Chiang
- Protein Diffraction Group, Experimental Facility DivisionNational Synchrotron Radiation Research Center101 Hsin-Ann Road, Hsinchu Science ParkHsinchu300092Taiwan
| | - Yi-Hui Chen
- Protein Diffraction Group, Experimental Facility DivisionNational Synchrotron Radiation Research Center101 Hsin-Ann Road, Hsinchu Science ParkHsinchu300092Taiwan
| | - Yi-Chun Liu
- Protein Diffraction Group, Experimental Facility DivisionNational Synchrotron Radiation Research Center101 Hsin-Ann Road, Hsinchu Science ParkHsinchu300092Taiwan
| | - Chen-Ying Huang
- Protein Diffraction Group, Experimental Facility DivisionNational Synchrotron Radiation Research Center101 Hsin-Ann Road, Hsinchu Science ParkHsinchu300092Taiwan
| | - Chun-Hsiung Chao
- Protein Diffraction Group, Experimental Facility DivisionNational Synchrotron Radiation Research Center101 Hsin-Ann Road, Hsinchu Science ParkHsinchu300092Taiwan
| | - Chun-Hsiang Huang
- Protein Diffraction Group, Experimental Facility DivisionNational Synchrotron Radiation Research Center101 Hsin-Ann Road, Hsinchu Science ParkHsinchu300092Taiwan
| |
Collapse
|
3
|
Shiu YJ, Mansel BW, Liao KF, Hsu TW, Chang JW, Shih O, Yeh YQ, Allwang J, Jeng US. Revealing the Solution Conformation and Hydration Structure of Type I Tropocollagen Using X-ray Scattering and Molecular Dynamics Simulation. Biomacromolecules 2025; 26:449-458. [PMID: 39746152 PMCID: PMC11734691 DOI: 10.1021/acs.biomac.4c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Hydration plays a crucial role in regulating the dispersion behavior of biomolecules in water, particularly in how pH-sensitive hydration water network forms around proteins. This study explores the conformation and hydration structure of Type-I tropocollagen using small- and wide-angle X-ray scattering (SWAXS) and molecular dynamics (MD) simulations. The results reveal that tropocollagen exhibits a significant softening conformation in solution, transitioning from its rod-like structure in tissues to a worm-like conformation, characterized by a reduced radius of gyration of 50 nm and a persistent length of 34 nm. The SWAXS-supported MD calculations further establish a hydration water network characterized by a 2.8 Å free-water exclusion zone where water molecules are largely hydrogen-bonded to the densely distributed polar groups on the tropocollagen surfaces. These first-layer water molecules are bridged by outer water molecules extending up to 4 Å from the protein surfaces, forming a major hydration shell that encapsulates the protein.
Collapse
Affiliation(s)
- Ying-Jen Shiu
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Bradley W. Mansel
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
- Fonterra
Research and Development Centre, Dairy Farm Road, Fitzherbert, Palmerston North 4442, New Zealand
| | - Kuei-Fen Liao
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Ting-Wei Hsu
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Je-Wei Chang
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Orion Shih
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Yi-Qi Yeh
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Johannes Allwang
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - U-Ser Jeng
- National
Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
- College
of Semiconductor Research, National Tsing
Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
4
|
Lin SW, Lam PK, Wu CT, Su KH, Sung CF, Huang SR, Chang JW, Shih O, Yeh YQ, Vo TH, Tsao HK, Hsieh HT, Jeng US, Shieh FK, Yang HC. Decoding the Biomimetic Mineralization of Metal-Organic Frameworks in Water. ACS NANO 2024; 18:25170-25182. [PMID: 39189348 DOI: 10.1021/acsnano.4c07276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
This study unveils the "green" metal-organic framework (MOF) structuring mechanism by decoding proton transfer in water during ZIF-8 synthesis. Combining in situ small- to wide-angle X-ray scattering, multiscale simulations, and quantum calculations, we reveal that the ZIF-8 early-stage nucleation and crystallization process in aqueous solution unfolds in three distinct stages. In stage I, imidazole ligands replace water in zinc-water cages, triggering an "acidity flip" that promotes proton transfer. This leads to the assembly of structures from single zinc ions to 3D amorphous cluster nuclei. In stage II, amorphous nuclei undergo a critical transformation, evolving into crystalline nuclei and subsequently forming mesoscale-ordered structures and crystallites. The process proceeds until the amorphous precursors are completely consumed, with the transformation kinetics governed by an energy barrier that determines the rate-limiting step. In stage III, stable crystallite nanoparticles form in solution, characterized by a temperature-dependent thermal equilibrium of molecular interactions at the crystal-solution interface. Beyond these core advancements, we explore the influence of encapsulated pepsin and nonencapsulated lysozyme on ZIF-8 formation, finding that their amino acid proton transfer capacity and concentration influence the resulting biomolecule-MOF composite's shape and encapsulation efficiency. The findings contribute to understanding the molecular mechanisms behind biomimetic mineralization and have potential implications for engineering proteins within amorphous MOF nuclei as protein embryo growth sites.
Collapse
Affiliation(s)
- Shang-Wei Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Phuc Khanh Lam
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Chin-Teng Wu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Kuan-Hsuan Su
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Chi-Fang Sung
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Sen-Ruo Huang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Je-Wei Chang
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Trung Hieu Vo
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Haw-Ting Hsieh
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, California 94720, United States
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
- Department of Chemical Engineering & College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Fa-Kuen Shieh
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Hsiao-Ching Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
5
|
Lin TC, Shih O, Tsai TY, Yeh YQ, Liao KF, Mansel BW, Shiu YJ, Chang CF, Su AC, Chen YR, Jeng US. Binding structures of SERF1a with NT17-polyQ peptides of huntingtin exon 1 revealed by SEC-SWAXS, NMR and molecular simulation. IUCRJ 2024; 11:849-858. [PMID: 39120045 PMCID: PMC11364024 DOI: 10.1107/s2052252524006341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
The aberrant fibrillization of huntingtin exon 1 (Httex1) characterized by an expanded polyglutamine (polyQ) tract is a defining feature of Huntington's disease, a neurodegenerative disorder. Recent investigations underscore the involvement of a small EDRK-rich factor 1a (SERF1a) in promoting Httex1 fibrillization through interactions with its N terminus. By establishing an integrated approach with size-exclusion-column-based small- and wide-angle X-ray scattering (SEC-SWAXS), NMR, and molecular simulations using Rosetta, the analysis here reveals a tight binding of two NT17 fragments of Httex1 (comprising the initial 17 amino acids at the N terminus) to the N-terminal region of SERF1a. In contrast, examination of the complex structure of SERF1a with a coiled NT17-polyQ peptide (33 amino acids in total) indicates sparse contacts of the NT17 and polyQ segments with the N-terminal side of SERF1a. Furthermore, the integrated SEC-SWAXS and molecular-simulation analysis suggests that the coiled NT17 segment can transform into a helical conformation when associated with a polyQ segment exhibiting high helical content. Intriguingly, NT17-polyQ peptides with enhanced secondary structures display diminished interactions with SERF1a. This insight into the conformation-dependent binding of NT17 provides clues to a catalytic association mechanism underlying SERF1a's facilitation of Httext1 fibrillization.
Collapse
Affiliation(s)
- Tien Chang Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Tien Ying Tsai
- Genomics Research Center, Academia Sinica, Taipei 115024, Taiwan
| | - Yi Qi Yeh
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Kuei Fen Liao
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Bradley W Mansel
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Ying Jen Shiu
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Chi Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 115024, Taiwan
| | - An Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yun Ru Chen
- Genomics Research Center, Academia Sinica, Taipei 115024, Taiwan
| | - U Ser Jeng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
6
|
Liao JM, Hong S, Wang Y, Cheng Y, Ho K, Toh S, Shih O, Jeng U, Lyu P, Hu I, Huang M, Chang C, Cheng T. Integrating molecular dynamics simulation with small- and wide-angle X-ray scattering to unravel the flexibility, antigen-blocking, and protease-restoring functions in a hindrance-based pro-antibody. Protein Sci 2024; 33:e5124. [PMID: 39145427 PMCID: PMC11325194 DOI: 10.1002/pro.5124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Spatial hindrance-based pro-antibodies (pro-Abs) are engineered antibodies to reduce monoclonal antibodies' (mAbs) on-target toxicity using universal designed blocking segments that mask mAb antigen-binding sites through spatial hindrance. By linking through protease substrates and linkers, these blocking segments can be removed site-specifically. Although many types of blocking segments have been developed, such as coiled-coil and hinge-based Ab locks, the molecular structure of the pro-Ab, particularly the region showing how the blocking fragment blocks the mAb, has not been elucidated by X-ray crystallography or cryo-EM. To achieve maximal effect, a pro-Ab must have high antigen-blocking and protease-restoring efficiencies, but the unclear structure limits its further optimization. Here, we utilized molecular dynamics (MD) simulations to study the dynamic structures of a hinge-based Ab lock pro-Ab, pro-Nivolumab, and validated the simulated structures with small- and wide-angle X-ray scattering (SWAXS). The MD results were closely consistent with SWAXS data (χ2 best-fit = 1.845, χ2 allMD = 3.080). The further analysis shows a pronounced flexibility of the Ab lock (root-mean-square deviation = 10.90 Å), yet it still masks the important antigen-binding residues by 57.3%-88.4%, explaining its 250-folded antigen-blocking efficiency. The introduced protease accessible surface area method affirmed better protease efficiency for light chain (33.03 Å2) over heavy chain (5.06 Å2), which aligns with the experiments. Overall, we developed MD-SWAXS validation method to study the dynamics of flexible blocking segments and introduced methodologies to estimate their antigen-blocking and protease-restoring efficiencies, which would potentially be advancing the clinical applications of any spatial hindrance-based pro-Ab.
Collapse
Affiliation(s)
- Jun Min Liao
- Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
| | - Shih‐Ting Hong
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Yeng‐Tseng Wang
- Department of BiochemistryKaohsiung Medical UniversityKaohsiungTaiwan
| | - Yi‐An Cheng
- Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Biomedical Science and Environmental BiologyKaohsiung Medical UniversityKaohsiungTaiwan
- Precisemab Biotech Co. LtdTaipeiTaiwan
| | - Kai‐Wen Ho
- Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
| | - Shu‐Ing Toh
- Department of Biological Science and TechnologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Orion Shih
- National Synchrotron Radiation Research CenterHsinchu Science ParkHsinchuTaiwan
| | - U‐Ser Jeng
- National Synchrotron Radiation Research CenterHsinchu Science ParkHsinchuTaiwan
- Department of Chemical Engineering &College of Semiconductor ResearchNational Tsing Hua UniversityHsinchuTaiwan
| | - Ping‐Chiang Lyu
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - I‐Chen Hu
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Ming‐Yii Huang
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Radiation OncologyKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
| | - Chin‐Yuan Chang
- Department of Biomedical Science and Environmental BiologyKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Biological Science and TechnologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio‐devicesNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Tian‐Lu Cheng
- Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Biomedical Science and Environmental BiologyKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiungTaiwan
| |
Collapse
|
7
|
Wang S, Huang CH, Lin TS, Yeh YQ, Fan YS, Wang SW, Tseng HC, Huang SJ, Chang YY, Jeng US, Chang CI, Tzeng SR. Structural basis for recruitment of peptidoglycan endopeptidase MepS by lipoprotein NlpI. Nat Commun 2024; 15:5461. [PMID: 38937433 PMCID: PMC11211486 DOI: 10.1038/s41467-024-49552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Peptidoglycan (PG) sacculi surround the cytoplasmic membrane, maintaining cell integrity by withstanding internal turgor pressure. During cell growth, PG endopeptidases cleave the crosslinks of the fully closed sacculi, allowing for the incorporation of new glycan strands and expansion of the peptidoglycan mesh. Outer-membrane-anchored NlpI associates with hydrolases and synthases near PG synthesis complexes, facilitating spatially close PG hydrolysis. Here, we present the structure of adaptor NlpI in complex with the endopeptidase MepS, revealing atomic details of how NlpI recruits multiple MepS molecules and subsequently influences PG expansion. NlpI binding elicits a disorder-to-order transition in the intrinsically disordered N-terminal of MepS, concomitantly promoting the dimerization of monomeric MepS. This results in the alignment of two asymmetric MepS dimers respectively located on the two opposite sides of the dimerization interface of NlpI, thus enhancing MepS activity in PG hydrolysis. Notably, the protein level of MepS is primarily modulated by the tail-specific protease Prc, which is known to interact with NlpI. The structure of the Prc-NlpI-MepS complex demonstrates that NlpI brings together MepS and Prc, leading to the efficient MepS degradation by Prc. Collectively, our results provide structural insights into the NlpI-enabled avidity effect of cellular endopeptidases and NlpI-directed MepS degradation by Prc.
Collapse
Affiliation(s)
- Shen Wang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsiang Huang
- Protein Diffraction Group, Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Te-Sheng Lin
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Qi Yeh
- Soft Matter Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Yun-Sheng Fan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Si-Wei Wang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsi-Ching Tseng
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Yu-Yang Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - U-Ser Jeng
- Soft Matter Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Shiou-Ru Tzeng
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Yeh HW, Chen PP, Yeh TC, Lin SL, Chen YT, Lin WP, Chen T, Pang JM, Lin KT, Wang LHC, Lin YC, Shih O, Jeng US, Hsia KC, Cheng HC. Cep57 regulates human centrosomes through multivalent interactions. Proc Natl Acad Sci U S A 2024; 121:e2305260121. [PMID: 38857398 PMCID: PMC11194501 DOI: 10.1073/pnas.2305260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024] Open
Abstract
Human Cep57 is a coiled-coil scaffold at the pericentriolar matrix (PCM), controlling centriole duplication and centrosome maturation for faithful cell division. Genetic truncation mutations of Cep57 are associated with the mosaic-variegated aneuploidy (MVA) syndrome. During interphase, Cep57 forms a complex with Cep63 and Cep152, serving as regulators for centrosome maturation. However, the molecular interplay of Cep57 with these essential scaffolding proteins remains unclear. Here, we demonstrate that Cep57 undergoes liquid-liquid phase separation (LLPS) driven by three critical domains (NTD, CTD, and polybasic LMN). In vitro Cep57 condensates catalyze microtubule nucleation via the LMN motif-mediated tubulin concentration. In cells, the LMN motif is required for centrosomal microtubule aster formation. Moreover, Cep63 restricts Cep57 assembly, expansion, and microtubule polymerization activity. Overexpression of competitive constructs for multivalent interactions, including an MVA mutation, leads to excessive centrosome duplication. In Cep57-depleted cells, self-assembly mutants failed to rescue centriole disengagement and PCM disorganization. Thus, Cep57's multivalent interactions are pivotal for maintaining the accurate structural and functional integrity of human centrosomes.
Collapse
Affiliation(s)
- Hung-Wei Yeh
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Po-Pang Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Tzu-Chen Yeh
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Shiou-Lan Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Yue-Ting Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Wan-Ping Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Ting Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Jia Meng Pang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Kai-Ti Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu30076, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Kuo-Chiang Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei11529, Taiwan
| | - Hui-Chun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| |
Collapse
|
9
|
Chang YJ, Lin KT, Shih O, Yang CH, Chuang CY, Fang MH, Lai WB, Lee YC, Kuo HC, Hung SC, Yao CK, Jeng US, Chen YR. Sulfated disaccharide protects membrane and DNA damages from arginine-rich dipeptide repeats in ALS. SCIENCE ADVANCES 2024; 10:eadj0347. [PMID: 38394210 PMCID: PMC10889363 DOI: 10.1126/sciadv.adj0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Hexanucleotide repeat expansion in C9ORF72 (C9) is the most prevalent mutation among amyotrophic lateral sclerosis (ALS) patients. The patients carry over ~30 to hundreds or thousands of repeats translated to dipeptide repeats (DPRs) where poly-glycine-arginine (GR) and poly-proline-arginine (PR) are most toxic. The structure-function relationship is still unknown. Here, we examined the minimal neurotoxic repeat number of poly-GR and found that extension of the repeat number led to a loose helical structure disrupting plasma and nuclear membrane. Poly-GR/PR bound to nucleotides and interfered with transcription. We screened and identified a sulfated disaccharide that bound to poly-GR/PR and rescued poly-GR/PR-induced toxicity in neuroblastoma and C9-ALS-iPSC-derived motor neurons. The compound rescued the shortened life span and defective locomotion in poly-GR/PR expressing Drosophila model and improved motor behavior in poly-GR-injected mouse model. Overall, our results reveal structural and toxicity mechanisms for poly-GR/PR and facilitate therapeutic development for C9-ALS.
Collapse
Affiliation(s)
- Yu-Jen Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
| | - Kai-Tai Lin
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Chi-Hua Yang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ching-Yu Chuang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Han Fang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Wei-Bin Lai
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | | | - Chi-Kuang Yao
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
10
|
Huang TF, Liu JJ, Lai ZY, Chang JW, Zhuang YR, Jiang ZC, Chang CL, Lin WC, Chen YH, Wu YH, Sun YE, Luo TA, Chen YK, Yen JC, Hsu HK, Chen BH, Ting LY, Lu CY, Lin YT, Hsu LY, Wu TL, Yang SD, Su AC, Jeng US, Chou HH. Performance and Solution Structures of Side-Chain-Bridged Oligo (Ethylene Glycol) Polymer Photocatalysts for Enhanced Hydrogen Evolution under Natural Light Illumination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304743. [PMID: 37803930 DOI: 10.1002/smll.202304743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Converting solar energy into hydrogen energy using conjugated polymers (CP) is a promising solution to the energy crisis. Improving water solubility plays one of the critical factors in enhancing the hydrogen evolution rate (HER) of CP photocatalysts. In this study, a novel concept of incorporating hydrophilic side chains to connect the backbones of CPs to improve their HER is proposed. This concept is realized through the polymerization of carbazole units bridged with octane, ethylene glycol, and penta-(ethylene glycol) to form three new side-chain-braided (SCB) CPs: PCz2S-OCt, PCz2S-EG, and PCz2S-PEG. Verified through transient absorption spectra, the enhanced capability of PCz2S-PEG for ultrafast electron transfer and reduced recombination effects has been demonstrated. Small- and wide-angle X-ray scattering (SAXS/WAXS) analyses reveal that these three SCB-CPs form cross-linking networks with different mass fractal dimensions (f) in aqueous solution. With the lowest f value of 2.64 and improved water/polymer interfaces, PCz2S-PEG demonstrates the best HER, reaching up to 126.9 µmol h-1 in pure water-based photocatalytic solution. Moreover, PCz2S-PEG exhibits comparable performance in seawater-based photocatalytic solution under natural sunlight. In situ SAXS analysis further reveals nucleation-dominated generation of hydrogen nanoclusters with a size of ≈1.5 nm in the HER of PCz2S-PEG under light illumination.
Collapse
Affiliation(s)
- Tse-Fu Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jia-Jen Liu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ze-Yu Lai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Je-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ying-Rang Zhuang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Zi-Cheng Jiang
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chih-Li Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Wei-Cheng Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yan-Heng Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Hsiang Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-En Sun
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ting-An Luo
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi-Kuan Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jui-Chen Yen
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hung-Kai Hsu
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Li-Yu Ting
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chia-Yeh Lu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-Tung Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ling-Yu Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Tien-Lin Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - U-Ser Jeng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
11
|
Tsai CL, Chang JW, Cheng KY, Lan YJ, Hsu YC, Lin QD, Chen TY, Shih O, Lin CH, Chiang PH, Simenas M, Kalendra V, Chiang YW, Chen CH, Jeng US, Wang SK. Comprehensive characterization of polyproline tri-helix macrocyclic nanoscaffolds for predictive ligand positioning. NANOSCALE ADVANCES 2024; 6:947-959. [PMID: 38298598 PMCID: PMC10825903 DOI: 10.1039/d3na00945a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
Multivalent ligands hold promise for enhancing avidity and selectivity to simultaneously target multimeric proteins, as well as potentially modulating receptor signaling in pharmaceutical applications. Essential for these manipulations are nanosized scaffolds that precisely control ligand display patterns, which can be achieved by using polyproline oligo-helix macrocyclic nanoscaffolds via selective binding to protein oligomers and cell surface receptors. This work focuses on synthesis and structural characterization of different-sized polyproline tri-helix macrocyclic (PP3M) scaffolds. Through combined analysis of circular dichroism (CD), small- and wide-angle X-ray scattering (SWAXS), electron spin resonance (ESR) spectroscopy, and molecular modeling, a non-coplanar tri-helix loop structure with partially crossover helix ends is elucidated. This structural model aligns well with scanning tunneling microscopy (STM) imaging. The present work enhances the precision of nanoscale organic synthesis, offering prospects for controlled ligand positioning on scaffolds. This advancement paves the way for further applications in nanomedicine through selective protein interaction, manipulation of cell surface receptor functions, and developments of more complex polyproline-based nanostructures.
Collapse
Affiliation(s)
- Chia-Lung Tsai
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Je-Wei Chang
- National Synchrotron Radiation Research Center Hsinchu 300092 Taiwan
| | - Kum-Yi Cheng
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University Taipei 106319 Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Yi-Cheng Hsu
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Qun-Da Lin
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Tzu-Yuan Chen
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center Hsinchu 300092 Taiwan
| | - Chih-Hsun Lin
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University Taipei 106319 Taiwan
| | - Po-Hsun Chiang
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Mantas Simenas
- Faculty of Physics, Vilnius University Sauletekio 3 LT-10257 Vilnius Lithuania
| | - Vidmantas Kalendra
- Faculty of Physics, Vilnius University Sauletekio 3 LT-10257 Vilnius Lithuania
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Chun-Hsien Chen
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University Taipei 106319 Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center Hsinchu 300092 Taiwan
- Department of Chemical Engineering, National Tsing Hua University Hsinchu 300044 Taiwan
- College of Semiconductor Research, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University Hsinchu 300044 Taiwan
| |
Collapse
|
12
|
Xue YJ, Lai ZY, Lu HC, Hong JC, Tsai CL, Huang CL, Huang KH, Lu CF, Lai YY, Hsu CS, Lin JM, Chang JW, Chien SY, Lee GH, Jeng US, Cheng YJ. Unraveling the Structure-Property-Performance Relationships of Fused-Ring Nonfullerene Acceptors: Toward a C-Shaped ortho-Benzodipyrrole-Based Acceptor for Highly Efficient Organic Photovoltaics. J Am Chem Soc 2024; 146:833-848. [PMID: 38113458 DOI: 10.1021/jacs.3c11062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The high-performance Y6-based nonfullerene acceptors (NFAs) feature a C-shaped A-DA'D-A-type molecular architecture with a central electron-deficient thiadiazole (Tz) A' unit. In this work, we designed and synthesized a new A-D-A-type NFA, termed CB16, having a C-shaped ortho-benzodipyrrole-based skeleton of Y6 but with the Tz unit eliminated. When processed with nonhalogenated xylene without using any additives, the binary PM6:CB16 devices display a remarkable power conversion efficiency (PCE) of 18.32% with a high open-circuit voltage (Voc) of 0.92 V, surpassing the performance of the corresponding Y6-based devices. In contrast, similarly synthesized SB16, featuring an S-shaped para-benzodipyrrole-based skeleton, yields a low PCE of 0.15% due to the strong side-chain aggregation of SB16. The C-shaped A-DNBND-A skeleton in CB16 and the Y6-series NFAs constitutes the essential structural foundation for achieving exceptional device performance. The central Tz moiety or other A' units can be employed to finely adjust intermolecular interactions. The single-crystal X-ray structure reveals that ortho-benzodipyrrole-embedded A-DNBND-A plays an important role in the formation of a 3D elliptical network packing for efficient charge transport. Solution structures of the PM6:NFAs detected by small- and wide-angle X-ray scattering (SWAXS) indicate that removing the Tz unit in the C-shaped skeleton could reduce the self-packing of CB16, thereby enhancing the complexing and networking with PM6 in the spin-coating solution and the subsequent device film. Elucidating the structure-property-performance relationships of A-DA'D-A-type NFAs in this work paves the way for the future development of structurally simplified A-D-A-type NFAs.
Collapse
Affiliation(s)
- Yung-Jing Xue
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Ze-Yu Lai
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Han-Cheng Lu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Jun-Cheng Hong
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chia-Lin Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Ching-Li Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Kuo-Hsiu Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chia-Fang Lu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yu-Ying Lai
- Institute of Polymer Science and Engineering,National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chain-Shu Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Jhih-Min Lin
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Je-Wei Chang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300092, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yen-Ju Cheng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| |
Collapse
|
13
|
Hou MH, Wang YC, Yang CS, Liao KF, Chang JW, Shih O, Yeh YQ, Sriramoju MK, Weng TW, Jeng US, Hsu STD, Chen Y. Structural insights into the regulation, ligand recognition, and oligomerization of bacterial STING. Nat Commun 2023; 14:8519. [PMID: 38129386 PMCID: PMC10739871 DOI: 10.1038/s41467-023-44052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) signaling pathway plays a critical protective role against viral infections. Metazoan STING undergoes multilayers of regulation to ensure specific signal transduction. However, the mechanisms underlying the regulation of bacterial STING remain unclear. In this study, we determined the crystal structure of anti-parallel dimeric form of bacterial STING, which keeps itself in an inactive state by preventing cyclic dinucleotides access. Conformational transition between inactive and active states of bacterial STINGs provides an on-off switch for downstream signaling. Some bacterial STINGs living in extreme environment contain an insertion sequence, which we show codes for an additional long lid that covers the ligand-binding pocket. This lid helps regulate anti-phage activities. Furthermore, bacterial STING can bind cyclic di-AMP in a triangle-shaped conformation via a more compact ligand-binding pocket, forming spiral-shaped protofibrils and higher-order fibril filaments. Based on the differences between cyclic-dinucleotide recognition, oligomerization, and downstream activation of different bacterial STINGs, we proposed a model to explain structure-function evolution of bacterial STINGs.
Collapse
Grants
- National Science and Technology Council, Taiwan, 109-2311-B241-001 National Science and Technology Council, Taiwan, 111-2311-B-039-001-MY3
- National Science and Technology Council, Taiwan, 111-2811-M-001-125
- National Science and Technology Council, Taiwan, 110-2113-M-001-050-MY3 National Science and Technology Council, Taiwan, 110-2311-B-001-013-MY3 Academia Sinica intramural fund, an Academia Sinica Career Development Award, Academia Sinica, AS-CDA-109-L08 Infectious Disease Research Supporting Grant, AS-IDR-110-08.
Collapse
Affiliation(s)
- Mei-Hui Hou
- Genomics BioSci. & Tech. Co. Ltd., New Taipei, 221411, Taiwan
| | - Yu-Chuan Wang
- Genomics BioSci. & Tech. Co. Ltd., New Taipei, 221411, Taiwan
| | - Chia-Shin Yang
- Genomics BioSci. & Tech. Co. Ltd., New Taipei, 221411, Taiwan
| | - Kuei-Fen Liao
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Je-Wei Chang
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 300092, Taiwan
| | | | - Tzu-Wen Weng
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115024, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106319, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 300092, Taiwan
- Department of Chemical Engineering & College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115024, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106319, Taiwan
| | - Yeh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402202, Taiwan.
| |
Collapse
|
14
|
Tsai TY, Chen CY, Lin TW, Lin TC, Chiu FL, Shih O, Chang MY, Lin YC, Su AC, Chen CM, Jeng US, Kuo HC, Chang CF, Chen YR. Amyloid modifier SERF1a interacts with polyQ-expanded huntingtin-exon 1 via helical interactions and exacerbates polyQ-induced toxicity. Commun Biol 2023; 6:767. [PMID: 37479809 PMCID: PMC10361993 DOI: 10.1038/s42003-023-05142-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
Abnormal polyglutamine (polyQ) expansion and fibrillization occur in Huntington's disease (HD). Amyloid modifier SERF enhances amyloid formation, but the underlying mechanism is not revealed. Here, the fibrillization and toxicity effect of SERF1a on Htt-exon1 are examined. SERF1a enhances the fibrillization of and interacts with mutant thioredoxin (Trx)-fused Httex1. NMR studies with Htt peptides show that TrxHttex1-39Q interacts with the helical regions in SERF1a and SERF1a preferentially interacts with the N-terminal 17 residues of Htt. Time-course analysis shows that SERF1a induces mutant TrxHttex1 to a single conformation enriched of β-sheet. Co-expression of SERF1a and Httex1-polyQ in neuroblastoma and lentiviral infection of SERF1a in HD-induced polypotent stem cell (iPSC)-derived neurons demonstrates the detrimental effect of SERF1a in HD. Higher level of SERF1a transcript or protein is detected in HD iPSC, transgenic mice, and HD plasma. Overall, this study provides molecular mechanism for SERF1a and mutant Httex1 to facilitate therapeutic development for HD.
Collapse
Affiliation(s)
- Tien-Ying Tsai
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2. Nankang, Taipei, 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chun-Yu Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Tien-Wei Lin
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Tien-Chang Lin
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Feng-Lan Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Ming-Yun Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Lin
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan.
| |
Collapse
|
15
|
Nguyen HTV, Chen X, Parada C, Luo AC, Shih O, Jeng US, Huang CY, Shih YL, Ma C. Structure of the heterotrimeric membrane protein complex FtsB-FtsL-FtsQ of the bacterial divisome. Nat Commun 2023; 14:1903. [PMID: 37019934 PMCID: PMC10076392 DOI: 10.1038/s41467-023-37543-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
The synthesis of the cell-wall peptidoglycan during bacterial cell division is mediated by a multiprotein machine, called the divisome. The essential membrane protein complex of FtsB, FtsL and FtsQ (FtsBLQ) is at the heart of the divisome assembly cascade in Escherichia coli. This complex regulates the transglycosylation and transpeptidation activities of the FtsW-FtsI complex and PBP1b via coordination with FtsN, the trigger for the onset of constriction. Yet the underlying mechanism of FtsBLQ-mediated regulation is largely unknown. Here, we report the full-length structure of the heterotrimeric FtsBLQ complex, which reveals a V-shaped architecture in a tilted orientation. Such a conformation could be strengthened by the transmembrane and the coiled-coil domains of the FtsBL heterodimer, as well as an extended β-sheet of the C-terminal interaction site involving all three proteins. This trimeric structure may also facilitate interactions with other divisome proteins in an allosteric manner. These results lead us to propose a structure-based model that delineates the mechanism of the regulation of peptidoglycan synthases by the FtsBLQ complex.
Collapse
Affiliation(s)
- Hong Thuy Vy Nguyen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Claudia Parada
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - An-Chi Luo
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30044, Taiwan
| | - Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Yu-Ling Shih
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
16
|
Cancer-targeted fucoidan‑iron oxide nanoparticles for synergistic chemotherapy/chemodynamic theranostics through amplification of P-selectin and oxidative stress. Int J Biol Macromol 2023; 235:123821. [PMID: 36870633 DOI: 10.1016/j.ijbiomac.2023.123821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023]
Abstract
A combination of chemotherapy and chemodynamic therapy (CDT) is being developed to improve the theranostic efficacy and biological safety of current therapies. However, most CDT agents are restricted due to complex issues such as multiple components, low colloidal stability, carrier-associated toxicity, insufficient reactive oxygen species generation, and poor targeting efficacy. To overcome these problems, a novel nanoplatform composed of fucoidan (Fu) and iron oxide (IO) nanoparticles (NPs) was developed to achieve chemotherapy combined with CDT synergistic treatment with a facile self-assembling manner, and the NPs were made up of Fu and IO, in which the Fu was not only used as a potential chemotherapeutic but was also designed to stabilize the IO and target P-selectin-overexpressing lung cancer cells, thereby producing oxidative stress and thus synergizing the CDT efficacy. The Fu-IO NPs exhibited a suitable diameter below 300 nm, which favored their cellular uptake by cancer cells. Microscopic and MRI data confirmed the lung cancer cellular uptake of the NPs due to active Fu targeting. Moreover, Fu-IO NPs induced efficient apoptosis of lung cancer cells, and thus offer significant anti-cancer functions by potential chemotherapeutic-CDT.
Collapse
|
17
|
Septani CM, Shih O, Yeh YQ, Sun YS. Structural Evolution of a Polystyrene- Block-Poly(Ethylene Oxide) Block Copolymer in Tetrahydrofuran/Water Cosolvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5987-5995. [PMID: 35507040 DOI: 10.1021/acs.langmuir.2c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aims to quantitatively investigate the effect of water content on the self-assembly behavior of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) in tetrahydrofuran/water cosolvents by small-angle X-ray scattering. PS-b-PEO chains preferentially form fractal aggregates at a dilute concentration in neat tetrahydrofuran (THF). By adding a small amount of water into THF, PS-b-PEO forms gelled networks. The gelled networks have correlated inhomogeneities, which were generated through mesophase separation. These gelled networks are not present when PS-b-PEO is dissolved in THF/methanol and THF/ethanol cosolvents. The substitution of water with 12 M HCl reduces the viscosity of the gelled networks. Those results indicate that the gelled networks of PS-b-PEO need hydrogen bonds formed from surrounding water molecules to be bridging agents, which connect different PEO block chains together. Upon increasing the water content in THF/water cosolvents, dispersed micelles with a core-shell conformation or aggregated micelles preferentially coexist with fractal aggregates.
Collapse
Affiliation(s)
- Cindy Mutiara Septani
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
18
|
Shih O, Liao KF, Yeh YQ, Su CJ, Wang CA, Chang JW, Wu WR, Liang CC, Lin CY, Lee TH, Chang CH, Chiang LC, Chang CF, Liu DG, Lee MH, Liu CY, Hsu TW, Mansel B, Ho MC, Shu CY, Lee F, Yen E, Lin TC, Jeng U. Performance of the new biological small- and wide-angle X-ray scattering beamline 13A at the Taiwan Photon Source. J Appl Crystallogr 2022; 55:340-352. [PMID: 35497659 PMCID: PMC8985603 DOI: 10.1107/s1600576722001923] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
A new endstation for biological small- and wide-angle X-ray scattering is detailed, which provides development opportunities for studying correlated local and global structures of biomolecules in solution. Recent developments in the instrumentation and data analysis of synchrotron small-angle X-ray scattering (SAXS) on biomolecules in solution have made biological SAXS (BioSAXS) a mature and popular tool in structural biology. This article reports on an advanced endstation developed at beamline 13A of the 3.0 GeV Taiwan Photon Source for biological small- and wide-angle X-ray scattering (SAXS–WAXS or SWAXS). The endstation features an in-vacuum SWAXS detection system comprising two mobile area detectors (Eiger X 9M/1M) and an online size-exclusion chromatography system incorporating several optical probes including a UV–Vis absorption spectrometer and refractometer. The instrumentation and automation allow simultaneous SAXS–WAXS data collection and data reduction for high-throughput biomolecular conformation and composition determinations. The performance of the endstation is illustrated with the SWAXS data collected for several model proteins in solution, covering a scattering vector magnitude q across three orders of magnitude. The crystal-model fittings to the data in the q range ∼0.005–2.0 Å−1 indicate high similarity of the solution structures of the proteins to their crystalline forms, except for some subtle hydration-dependent local details. These results open up new horizons of SWAXS in studying correlated local and global structures of biomolecules in solution.
Collapse
|