1
|
Schulz F, Jain A, Dallari F, Markmann V, Lehmkühler F. In situ aggregation and early states of gelation of gold nanoparticle dispersions. SOFT MATTER 2024; 20:3836-3844. [PMID: 38651356 DOI: 10.1039/d4sm00080c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The aggregation and onset of gelation of PEGylated gold nanoparticles dispersed in a glycerol-water mixture is studied by small-angle X-ray scattering and X-ray photon correlation spectroscopy. Tracking structural dynamics with sub-ms time resolution over a total experimental time of 8 hours corresponding to a time windows larger than 108 Brownian times and varying the temperature between 298 K and 266 K we can identify three regimes. First, while cooling to 275 K the particles show Brownian motion that slows down due to the increasing viscosity. Second, upon further cooling the static structure changes significantly, indicated by a broad structure factor peak. We attribute this to the formation of aggregates while the dynamics are still dominated by single-particle diffusion. Finally, the relaxation functions become more and more stretched accompanied by an increased slow down of the dynamics. At the same time the structure changes continuously indicating the onset of gelation. Our observations further suggest that the colloidal aggregation and gelation is characterized first by structural changes with a subsequent slowing down of the systems dynamics. The analysis also reveals that the details of the gelation process and the gel structure strongly depend on the thickness of the PEG-coating of the gold nanoparticles.
Collapse
Affiliation(s)
- Florian Schulz
- Institute of Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Avni Jain
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Francesco Dallari
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Verena Markmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Felix Lehmkühler
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| |
Collapse
|
2
|
Narayanan T. Recent advances in synchrotron scattering methods for probing the structure and dynamics of colloids. Adv Colloid Interface Sci 2024; 325:103114. [PMID: 38452431 DOI: 10.1016/j.cis.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Recent progress in synchrotron based X-ray scattering methods applied to colloid science is reviewed. An important figure of merit of these techniques is that they enable in situ investigations of colloidal systems under the desired thermophysical and rheological conditions. An ensemble averaged simultaneous structural and dynamical information can be derived albeit in reciprocal space. Significant improvements in X-ray source brilliance and advances in detector technology have overcome some of the limitations in the past. Notably coherent X-ray scattering techniques have become more competitive and they provide complementary information to laboratory based real space methods. For a system with sufficient scattering contrast, size ranges from nm to several μm and time scales down to μs are now amenable to X-ray scattering investigations. A wide variety of sample environments can be combined with scattering experiments further enriching the science that could be pursued by means of advanced X-ray scattering instruments. Some of these recent progresses are illustrated via representative examples. To derive quantitative information from the scattering data, rigorous data analysis or modeling is required. Development of powerful computational tools including the use of artificial intelligence have become the emerging trend.
Collapse
|
3
|
Ozgulbas DY, Jensen D, Butler R, Vescovi R, Foster IT, Irvin M, Nakaye Y, Chu M, Dufresne EM, Seifert S, Babnigg G, Ramanathan A, Zhang Q. Robotic pendant drop: containerless liquid for μs-resolved, AI-executable XPCS. LIGHT, SCIENCE & APPLICATIONS 2023; 12:196. [PMID: 37596264 PMCID: PMC10439219 DOI: 10.1038/s41377-023-01233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/20/2023]
Abstract
The dynamics and structure of mixed phases in a complex fluid can significantly impact its material properties, such as viscoelasticity. Small-angle X-ray Photon Correlation Spectroscopy (SA-XPCS) can probe the spontaneous spatial fluctuations of the mixed phases under various in situ environments over wide spatiotemporal ranges (10-6-103 s /10-10-10-6 m). Tailored material design, however, requires searching through a massive number of sample compositions and experimental parameters, which is beyond the bandwidth of the current coherent X-ray beamline. Using 3.7-μs-resolved XPCS synchronized with the clock frequency at the Advanced Photon Source, we demonstrated the consistency between the Brownian dynamics of ~100 nm diameter colloidal silica nanoparticles measured from an enclosed pendant drop and a sealed capillary. The electronic pipette can also be mounted on a robotic arm to access different stock solutions and create complex fluids with highly-repeatable and precisely controlled composition profiles. This closed-loop, AI-executable protocol is applicable to light scattering techniques regardless of the light wavelength and optical coherence, and is a first step towards high-throughput, autonomous material discovery.
Collapse
Affiliation(s)
- Doga Yamac Ozgulbas
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Don Jensen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Rory Butler
- Departement of Computer Science, University of Chicago, 5801 S Ellis Ave, Chicago, IL, 60637, USA
| | - Rafael Vescovi
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Ian T Foster
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Michael Irvin
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yasukazu Nakaye
- XRD Design and Engineering Department, Rigaku Corporation 3-9-12 Matsubara-cho, Akishima-shi, Tokyo, 196-8666, Japan
| | - Miaoqi Chu
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Eric M Dufresne
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Soenke Seifert
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Gyorgy Babnigg
- Bioscience Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Arvind Ramanathan
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| |
Collapse
|
4
|
Jo W, Stern S, Westermeier F, Rysov R, Riepp M, Schmehr J, Lange J, Becker J, Sprung M, Laurus T, Graafsma H, Lokteva I, Grübel G, Roseker W. Single and multi-pulse based X-ray photon correlation spectroscopy. OPTICS EXPRESS 2023; 31:3315-3324. [PMID: 36785327 DOI: 10.1364/oe.477774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
The ability of pulsed nature of synchrotron radiation opens up the possibility of studying microsecond dynamics in complex materials via speckle-based techniques. Here, we present the study of measuring the dynamics of a colloidal system by combining single and multiple X-ray pulses of a storage ring. In addition, we apply speckle correlation techniques at various pulse patterns to collect correlation functions from nanoseconds to milliseconds. The obtained sample dynamics from all correlation techniques at different pulse patterns are in very good agreement with the expected dynamics of Brownian motions of silica nanoparticles in water. Our study will pave the way for future pulsed X-ray investigations at various synchrotron X-ray sources using individual X-ray pulse patterns.
Collapse
|