1
|
Molaei S, Farhadi G, Talezari M, Gholizadeh N, Mahnam K, Keivanloo A, Sepehri S. One-pot synthesis of polyhydroquinoline-1,2,3-triazole hybrids in deep eutectic solvent as anti-leishmanial agents and molecular modeling studies. J Biomol Struct Dyn 2024; 42:4834-4850. [PMID: 37325813 DOI: 10.1080/07391102.2023.2224897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
The novel hybrids with 1,2,3-triazole and polyhydroquinoline scaffolds were successfully synthesized by multicomponent reaction of propargyloxybenzaldehyde, 1,3-cyclohexadione, ethylacetoacetate and ammonium acetate followed through click reaction in the presence of deep eutectic solvent ChCl/ZnCl2 as an efficient catalyst. Their anti-leishmanial activity was evaluated against amastigote and promastigote forms of L. tropica, L. major, and two different species of L. infantum. Furthermore, to determine the cytotoxicity of the hybrids, they were evaluated against the murine macrophage cell line J774.A1. Based on the results, three hybrids showed the highest antileishmanial activity. However, they revealed low cytotoxicity. Hybrid 6j was the most potent compound against both the forms of all leishmanial types, with IC50 = 13.5 and 11.9 µg/mL for L. major, 37.5 and 25 µg/mL for L. tropica, 17.5 and 20 µg/mL for L. infantum (MCAN/IR//96/LON49) and 35.5 and 30 µg/mL for L. infantum (MCAN/ES/98/LIM-877), respectively. Finally, molecular docking and molecular dynamics simulations were also performed to identify possible mechanism antileishmanial activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ghazaleh Farhadi
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Talezari
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Negin Gholizadeh
- Students Research Committee, Public Health School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Karim Mahnam
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Ali Keivanloo
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
2
|
Marín M, López M, Gallego-Yerga L, Álvarez R, Peláez R. Experimental structure based drug design (SBDD) applications for anti-leishmanial drugs: A paradigm shift? Med Res Rev 2024; 44:1055-1120. [PMID: 38142308 DOI: 10.1002/med.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by at least 20 species of Leishmania protozoa, which are spread by the bite of infected sandflies. There are three main forms of the disease: cutaneous leishmaniasis (CL, the most common), visceral leishmaniasis (VL, also known as kala-azar, the most serious), and mucocutaneous leishmaniasis. One billion people live in areas endemic to leishmaniasis, with an annual estimation of 30,000 new cases of VL and more than 1 million of CL. New treatments for leishmaniasis are an urgent need, as the existing ones are inefficient, toxic, and/or expensive. We have revised the experimental structure-based drug design (SBDD) efforts applied to the discovery of new drugs against leishmaniasis. We have grouped the explored targets according to the metabolic pathways they belong to, and the key achieved advances are highlighted and evaluated. In most cases, SBDD studies follow high-throughput screening campaigns and are secondary to pharmacokinetic optimization, due to the majoritarian belief that there are few validated targets for SBDD in leishmaniasis. However, some SBDD strategies have significantly contributed to new drug candidates against leishmaniasis and a bigger number holds promise for future development.
Collapse
Affiliation(s)
- Miguel Marín
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Marta López
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
3
|
Panecka-Hofman J, Poehner I. Structure and dynamics of pteridine reductase 1: the key phenomena relevant to enzyme function and drug design. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:521-532. [PMID: 37608196 PMCID: PMC10618315 DOI: 10.1007/s00249-023-01677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Pteridine reductase 1 (PTR1) is a folate and pterin pathway enzyme unique for pathogenic trypanosomatids. As a validated drug target, PTR1 has been the focus of recent research efforts aimed at finding more effective treatments against human parasitic diseases such as leishmaniasis or sleeping sickness. Previous PTR1-centered structural studies highlighted the enzyme characteristics, such as flexible regions around the active site, highly conserved structural waters, and species-specific differences in pocket properties and dynamics, which likely impacts the binding of natural substrates and inhibitors. Furthermore, several aspects of the PTR1 function, such as the substrate inhibition phenomenon and the level of ligand binding cooperativity in the enzyme homotetramer, likely related to the global enzyme dynamics, are poorly known at the molecular level. We postulate that future drug design efforts could greatly benefit from a better understanding of these phenomena through studying both the local and global PTR1 dynamics. This review highlights the key aspects of the PTR1 structure and dynamics relevant to structure-based drug design that could be effectively investigated by modeling approaches. Particular emphasis is given to the perspective of molecular dynamics, what has been accomplished in this area to date, and how modeling could impact the PTR1-targeted drug design in the future.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211, Kuopio, Finland
| |
Collapse
|
4
|
Chemical Constituents from Uapaca guineensis (Phyllanthaceae), and the Computational Validation of Their Antileishmanial and Anti-inflammatory Potencies. J CHEM-NY 2022. [DOI: 10.1155/2022/7087110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
From the chemical investigations of the root bark of Uapaca guineensis, nine distinct compounds (1–9) have been isolated and characterized as lupeol, betulin, betulinic acid, β-amyryl acetate, physcion, quercetin, rutin, β-sitosterol, and β-sitosterol-3-O-β-D-glucopyranoside, respectively. The structures of all the isolated compounds have been established using their NMR data as well as the comparison of those data with the ones reported in the literature. Interestingly, to the best of our knowledge, except for the lupane-type triterpenoids (1–3) and compounds 4 and 9, all the other compounds are reported for the first time from this genus. Since the plant is widely used for the treatment of skin diseases, leishmaniasis and inflammatory diseases, the antileishmanial and anti-inflammatory potencies of all the isolated compounds have been computationally validated through their ability to inhibit the receptors 1QCC and 2XOX (for the antileishmanial studies) and 6Y3C and 1CX2 (for the anti-inflammatory studies). Furthermore, the ADMET studies of compounds have been done to evaluate their drug-likeness. Results demonstrate that all the isolated compounds showed a better affinity for both receptors’ binding sites than the standard drugs miltefosine and aspirin. Moreover, the compounds would not cause addiction when used as lead molecules whereas, aspirin is predicted to violate the BBB over a long term of usage as a drug. This study gives additional information on the chemistry of U. guineensis and its classification as a potential source of good leads for the development of potent antileishmanial and anti-inflammatory drugs.
Collapse
|
5
|
Singh S, Prajapati VK. Exploring actinomycetes natural products to identify potential multi-target inhibitors against Leishmania donovani. 3 Biotech 2022; 12:235. [PMID: 35999912 PMCID: PMC9392678 DOI: 10.1007/s13205-022-03304-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/09/2022] [Indexed: 12/16/2022] Open
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease that mainly affects the poor population of the Indian, African, and South American subcontinent. The increasing resistance to antimonial and miltefosine and frequent toxicity of amphotericin B drives an urgent need to develop an anti-leishmanial drug with excellent efficacy and safety profile. In this study, three sequential docking protocols (HTVS, SP, and XP) were performed to screen the secondary metabolites (n = 6519) from the actinomycetes source against five key proteins involved in the metabolic pathway of Leishmania donovani. Those proteins were adenine phosphoribosyltransferase (PDB ID: 1QB7), trypanothione reductase (PDB ID: 2JK6), N-myristoyl transferase (PDB ID: 2WUU), pteridine reductase (PDB ID: 2XOX), and MAP kinase (PDB ID: 4QNY). Although the binding energy of top ligands was predicted using the MM-GBSA module of the Schrödinger suite. SP and XP docking mode resulted in 55 multi-targeted ligands against L donovani. MM-GBSA analysis selected the top 18 ligands with good-binding affinity and the binding-free energy for four proteins, as mentioned earlier, when compared with the miltefosine, paromomycin, and a reference ligand selected for each target. Finally, molecular dynamics simulation, post-MD-binding-free energy (MM-PBSA), and principal component analysis (PCA) proposed three best ligands (Adenosine pentaphosphate, Atetra P, and GDP-4-keto-6-deoxymannose) qualifying the above screening parameters and confirmed as a potential drug candidate to fight against Leishmania donovani parasites.
Collapse
Affiliation(s)
- Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817 India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817 India
| |
Collapse
|
6
|
Ramesh D, Sarkar D, Joji A, Singh M, Mohanty AK, G Vijayakumar B, Chatterjee M, Sriram D, Muthuvel SK, Kannan T. First-in-class pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones against leishmaniasis and tuberculosis: Rationale, in vitro, ex vivo studies and mechanistic insights. Arch Pharm (Weinheim) 2022; 355:e2100440. [PMID: 35106845 DOI: 10.1002/ardp.202100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
Pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones were synthesized, for the first time, from indole chalcones and 6-aminouracil, and their ability to inhibit leishmaniasis and tuberculosis (Tb) infections was evaluated. The in vitro antileishmanial activity against promastigotes of Leishmania donovani revealed exceptional activities of compounds 3, 12 and 13, with IC50 values ranging from 10.23 ± 1.50 to 15.58 ± 1.67 µg/ml, which is better than the IC50 value of the standard drug pentostam of 500 μg/ml. The selectivity of the compounds towards Leishmania parasites was evaluated via ex vivo studies in Swiss albino mice. The efficiency of these compounds against Tb infection was then evaluated using the in vitro anti-Tb microplate Alamar Blue assay. Five compounds, 3, 7, 8, 9 and 12, showed MIC100 values against the Mycobacterium tuberculosis H37 Rv strain at 25 µg/ml, and compound 20 yielded an MIC100 value of 50 µg/ml. Molecular modelling of these compounds highlighted interactions with binding sites of dihydrofolate reductase, pteridine reductase and thymidylate kinase, thus establishing the rationale of their pharmacological activity against both pathogens, which is consistent with the in vitro results. From the above results, it is clear that compounds 3 and 12 are promising lead candidates for Leishmania and Mycobacterium infections and may be promising for coinfections.
Collapse
Affiliation(s)
- Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Annu Joji
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Monica Singh
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Amaresh K Mohanty
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Suresh K Muthuvel
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | |
Collapse
|
7
|
Shamshad H, Hafiz A, Althagafi II, Saeed M, Mirza AZ. Characterization of the Trypanosoma brucei Pteridine Reductase Active- Site using Computational Docking and Virtual Screening Techniques. Curr Comput Aided Drug Des 2020; 16:583-598. [DOI: 10.2174/1573409915666190827163327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/21/2019] [Accepted: 08/01/2019] [Indexed: 01/19/2023]
Abstract
Background:
Human African trypanosomiasis is a fatal disease prevalent in approximately
36 sub-Saharan countries. Emerging reports of drug resistance in Trypanosoma brucei are a serious
cause of concern as only limited drugs are available for the treatment of the disease. Pteridine reductase
is an enzyme of Trypanosoma brucei.
Methods:
It plays a critical role in the pterin metabolic pathway that is absolutely essential for its survival
in the human host. The success of finding a potent inhibitor in structure-based drug design lies
within the ability of computational tools to efficiently and accurately dock a ligand into the binding
cavity of the target protein. Here we report the computational characterization of Trypanosoma brucei
pteridine reductase (Tb-PR) active-site using twenty-four high-resolution co-crystal structures with various
drugs. Structurally, the Tb-PR active site can be grouped in two clusters; one with high Root Mean
Square Deviation (RMSD) of atomic positions and another with low RMSD of atomic positions. These
clusters provide fresh insight for rational drug design against Tb-PR. Henceforth, the effect of several
factors on docking accuracy, including ligand and protein flexibility were analyzed using Fred.
Results:
The online server was used to analyze the side chain flexibility and four proteins were selected
on the basis of results. The proteins were subjected to small-scale virtual screening using 85 compounds,
and statistics were calculated using Bedroc and roc curves. The enrichment factor was also calculated
for the proteins and scoring functions. The best scoring function was used to understand the ligand
protein interactions with top common compounds of four proteins. In addition, we made a 3D
structural comparison between the active site of Tb-PR and Leishmania major pteridine reductase (Lm-
PR). We described key structural differences between Tb-PR and Lm-PR that can be exploited for rational
drug design against these two human parasites.
Conclusion:
The results indicated that relying just on re-docking and cross-docking experiments for
virtual screening of libraries isn’t enough and results might be misleading. Hence it has been suggested
that small scale virtual screening should be performed prior to large scale screening.
Collapse
Affiliation(s)
- Hina Shamshad
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, University of Karachi, Karachi-75270, Pakistan
| | - Abdul Hafiz
- Department of Medical Parasitology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ismail I. Althagafi
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maria Saeed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi- 75270, Pakistan
| | - Agha Zeeshan Mirza
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
8
|
Could chroman-4-one derivative be a better inhibitor of PTR1? - Reason for the identified disparity in its inhibitory potency in Trypanosoma brucei and Leishmania major. Comput Biol Chem 2020; 90:107412. [PMID: 33199197 DOI: 10.1016/j.compbiolchem.2020.107412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023]
Abstract
Most notable Kinetoplastids are of the genus Trypanosoma and Leishmania, affecting several millions of humans in Africa and Latin America. Current therapeutic options are limited by several drawbacks, hence the need to develop more efficacious inhibitors. An investigation to decipher the mechanism behind greater inhibitory potency of a chroman-4-one derivative (compound 1) in Trypanosoma brucei pteridine reductase 1 (TbPTR1) and Leishmania major pteridine reductase 1 (LmPTR1) was performed. Estimation of ΔGbind revealed that compound 1 had a greater binding affinity in TbPTR1 with a ΔGbind value of -49.0507 Kcal/mol than -29.2292 Kcal/mol in LmPTR1. The ΔGbind in TbPTR1 were predominantly contributed by "strong" electrostatic energy compared to the "weak" van der Waals in LmPTR1. In addition to this, the NADPH cofactor contributed significantly to the total energy of TbPTR1. A characteristic weak aromatic π interaction common in PTR1 was more prominent in TbPTR1 than LmPTR1. The consistent occurrence of high-affinity conventional hydrogen bond interactions as well as a steady interaction of crucial active site residues like Arg14/Arg17, Ser95/Ser111, Phe97/Phe113 in TbPTR1/LmPTR1 with chroman-4-one moiety equally revealed the important role the moiety played in the activity of compound 1. Overall, the structural and conformational analysis of the active site residues in TbPTR1 revealed them to be more rigid than LmPTR1. This could be the mechanism of interaction TbPTR1 employs in exerting a greater potency than LmPTR1. These findings will further give insight that will be assistive in modifying compound 1 for better potency and the design of novel inhibitors of PTR1.
Collapse
|
9
|
Crentsil JA, Yamthe LRT, Anibea BZ, Broni E, Kwofie SK, Tetteh JKA, Osei-Safo D. Leishmanicidal Potential of Hardwickiic Acid Isolated From Croton sylvaticus. Front Pharmacol 2020; 11:753. [PMID: 32523532 PMCID: PMC7261830 DOI: 10.3389/fphar.2020.00753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
Leishmania is a parasitic protozoon responsible for the neglected tropical disease Leishmaniasis. Approximately, 350 million people are susceptible and close to 70,000 death cases globally are reported annually. The lack of effective leishmanicides, the emergence of drug resistance and toxicity concerns necessitate the pursuit for effective antileishmanial drugs. Natural compounds serve as reservoirs for discovering new drugs due to their chemical diversity. Hardwickiic acid (HA) isolated from the stembark of Croton sylvaticus was evaluated for its leishmanicidal potential against Leishmania donovani and L. major promastigotes. The susceptibility of the promastigotes to HA was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide/phenazine methosulfate colorimetric assay with Amphotericin B serving as positive control. HA showed a significant antileishmanial activity on L. donovani promastigotes with an IC50 value of 31.57± 0.06 µM with respect to the control drug, amphotericin B with IC50 of 3.35 ± 0.14 µM). The cytotoxic activity was observed to be CC50 = 247.83 ± 6.32 µM against 29.99 ± 2.82 µM for curcumin, the control, resulting in a selectivity index of SI = 7.85. Molecular modeling, docking and dynamics simulations of selected drug targets corroborated the observed antileishmanial activity of HA. Novel insights into the mechanisms of binding were obtained for trypanothione reductase (TR), pteridine reductase 1 (PTR1), and glutamate cysteine ligase (GCL). The binding affinity of HA to the drug targets LmGCL, LmPTR1, LdTR, LmTR, LdGCL, and LdPTR1 were obtained as -8.0, -7.8, -7.6, -7.5, -7.4 and -7.1 kcal/mol, respectively. The role of Lys16, Ser111, and Arg17 as critical residues required for binding to LdPTR1 was reinforced. HA was predicted as a Caspase-3 stimulant and Caspase-8 stimulant, implying a possible role in apoptosis, which was shown experimentally that HA induced parasite death by loss of membrane integrity. HA was also predicted as antileishmanial molecule corroborating the experimental activity. Therefore, HA is a promising antileishmanial molecule worthy of further development as a biotherapeutic agent.
Collapse
Affiliation(s)
- Justice Afrifa Crentsil
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| | - Lauve Rachel Tchokouaha Yamthe
- Institute for Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon.,Department of Parasitology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Barbara Zenabu Anibea
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, CBAS, University of Ghana, Accra, Ghana
| | - Samuel Kojo Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, CBAS, University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, CBAS, University of Ghana, Accra, Ghana.,Department of Medicine, Loyola University Medical Center, Maywood, IL, United States.,Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC, United States
| | - John Kweku Amissah Tetteh
- Department of Immunology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| |
Collapse
|
10
|
Linciano P, Cullia G, Borsari C, Santucci M, Ferrari S, Witt G, Gul S, Kuzikov M, Ellinger B, Santarém N, Cordeiro da Silva A, Conti P, Bolognesi ML, Roberti M, Prati F, Bartoccini F, Retini M, Piersanti G, Cavalli A, Goldoni L, Bertozzi SM, Bertozzi F, Brambilla E, Rizzo V, Piomelli D, Pinto A, Bandiera T, Costi MP. Identification of a 2,4-diaminopyrimidine scaffold targeting Trypanosoma brucei pteridine reductase 1 from the LIBRA compound library screening campaign. Eur J Med Chem 2020; 189:112047. [PMID: 31982652 DOI: 10.1016/j.ejmech.2020.112047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
The LIBRA compound library is a collection of 522 non-commercial molecules contributed by various Italian academic laboratories. These compounds have been designed and synthesized during different medicinal chemistry programs and are hosted by the Italian Institute of Technology. We report the screening of the LIBRA compound library against Trypanosoma brucei and Leishmania major pteridine reductase 1, TbPTR1 and LmPTR1. Nine compounds were active against parasitic PTR1 and were selected for cell-based parasite screening, as single agents and in combination with methotrexate (MTX). The most interesting TbPTR1 inhibitor identified was 4-(benzyloxy)pyrimidine-2,6-diamine (LIB_66). Subsequently, six new LIB_66 derivatives were synthesized to explore its Structure-Activity-Relationship (SAR) and absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. The results indicate that PTR1 has a preference to bind inhibitors, which resemble its biopterin/folic acid substrates, such as the 2,4-diaminopyrimidine derivatives.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Gregorio Cullia
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Chiara Borsari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Gesa Witt
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Hamburg, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology - ScreeningPort, Hamburg, Germany
| | - Nuno Santarém
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal and Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4150-180, Porto, Portugal
| | - Anabela Cordeiro da Silva
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal and Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4150-180, Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Paola Conti
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy
| | - Federica Prati
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy
| | - Francesca Bartoccini
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, Section of Chemistry, University of Urbino "Carlo Bo", Piazza Rinascimento 6, 61029, Urbino, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, Section of Chemistry, University of Urbino "Carlo Bo", Piazza Rinascimento 6, 61029, Urbino, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126, Bologna, Italy; Computational and Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Luca Goldoni
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Fabio Bertozzi
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Enzo Brambilla
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Vincenzo Rizzo
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, 92697-4625, USA
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Tiziano Bandiera
- PharmaChemistry Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy.
| |
Collapse
|
11
|
Teixeira BVF, Teles ALB, da Silva SG, Brito CCB, de Freitas HF, Pires ABL, Froes TQ, Castilho MS. Dual and selective inhibitors of pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHFR-TS) from Leishmania chagasi. J Enzyme Inhib Med Chem 2019; 34:1439-1450. [PMID: 31409157 PMCID: PMC6713189 DOI: 10.1080/14756366.2019.1651311] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Leishmaniasis is a tropical disease found in more than 90 countries. The drugs available to treat this disease have nonspecific action and high toxicity. In order to develop novel therapeutic alternatives to fight this ailment, pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHF-TS) have been targeted, once Leishmania is auxotrophic for folates. Although PTR1 and DHFR-TS from other protozoan parasites have been studied, their homologs in Leishmania chagasi have been poorly characterized. Hence, this work describes the optimal conditions to express the recombinant LcPTR1 and LcDHFR-TS enzymes, as well as balanced assay conditions for screening. Last but not the least, we show that 2,4 diaminopyrimidine derivatives are low-micromolar competitive inhibitors of both enzymes (LcPTR1 Ki = 1.50-2.30 µM and LcDHFR Ki = 0.28-3.00 µM) with poor selectivity index. On the other hand, compound 5 (2,4-diaminoquinazoline derivative) is a selective LcPTR1 inhibitor (Ki = 0.47 µM, selectivity index = 20).
Collapse
Affiliation(s)
| | - André Lacerda Braga Teles
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual da Bahia, Salvador, BA, Brazil
- Departamento de Ciências da Vida, Universidade do Estado da Bahia, Salvador, BA, Brazil
| | | | | | - Humberto Fonseca de Freitas
- Programa de Pós-Graduação em Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| | | | - Thamires Quadros Froes
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| | - Marcelo Santos Castilho
- Programa de Pós-Graduação em Farmácia, Universidade Federal da Bahia, Salvador, BA, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| |
Collapse
|
12
|
Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery. Future Med Chem 2019; 11:2107-2130. [DOI: 10.4155/fmc-2018-0512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Leishmaniasis is one of the major neglected tropical diseases in the world and it is considered endemic in 88 countries. This disease is transmitted by a Leishmania spp. infected sandfly and it may lead to cutaneous or systemic manifestations. The preconized treatment has low efficacy and there are cases of resistance to some drugs. Therefore, the search for new efficient molecular targets that can lead to the preparation of new drugs must be pursued. This review aims to evaluate both Leishmania enzymes PTR1 and DHFR-TS as potential drug targets, highlight their inhibitors and to discuss critically the use of chemoinformatics to elucidate interactions and propose new molecules against these enzymes.
Collapse
|
13
|
Synthesis, Characterization, and Antileishmanial Activity of Certain Quinoline-4-carboxylic Acids. J CHEM-NY 2019. [DOI: 10.1155/2019/2859637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Leishmaniasis is a fatal neglected parasitic disease caused by protozoa of the genusLeishmaniaand transmitted to humans by different species ofphlebotominesandflies. The disease incidence continues to increase due to lack of vaccines and prophylactic drugs. Drugs commonly used for the treatment are frequently toxic and highly expensive. The problem of these drugs is further complicated by the development of resistance. Thus, there is an urgent need to develop new antileishmanial drug candidates. The aim of this study was to synthesize certain quinoline-4-carboxylic acids, confirm their chemical structures, and evaluate their antileishmanial activity. Pfitzinger reaction was employed to synthesize fifteen quinoline-4-carboxylic acids (Q1-Q15) by reacting equimolar mixtures of isatin derivatives and appropriateα-methyl ketone. The products were purified, and their respective chemical structures were deduced using various spectral tools (IR, MS,1H NMR, and13C NMR). Then, they were investigated againstL. donovanipromastigote (clinical isolate) in different concentration levels (200 μg/mL to 1.56 μg/mL) against sodium stibogluconate and amphotericin B as positive controls. The IC50for each compound was determined and manipulated statistically. Among these compounds,Q1(2-methylquinoline-4-carboxylic acid) was found to be the most active in terms of IC50.
Collapse
|
14
|
Das A, Jawed JJ, Das MC, Sandhu P, De UC, Dinda B, Akhter Y, Bhattacharjee S. Antileishmanial and immunomodulatory activities of lupeol, a triterpene compound isolated from Sterculia villosa. Int J Antimicrob Agents 2017; 50:512-522. [DOI: 10.1016/j.ijantimicag.2017.04.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/08/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
|
15
|
Linciano P, Dawson A, Pöhner I, Costa DM, Sá MS, Cordeiro-da-Silva A, Luciani R, Gul S, Witt G, Ellinger B, Kuzikov M, Gribbon P, Reinshagen J, Wolf M, Behrens B, Hannaert V, Michels PAM, Nerini E, Pozzi C, di Pisa F, Landi G, Santarem N, Ferrari S, Saxena P, Lazzari S, Cannazza G, Freitas-Junior LH, Moraes CB, Pascoalino BS, Alcântara LM, Bertolacini CP, Fontana V, Wittig U, Müller W, Wade RC, Hunter WN, Mangani S, Costantino L, Costi MP. Exploiting the 2-Amino-1,3,4-thiadiazole Scaffold To Inhibit Trypanosoma brucei Pteridine Reductase in Support of Early-Stage Drug Discovery. ACS OMEGA 2017; 2:5666-5683. [PMID: 28983525 PMCID: PMC5623949 DOI: 10.1021/acsomega.7b00473] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Pteridine reductase-1 (PTR1) is a promising drug target for the treatment of trypanosomiasis. We investigated the potential of a previously identified class of thiadiazole inhibitors of Leishmania major PTR1 for activity against Trypanosoma brucei (Tb). We solved crystal structures of several TbPTR1-inhibitor complexes to guide the structure-based design of new thiadiazole derivatives. Subsequent synthesis and enzyme- and cell-based assays confirm new, mid-micromolar inhibitors of TbPTR1 with low toxicity. In particular, compound 4m, a biphenyl-thiadiazole-2,5-diamine with IC50 = 16 μM, was able to potentiate the antitrypanosomal activity of the dihydrofolate reductase inhibitor methotrexate (MTX) with a 4.1-fold decrease of the EC50 value. In addition, the antiparasitic activity of the combination of 4m and MTX was reversed by addition of folic acid. By adopting an efficient hit discovery platform, we demonstrate, using the 2-amino-1,3,4-thiadiazole scaffold, how a promising tool for the development of anti-T. brucei agents can be obtained.
Collapse
Affiliation(s)
- Pasquale Linciano
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Alice Dawson
- Biological Chemistry &
Drug Discovery, School of Life Sciences, The Wellcome Trust Building, University of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | - Ina Pöhner
- Molecular
and Cellular Modeling Group and Scientific Databases and Visualization
(SDBV) Group, Heidelberg Institute for Theoretical
Studies, Schloss-Wolfsbrunnenweg
35, D-69118 Heidelberg, Germany
| | - David M. Costa
- Instituto de Investigação
e Inovação em Saúde, Instituto de Biologia Molecular
e Celular, and Departamento de Ciências Biológicas, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Monica S. Sá
- Instituto de Investigação
e Inovação em Saúde, Instituto de Biologia Molecular
e Celular, and Departamento de Ciências Biológicas, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação
e Inovação em Saúde, Instituto de Biologia Molecular
e Celular, and Departamento de Ciências Biológicas, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Rosaria Luciani
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Sheraz Gul
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Gesa Witt
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | | | - Maria Kuzikov
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Philip Gribbon
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | | | - Markus Wolf
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Birte Behrens
- Fraunhofer-IME SP, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Véronique Hannaert
- Research Unit for Tropical
Diseases, de Duve Institute and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Paul A. M. Michels
- Research Unit for Tropical
Diseases, de Duve Institute and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | - Erika Nerini
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Cecilia Pozzi
- University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio di Pisa
- University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giacomo Landi
- University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Nuno Santarem
- Instituto de Investigação
e Inovação em Saúde, Instituto de Biologia Molecular
e Celular, and Departamento de Ciências Biológicas, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Stefania Ferrari
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Puneet Saxena
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Sandra Lazzari
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Giuseppe Cannazza
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Lucio H. Freitas-Junior
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Carolina B. Moraes
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Bruno S. Pascoalino
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Laura M. Alcântara
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Claudia P. Bertolacini
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Vanessa Fontana
- Laboratório Nacional de Biociências CNPEM,
Centro Nacional de Pesquisa em Energia e Materials, Rua Giuseppe Máximo Scolfaro, 10.000, CEP 13083-970 Campinas/SP, Brasil
| | - Ulrike Wittig
- Molecular
and Cellular Modeling Group and Scientific Databases and Visualization
(SDBV) Group, Heidelberg Institute for Theoretical
Studies, Schloss-Wolfsbrunnenweg
35, D-69118 Heidelberg, Germany
| | - Wolfgang Müller
- Molecular
and Cellular Modeling Group and Scientific Databases and Visualization
(SDBV) Group, Heidelberg Institute for Theoretical
Studies, Schloss-Wolfsbrunnenweg
35, D-69118 Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular
and Cellular Modeling Group and Scientific Databases and Visualization
(SDBV) Group, Heidelberg Institute for Theoretical
Studies, Schloss-Wolfsbrunnenweg
35, D-69118 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ−ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| | - William N. Hunter
- Biological Chemistry &
Drug Discovery, School of Life Sciences, The Wellcome Trust Building, University of Dundee, Dow Street, Dundee DD1
5EH, U.K.
| | | | - Luca Costantino
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Maria P. Costi
- Dipartimento di
Scienze della Vita, Università degli
Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
16
|
Patil SR, Asrondkar A, Patil V, Sangshetti JN, Kalam Khan FA, Damale MG, Patil RH, Bobade AS, Shinde DB. Antileishmanial potential of fused 5-(pyrazin-2-yl)-4H-1,2,4-triazole-3-thiols: Synthesis, biological evaluations and computational studies. Bioorg Med Chem Lett 2017; 27:3845-3850. [PMID: 28693910 DOI: 10.1016/j.bmcl.2017.06.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/06/2017] [Accepted: 06/21/2017] [Indexed: 11/17/2022]
Abstract
A series of newer 1,2,4-triazole-3-thiol derivatives 5(a-m) and 6(a-i) containing a triazole fused with pyrazine moiety of pharmacological significance have been synthesized. All the synthesized compounds were screened for their in vitro antileishmanial and antioxidant activities. Compounds 5f (IC50=79.0µM) and 6f (IC50=79.0µM) were shown significant antileishmanial activity when compared with standard sodium stibogluconate (IC50=490.0µM). Compounds 5b (IC50=13.96µM) and 6b (IC50=13.96µM) showed significant antioxidant activity. After performing molecular docking study and analyzing overall binding modes it was found that the synthesized compounds had potential to inhibit L. donovani pteridine reductase 1 enzyme. In silico ADME and metabolic site prediction studies were also held out to set an effective lead candidate for the future antileishmanial and antibacterial drug discovery initiatives.
Collapse
Affiliation(s)
- Sanjeev R Patil
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, MS, India; Haffkine Institute for Training, Research and Testing, Parel, Mumbai 400 012, MS, India
| | - Ashish Asrondkar
- Haffkine Institute for Training, Research and Testing, Parel, Mumbai 400 012, MS, India
| | - Vrushali Patil
- Haffkine Institute for Training, Research and Testing, Parel, Mumbai 400 012, MS, India
| | | | - Firoz A Kalam Khan
- Oriental College of Pharmacy, Sanpada (West), Navi Mumbai 400705, MS, India
| | - Manoj G Damale
- Shri Bhagwan College of Pharmacy, Aurangabad 431 003, MS, India
| | - Rajendra H Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune, MS, India
| | - Anil S Bobade
- Haffkine Institute for Training, Research and Testing, Parel, Mumbai 400 012, MS, India
| | | |
Collapse
|
17
|
Di Pisa F, Landi G, Dello Iacono L, Pozzi C, Borsari C, Ferrari S, Santucci M, Santarem N, Cordeiro-da-Silva A, Moraes CB, Alcantara LM, Fontana V, Freitas-Junior LH, Gul S, Kuzikov M, Behrens B, Pöhner I, Wade RC, Costi MP, Mangani S. Chroman-4-One Derivatives Targeting Pteridine Reductase 1 and Showing Anti-Parasitic Activity. Molecules 2017; 22:molecules22030426. [PMID: 28282886 PMCID: PMC6155272 DOI: 10.3390/molecules22030426] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 01/28/2023] Open
Abstract
Flavonoids have previously been identified as antiparasitic agents and pteridine reductase 1 (PTR1) inhibitors. Herein, we focus our attention on the chroman-4-one scaffold. Three chroman-4-one analogues (1–3) of previously published chromen-4-one derivatives were synthesized and biologically evaluated against parasitic enzymes (Trypanosoma brucei PTR1–TbPTR1 and Leishmania major–LmPTR1) and parasites (Trypanosoma brucei and Leishmania infantum). A crystal structure of TbPTR1 in complex with compound 1 and the first crystal structures of LmPTR1-flavanone complexes (compounds 1 and 3) were solved. The inhibitory activity of the chroman-4-one and chromen-4-one derivatives was explained by comparison of observed and predicted binding modes of the compounds. Compound 1 showed activity both against the targeted enzymes and the parasites with a selectivity index greater than 7 and a low toxicity. Our results provide a basis for further scaffold optimization and structure-based drug design aimed at the identification of potent anti-trypanosomatidic compounds targeting multiple PTR1 variants.
Collapse
Affiliation(s)
- Flavio Di Pisa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy.
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy.
| | - Lucia Dello Iacono
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy.
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy.
| | - Chiara Borsari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| | - Matteo Santucci
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| | - Nuno Santarem
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal and Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal.
| | - Anabela Cordeiro-da-Silva
- Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal and Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, 4150-180 Porto, Portugal.
| | - Carolina B Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas SP13083-100, Brazil.
| | - Laura M Alcantara
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas SP13083-100, Brazil.
| | - Vanessa Fontana
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas SP13083-100, Brazil.
| | - Lucio H Freitas-Junior
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas SP13083-100, Brazil.
- GARDE, Instituto Butantan, São Paulo SP05503-900, Brazil.
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, D-22525 Hamburg, Germany.
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, D-22525 Hamburg, Germany.
| | - Birte Behrens
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, D-22525 Hamburg, Germany.
| | - Ina Pöhner
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany.
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany.
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany.
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy.
- Magnetic Resonance Center CERM, University of Florence, 50019 Sesto Fiorentino (FI), Italy.
| |
Collapse
|
18
|
Ogungbe IV, Setzer WN. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Molecules 2016; 21:E1389. [PMID: 27775577 PMCID: PMC6274513 DOI: 10.3390/molecules21101389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Malaria, leishmaniasis, Chagas disease, and human African trypanosomiasis continue to cause considerable suffering and death in developing countries. Current treatment options for these parasitic protozoal diseases generally have severe side effects, may be ineffective or unavailable, and resistance is emerging. There is a constant need to discover new chemotherapeutic agents for these parasitic infections, and natural products continue to serve as a potential source. This review presents molecular docking studies of potential phytochemicals that target key protein targets in Leishmania spp., Trypanosoma spp., and Plasmodium spp.
Collapse
Affiliation(s)
- Ifedayo Victor Ogungbe
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
19
|
Borsari C, Luciani R, Pozzi C, Poehner I, Henrich S, Trande M, Cordeiro-da-Silva A, Santarem N, Baptista C, Tait A, Di Pisa F, Dello Iacono L, Landi G, Gul S, Wolf M, Kuzikov M, Ellinger B, Reinshagen J, Witt G, Gribbon P, Kohler M, Keminer O, Behrens B, Costantino L, Tejera Nevado P, Bifeld E, Eick J, Clos J, Torrado J, Jiménez-Antón MD, Corral MJ, Alunda JM, Pellati F, Wade RC, Ferrari S, Mangani S, Costi MP. Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs. J Med Chem 2016; 59:7598-616. [PMID: 27411733 DOI: 10.1021/acs.jmedchem.6b00698] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Flavonoids represent a potential source of new antitrypanosomatidic leads. Starting from a library of natural products, we combined target-based screening on pteridine reductase 1 with phenotypic screening on Trypanosoma brucei for hit identification. Flavonols were identified as hits, and a library of 16 derivatives was synthesized. Twelve compounds showed EC50 values against T. brucei below 10 μM. Four X-ray crystal structures and docking studies explained the observed structure-activity relationships. Compound 2 (3,6-dihydroxy-2-(3-hydroxyphenyl)-4H-chromen-4-one) was selected for pharmacokinetic studies. Encapsulation of compound 2 in PLGA nanoparticles or cyclodextrins resulted in lower in vitro toxicity when compared to the free compound. Combination studies with methotrexate revealed that compound 13 (3-hydroxy-6-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one) has the highest synergistic effect at concentration of 1.3 μM, 11.7-fold dose reduction index and no toxicity toward host cells. Our results provide the basis for further chemical modifications aimed at identifying novel antitrypanosomatidic agents showing higher potency toward PTR1 and increased metabolic stability.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | - Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Ina Poehner
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , 69118 Heidelberg, Germany
| | - Stefan Henrich
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , 69118 Heidelberg, Germany
| | - Matteo Trande
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology , 4150-180 Porto, Portugal
| | - Nuno Santarem
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology , 4150-180 Porto, Portugal
| | - Catarina Baptista
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology , 4150-180 Porto, Portugal
| | - Annalisa Tait
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | - Flavio Di Pisa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Lucia Dello Iacono
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Markus Wolf
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Jeanette Reinshagen
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Gesa Witt
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Philip Gribbon
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Manfred Kohler
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Oliver Keminer
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Birte Behrens
- Fraunhofer Institute for Molecular Biology and Applied Ecology-ScreeningPort , Schnackenburgallee 114 D-22525, Hamburg, Germany
| | - Luca Costantino
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | | | - Eugenia Bifeld
- Bernhard Nocht Institute for Tropical Medicine , D-20359 Hamburg, Germany
| | - Julia Eick
- Bernhard Nocht Institute for Tropical Medicine , D-20359 Hamburg, Germany
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine , D-20359 Hamburg, Germany
| | - Juan Torrado
- Complutense University of Madrid , 28040 Madrid, Spain
| | - María D Jiménez-Antón
- Complutense University of Madrid , 28040 Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre , 28041 Madrid, Spain
| | - María J Corral
- Complutense University of Madrid , 28040 Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre , 28041 Madrid, Spain
| | - José Ma Alunda
- Complutense University of Madrid , 28040 Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre , 28041 Madrid, Spain
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , 69118 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University , 69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University ,69120 Heidelberg, Germany
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , Via Aldo Moro 2, 53100 Siena, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia , Via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|
20
|
Sangshetti JN, Kalam Khan FA, Kulkarni AA, Patil RH, Pachpinde AM, Lohar KS, Shinde DB. Antileishmanial activity of novel indolyl-coumarin hybrids: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. Bioorg Med Chem Lett 2015; 26:829-835. [PMID: 26778149 DOI: 10.1016/j.bmcl.2015.12.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/19/2015] [Accepted: 12/24/2015] [Indexed: 10/22/2022]
Abstract
In present work we have designed and synthesized total twelve novel 3-(3-(1H-indol-3-yl)-3-phenylpropanoyl)-4-hydroxy-2H-chromen-2-one derivatives 13(a-l) using Ho(3+) doped CoFe2O4 nanoparticles as catalyst and evaluated for their potential antileishmanial and antioxidant activities. The compounds 13a, 13d and 13h were found to possess significant antileishmanial activity (IC50 value=95.50, 95.00 and 99.00μg/mL, respectively) when compared to the standard sodium stibogluconate (IC50=490.00 μg/mL). The compounds 13a (IC50=12.40 μg/mL), 13d (IC50=13.49 μg/mL), 13g (IC50=13.24 μg/mL) and 13l (IC50=13.74 μg/mL) had shown good antioxidant activity when compared with standards butylated hydroxy toluene (IC50=16.5 μg/mL) and ascorbic acid (IC50=12.8 μg/mL). After performing molecular docking studies, it was found that compounds 13a and 13d had potential to inhibit pteridine reductase 1 enzyme. In silico ADME pharmacokinetic parameters had shown promising results and none of the synthesized compounds had violated Lipinski's rule of five. Thus, suggesting that compounds from the present series can serve as important gateway for the design and development of new antileishmanial as well as antioxidant agent.
Collapse
Affiliation(s)
- Jaiprakash N Sangshetti
- Dr. Rafiq Zakaria Campus, Y.B. Chavan College of Pharmacy, Aurangabad 431001, (M.S.), India.
| | - Firoz A Kalam Khan
- Dr. Rafiq Zakaria Campus, Y.B. Chavan College of Pharmacy, Aurangabad 431001, (M.S.), India
| | - Abhishek A Kulkarni
- Dr. Rafiq Zakaria Campus, Y.B. Chavan College of Pharmacy, Aurangabad 431001, (M.S.), India
| | - Rajendra H Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, (M.S.), India
| | - Amol M Pachpinde
- Department of Chemistry, Jawahar Art Science and Commerce College, Andur, Osmanabad 413603, (M.S.), India
| | - Kishan S Lohar
- Materials Research Laboratory, Srikrishna Mahavidyalaya Gunjoti, Omerga, Osmanabad 413 613, (M.S.), India
| | | |
Collapse
|