1
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
2
|
Design of D-Amino Acids SARS-CoV-2 Main Protease Inhibitors Using the Cationic Peptide from Rattlesnake Venom as a Scaffold. Pharmaceuticals (Basel) 2022; 15:ph15050540. [PMID: 35631367 PMCID: PMC9146215 DOI: 10.3390/ph15050540] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
The C30 endopeptidase (3C-like protease; 3CLpro) is essential for the life cycle of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) since it plays a pivotal role in viral replication and transcription and, hence, is a promising drug target. Molecules isolated from animals, insects, plants, or microorganisms can serve as a scaffold for the design of novel biopharmaceutical products. Crotamine, a small cationic peptide from the venom of the rattlesnake Crotalus durissus terrificus, has been the focus of many studies since it exhibits activities such as analgesic, in vitro antibacterial, and hemolytic activities. The crotamine derivative L-peptides (L-CDP) that inhibit the 3CL protease in the low µM range were examined since they are susceptible to proteolytic degradation; we explored the utility of their D-enantiomers form. Comparative uptake inhibition analysis showed D-CDP as a promising prototype for a D-peptide-based drug. We also found that the D-peptides can impair SARS-CoV-2 replication in vivo, probably targeting the viral protease 3CLpro.
Collapse
|
3
|
Baudou FG, Rodriguez JP, Fusco L, de Roodt AR, De Marzi MC, Leiva L. South American snake venoms with abundant neurotoxic components. Composition and toxicological properties. A literature review. Acta Trop 2021; 224:106119. [PMID: 34481791 DOI: 10.1016/j.actatropica.2021.106119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023]
Abstract
In South America there are three snake genera with predominantly neurotoxic venoms: Crotalus, Micrurus and Hydrophis, which include nine species/subspecies, 97 species and a single marine species, respectively. Although accidents with neurotoxic venoms are less frequent than those with anticoagulant, cytotoxic or necrotic venoms (e.g. from Bothrops), they are of major public health importance. Venoms from genus Crotalus have been extensively studied, while data on the venoms from the other two genera are very limited, especially for Hydrophis. The venoms of North and South American Crotalus species show biochemical and physiopathological differences. The former species cause bothrops-like envenomation symptoms, while the latter mainly have neurotoxic and myotoxic effects, leading to respiratory paralysis and, occasionally, renal failure by myoglobinuria and death, often with no local lesions. Micrurus and Hydrophis also cause neurotoxic envenomations. Many studies have isolated, identified and characterized new enzymes and toxins, thus expanding the knowledge of snake venom composition. The present review summarizes the currently available information on neurotoxic venoms from South American snakes, with a focus on protein composition and toxicological properties. It also includes some comments concerning potential medical applications of elapid and crotalic toxins.
Collapse
Affiliation(s)
- Federico G Baudou
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina.
| | - Juan P Rodriguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| | - Luciano Fusco
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| | - Adolfo R de Roodt
- Área Investigación y Desarrollo-Venenos, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Ministerio de Salud de la Nación, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mauricio C De Marzi
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina
| | - Laura Leiva
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| |
Collapse
|
4
|
Abstract
Snake and spider venom is a complex mixture that contains proteins, peptides, and small organic and inorganic compounds. In contrast to spider venom, snake venom proteins are well known both functionally and structurally. This work describes methods for purification and crystallization of snake and spider venom toxins and their three-dimensional structure determination by X-ray crystallography.
Collapse
|
5
|
de Oliveira SAM, Magalhães MR, de Oliveira LP, da Cunha LC. Identification of antinociceptive fraction of snake venom from Crotalus durissus collilineatus crotamine-negative and its acute toxicity evaluation. Toxicon 2016; 122:145-151. [PMID: 27720975 DOI: 10.1016/j.toxicon.2016.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 11/27/2022]
Abstract
The crude venom of the snake Crotalus durissus collilineatus (CDC) promotes neurological signs and symptoms in accidents involving humans and animals and the victims reports analgesia at the bite site, without tissue destruction. Studies shows that CDC has analgesic activity, among others. The crude venom is considered unsuitable for therapeutic purposes, with encouragement to the fractionation and purification of the same. Thus, the aim with CDC venom is: to perform fractionation by preparative HPLC; to test the antinociceptive activity of fractions and acute toxicity of active fractions. The CDC was fractionated on preparative HPLC-PDA (Oliveira et al., 2015) and the fractions were tested for their antinociceptive activity for writhing test by acetic acid (0.6%) in mice. For one of the fractions, which showed high analgesic effect both p.o. and i.p. routes, it evaluated the acute toxicity by the up and down method (OECD, 2001). In the fractionation by HPLC-PDA, CDC yielded 10 peaks (P1P10). SDS-PAGE showed that there was a good separation of components of the venom. All peaks were evaluated for their ability to reduce writhing, and the only one that apparently showed antinociceptive effect was Fr5 fraction (40 μg/kg). The Fr5 was able to reduce by 47% the number of contortions (i.p.) and 87% (p.o.), compared to control. The Fr5 fraction showed no morbidity and no mortality in the acute toxicity test (dose of 1000 μg/kg, p.o.); so it was not possible to estimate the LD50. According to the results, it can be stated that the venom and Fr5 of Crotalus durissus collilineatus snake of crotamine-negative type, may exhibit antinociceptive activity by suppressing nociception induced by acetic acid, suggesting it is related to effects on peripheral sites spinal and presents low acute toxicity values in experimental animals.
Collapse
Affiliation(s)
- Sayonara Ay More de Oliveira
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, 74.605-220 Goiânia, GO, Brazil; Centro de Estudos e Pesquisas Biológicas, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, 74.605-010 Goiânia, GO, Brazil.
| | - Marta Regina Magalhães
- Centro de Estudos e Pesquisas Biológicas, Departamento de Biologia, Pontifícia Universidade Católica de Goiás, 74.605-010 Goiânia, GO, Brazil
| | - Lilibete P de Oliveira
- Laboratório de Toxinologia, Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade de Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Luiz Carlos da Cunha
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, 74.605-220 Goiânia, GO, Brazil
| |
Collapse
|
6
|
Vu TTT, Jeong B, Yu J, Koo BK, Jo SH, Robinson RC, Choe H. Soluble prokaryotic expression and purification of crotamine using an N-terminal maltose-binding protein tag. Toxicon 2014; 92:157-65. [PMID: 25448388 DOI: 10.1016/j.toxicon.2014.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/08/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
Crotamine is a peptide toxin found in the venom of the rattlesnake Crotalus durissus terrificus. Interestingly, crotamine demonstrates promising anticancer, antimicrobial, and antifungal activities. The crotamine peptide can also deliver plasmids into rapidly dividing cells, such as cancer and stem cells, and demonstrates potent analgesic effects. Efficiently producing crotamine in mammalian cells is difficult because it is both cell-permeable and cytotoxic. Prokaryotic expression of this peptide is also difficult to maintain because it does not fold properly in the cytoplasm, resulting in aggregation and in the formation of inclusion bodies. In our current study, we show for the first time that N-terminal fusion with three protein tags-N-utilization substance protein A (NusA), protein disulfide isomerase b'a' domain (PDIb'a'), and maltose-binding protein (MBP)-enables the soluble overexpression of crotamine in the cytoplasm of Escherichia coli. MBP-tagged crotamine was purified using Ni affinity, anion exchange, and MBP chromatography. The tag was cleaved using TEV protease, and the final product was pure on a silver-stained gels. In total, 0.9 mg pure crotamine was obtained from each liter of bacterial culture with endotoxin level approximately 0.15 EU/μg, which is low enough to use in biomedical applications. The identity and intramolecular disulfide bonds were confirmed using MALDI-TOF MS analysis. Purified crotamine inhibited the hKv1.3 channel (but not hKv1.5) in a dose-dependent manner with IC50 value of 67.2 ± 44.7 nM (n = 10), indicating the correct protein folding. The crotamine product fused with MBP at its N-terminus also inhibited the hKv1.3 channel, suggesting that the N-terminus is not involved in the channel binding of the toxin.
Collapse
Affiliation(s)
- Thu Trang Thi Vu
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Boram Jeong
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jing Yu
- Department of Physiology, Institute of Bioscience and Biotechnology, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Bon-Kyung Koo
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Su-Hyun Jo
- Department of Physiology, Institute of Bioscience and Biotechnology, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea.
| | - Robert Charles Robinson
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research), Biopolis, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| | - Han Choe
- Department of Physiology and Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea.
| |
Collapse
|
7
|
Antimicrobial peptides in reptiles. Pharmaceuticals (Basel) 2014; 7:723-53. [PMID: 24918867 PMCID: PMC4078517 DOI: 10.3390/ph7060723] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 12/17/2022] Open
Abstract
Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development.
Collapse
|
8
|
Sieber M, Bosch B, Hanke W, Fernandes de Lima VM. Membrane-modifying properties of crotamine, a small peptide-toxin from Crotalus durissus terifficus venom. Biochim Biophys Acta Gen Subj 2014; 1840:945-50. [PMID: 24513454 DOI: 10.1016/j.bbagen.2013.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Crotamine is a small, highly basic myotoxin from the venom of the South American rattlesnake Crotalus durissus terifficus. It is structurally well defined and exhibits some similarities with the β-defensins of vertebrates. An amazing variety of functions and targets that range from analgesia and tumor-related activity to cell penetration have been associated with crotamine. Similar to defensins, it had been argued that crotamine has antimicrobial activity, and this supposition was recently proven.Moreover, it has been argued that the antimicrobial activity of crotamine is due to the membrane permeabilizing properties of the peptide. However, until now, the detailed mechanism of this postulated membrane permeabilization was still unclear. METHODS In this paper, we used gradient SDS-gels, mass spectroscopy (MALDI-TOF), and monolayer and planar lipid bilayer experiments to investigate the membrane modifying properties of crotamine. RESULTS We showed that crotamine itself forms stable monolayers because of its amphipathic structure, is easily incorporated into lipid monolayers and forms well-defined pores with low cationic selectivity in planar lipid bilayers; these properties might account for the antimicrobial activity of crotamine. The pores are probably oligomericaggregates of crotamine molecules, as suggested by the tendency of crotamine to form oligomers in aqueous solution and the fact that the structure of crotamine does not allow pore formation by monomers. CONCLUSIONS The membrane modifying and antimicrobial properties of crotamine are probably due to homo oligomeric pore formation in membranes. GENERAL SIGNIFICANCE The results should be highly interesting to researchers in the fields of biophysics, pharmacology,toxicology and antibiotics.
Collapse
|
9
|
Abstract
Snakebite is classified by the WHO as a neglected tropical disease. Envenoming is a significant public health problem in tropical and subtropical regions. Neurotoxicity is a key feature of some envenomings, and there are many unanswered questions regarding this manifestation. Acute neuromuscular weakness with respiratory involvement is the most clinically important neurotoxic effect. Data is limited on the many other acute neurotoxic manifestations, and especially delayed neurotoxicity. Symptom evolution and recovery, patterns of weakness, respiratory involvement, and response to antivenom and acetyl cholinesterase inhibitors are variable, and seem to depend on the snake species, type of neurotoxicity, and geographical variations. Recent data have challenged the traditional concepts of neurotoxicity in snake envenoming, and highlight the rich diversity of snake neurotoxins. A uniform system of classification of the pattern of neuromuscular weakness and models for predicting type of toxicity and development of respiratory weakness are still lacking, and would greatly aid clinical decision making and future research. This review attempts to update the reader on the current state of knowledge regarding this important issue.
Collapse
Affiliation(s)
- Udaya K. Ranawaka
- Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
- * E-mail:
| | - David G. Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | |
Collapse
|
10
|
Coronado MA, Gabdulkhakov A, Georgieva D, Sankaran B, Murakami MT, Arni RK, Betzel C. Structure of the polypeptide crotamine from the Brazilian rattlesnake Crotalus durissus terrificus. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1958-64. [PMID: 24100315 PMCID: PMC3792641 DOI: 10.1107/s0907444913018003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/29/2013] [Indexed: 11/10/2022]
Abstract
The crystal structure of the myotoxic, cell-penetrating, basic polypeptide crotamine isolated from the venom of Crotalus durissus terrificus has been determined by single-wavelength anomalous dispersion techniques and refined at 1.7 Å resolution. The structure reveals distinct cationic and hydrophobic surface regions that are located on opposite sides of the molecule. This surface-charge distribution indicates its possible mode of interaction with negatively charged phospholipids and other molecular targets to account for its diverse pharmacological activities. Although the sequence identity between crotamine and human β-defensins is low, the three-dimensional structures of these functionally related peptides are similar. Since crotamine is a leading member of a large family of myotoxic peptides, its structure will provide a basis for the design of novel cell-penetrating molecules.
Collapse
Affiliation(s)
- Monika A. Coronado
- Multi User Center for Biomolecular Innovation, Department of Physics, São Paulo State University, UNESP/IBILCE, C. Postal 136, 15054-000 São José do Rio Preto-SP, Brazil
- Institute of Biochemistry and Molecular Biology, Hamburg University, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Azat Gabdulkhakov
- Institute of Protein Research, RAS, Pushchino, Moscow Region 142290, Russian Federation
| | - Dessislava Georgieva
- Institute of Biochemistry and Molecular Biology, Hamburg University, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Banumathi Sankaran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94702, USA
| | - Mario T. Murakami
- Biosciences National Laboratory, National Center for Energy and Materials Research, Giuseppe Maximo Scolfaro 10000, 13083-970 Campinas-SP, Brazil
| | - Raghuvir K. Arni
- Multi User Center for Biomolecular Innovation, Department of Physics, São Paulo State University, UNESP/IBILCE, C. Postal 136, 15054-000 São José do Rio Preto-SP, Brazil
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Hamburg University, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| |
Collapse
|