1
|
Peng Y, Moffat JG, DuPai C, Kofoed EM, Skippington E, Modrusan Z, Gloor SL, Clark K, Xu Y, Li S, Chen L, Liu X, Wu P, Harris SF, Wang S, Crawford TD, Li CS, Liu Z, Wai J, Tan MW. Differential effects of inosine monophosphate dehydrogenase (IMPDH/GuaB) inhibition in Acinetobacter baumannii and Escherichia coli. J Bacteriol 2024; 206:e0010224. [PMID: 39235234 PMCID: PMC11500612 DOI: 10.1128/jb.00102-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024] Open
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH), known as GuaB in bacteria, catalyzes the rate-limiting step in de novo guanine biosynthesis and is conserved from humans to bacteria. We developed a series of potent inhibitors that selectively target GuaB over its human homolog. Here, we show that these GuaB inhibitors are bactericidal, generate phenotypic signatures that are distinct from other antibiotics, and elicit different time-kill kinetics and regulatory responses in two important Gram-negative pathogens: Acinetobacter baumannii and Escherichia coli. Specifically, the GuaB inhibitor G6 rapidly kills A. baumannii but only kills E. coli after 24 h. After exposure to G6, the expression of genes involved in purine biosynthesis and stress responses change in opposite directions while siderophore biosynthesis is downregulated in both species. Our results suggest that different species respond to GuaB inhibition using distinct regulatory programs and possibly explain the different bactericidal kinetics upon GuaB inhibition. The comparison highlights opportunities for developing GuaB inhibitors as novel antibiotics.IMPORTANCEA. baumannii is a priority bacterial pathogen for which development of new antibiotics is urgently needed due to the emergence of multidrug resistance. We recently developed a series of specific inhibitors against GuaB, a bacterial inosine 5'-monophosphate dehydrogenase, and achieved sub-micromolar minimum inhibitory concentrations against A. baumannii. GuaB catalyzes the rate-limiting step of de novo guanine biosynthesis and is highly conserved across bacterial pathogens. This study shows that inhibition of GuaB induced a bacterial morphological profile distinct from that of other classes of antibiotics, highlighting a novel mechanism of action. Moreover, our transcriptomic analysis showed that regulation of de novo purine biosynthesis and stress responses of A. baumannii upon GuaB inhibition differed significantly from that of E. coli.
Collapse
Affiliation(s)
- Yutian Peng
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | - John G. Moffat
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Cory DuPai
- Department of Bioinformatics, Genentech Inc., South San Francisco, California, USA
| | - Eric M. Kofoed
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | | | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech Inc., South San Francisco, California, USA
| | - Susan L. Gloor
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Kevin Clark
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Yiming Xu
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Shuxuan Li
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Liuxi Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Xingrong Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Ping Wu
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Seth F. Harris
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Shumei Wang
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Terry D. Crawford
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Chun Sing Li
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - Zhiguo Liu
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - John Wai
- WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
2
|
Kofoed EM, Aliagas I, Crawford T, Mao J, Harris SF, Xu M, Wang S, Wu P, Ma F, Clark K, Sims J, Xu Y, Peng Y, Skippington E, Yang Y, Reeder J, Ubhayakar S, Baumgardner M, Yan Z, Chen J, Park S, Zhang H, Yen CW, Lorenzo M, Skelton N, Liang X, Chen L, Hoag B, Li CS, Liu Z, Wai J, Liu X, Liang J, Tan MW. Discovery of GuaB inhibitors with efficacy against Acinetobacter baumannii infection. mBio 2024; 15:e0089724. [PMID: 39207111 PMCID: PMC11481871 DOI: 10.1128/mbio.00897-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Guanine nucleotides are required for growth and viability of cells due to their structural role in DNA and RNA, and their regulatory roles in translation, signal transduction, and cell division. The natural antibiotic mycophenolic acid (MPA) targets the rate-limiting step in de novo guanine nucleotide biosynthesis executed by inosine-5´-monophosphate dehydrogenase (IMPDH). MPA is used clinically as an immunosuppressant, but whether in vivo inhibition of bacterial IMPDH (GuaB) is a valid antibacterial strategy is controversial. Here, we describe the discovery of extremely potent small molecule GuaB inhibitors (GuaBi) specific to pathogenic bacteria with a low frequency of on-target spontaneous resistance and bactericidal efficacy in vivo against Acinetobacter baumannii mouse models of infection. The spectrum of GuaBi activity includes multidrug-resistant pathogens that are a critical priority of new antibiotic development. Co-crystal structures of A. baumannii, Staphylococcus aureus, and Escherichia coli GuaB proteins bound to inhibitors show comparable binding modes of GuaBi across species and identifies key binding site residues that are predictive of whole-cell activity across both Gram-positive and Gram-negative clades of Bacteria. The clear in vivo efficacy of these small molecule GuaB inhibitors in a model of A. baumannii infection validates GuaB as an essential antibiotic target. IMPORTANCE The emergence of multidrug-resistant bacteria worldwide has renewed interest in discovering antibiotics with novel mechanism of action. For the first time ever, we demonstrate that pharmacological inhibition of de novo guanine biosynthesis is bactericidal in a mouse model of Acinetobacter baumannii infection. Structural analyses of novel inhibitors explain differences in biochemical and whole-cell activity across bacterial clades and underscore why this discovery may have broad translational impact on treatment of the most recalcitrant bacterial infections.
Collapse
Affiliation(s)
- Eric M. Kofoed
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | - Ignacio Aliagas
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Terry Crawford
- Department of Medicinal Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Seth F. Harris
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Min Xu
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, USA
| | - Shumei Wang
- Department of Medicinal Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Ping Wu
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Fang Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Kevin Clark
- Department of Biochemistry and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Jessica Sims
- Department of Developmental Sciences Safety Assessment, Genentech Inc., South San Francisco, California, USA
| | - Yiming Xu
- Department of Biochemistry and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Yutian Peng
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | | | - Ying Yang
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Janina Reeder
- Department of Bioinformatics, Genentech Inc., South San Francisco, California, USA
| | - Savita Ubhayakar
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Matt Baumgardner
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Zhengyin Yan
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Jacob Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Summer Park
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, USA
| | - Hua Zhang
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, USA
| | - Chun-Wan Yen
- Department of Small Molecule Pharmaceutical Science, Genentech Inc., South San Francisco, California, USA
| | - Maria Lorenzo
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Nicholas Skelton
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Xiaorong Liang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Liuxi Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Bridget Hoag
- Department of Biochemistry and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | | | | | - John Wai
- WuXi AppTec Co., Ltd., Shanghai, China
| | - Xingrong Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Jun Liang
- Department of Medicinal Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Man Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
3
|
Nan J, Zhang S, Zhan P, Jiang L. Evaluation of Bronopol and Disulfiram as Potential Candidatus Liberibacter asiaticus Inosine 5'-Monophosphate Dehydrogenase Inhibitors by Using Molecular Docking and Enzyme Kinetic. Molecules 2020; 25:E2313. [PMID: 32423116 PMCID: PMC7287799 DOI: 10.3390/molecules25102313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Citrus huanglongbing (HLB) is a destructive disease that causes significant damage to many citrus producing areas worldwide. To date, no strategy against this disease has been established. Inosine 5'-monophosphate dehydrogenase (IMPDH) plays crucial roles in the de novo synthesis of guanine nucleotides. This enzyme is used as a potential target to treat bacterial infection. In this study, the crystal structure of a deletion mutant of CLas IMPDHΔ98-201 in the apo form was determined. Eight known bioactive compounds were used as ligands for molecular docking. The results showed that bronopol and disulfiram bound to CLas IMPDHΔ98-201 with high affinity. These compounds were tested for their inhibition against CLas IMPDHΔ98-201 activity. Bronopol and disulfiram showed high inhibition at nanomolar concentrations, and bronopol was found to be the most potent molecule (Ki = 234 nM). The Ki value of disulfiram was 616 nM. These results suggest that bronopol and disulfiram can be considered potential candidate agents for the development of CLas inhibitors.
Collapse
Affiliation(s)
- Jing Nan
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
| | - Shaoran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ping Zhan
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
| | - Ling Jiang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
| |
Collapse
|
4
|
Nass K, Redecke L, Perbandt M, Yefanov O, Klinge M, Koopmann R, Stellato F, Gabdulkhakov A, Schönherr R, Rehders D, Lahey-Rudolph JM, Aquila A, Barty A, Basu S, Doak RB, Duden R, Frank M, Fromme R, Kassemeyer S, Katona G, Kirian R, Liu H, Majoul I, Martin-Garcia JM, Messerschmidt M, Shoeman RL, Weierstall U, Westenhoff S, White TA, Williams GJ, Yoon CH, Zatsepin N, Fromme P, Duszenko M, Chapman HN, Betzel C. In cellulo crystallization of Trypanosoma brucei IMP dehydrogenase enables the identification of genuine co-factors. Nat Commun 2020; 11:620. [PMID: 32001697 PMCID: PMC6992785 DOI: 10.1038/s41467-020-14484-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
Sleeping sickness is a fatal disease caused by the protozoan parasite Trypanosoma brucei (Tb). Inosine-5’-monophosphate dehydrogenase (IMPDH) has been proposed as a potential drug target, since it maintains the balance between guanylate deoxynucleotide and ribonucleotide levels that is pivotal for the parasite. Here we report the structure of TbIMPDH at room temperature utilizing free-electron laser radiation on crystals grown in living insect cells. The 2.80 Å resolution structure reveals the presence of ATP and GMP at the canonical sites of the Bateman domains, the latter in a so far unknown coordination mode. Consistent with previously reported IMPDH complexes harboring guanosine nucleotides at the second canonical site, TbIMPDH forms a compact oligomer structure, supporting a nucleotide-controlled conformational switch that allosterically modulates the catalytic activity. The oligomeric TbIMPDH structure we present here reveals the potential of in cellulo crystallization to identify genuine allosteric co-factors from a natural reservoir of specific compounds. Trypanosoma brucei inosine-5′-monophosphate dehydrogenase (IMPDH) is an enzyme in the guanine nucleotide biosynthesis pathway and of interest as a drug target. Here the authors present the 2.8 Å room temperature structure of TbIMPDH determined by utilizing X-ray free-electron laser radiation and crystals that were grown in insect cells and find that ATP and GMP are bound at the canonical sites of the Bateman domains.
Collapse
Affiliation(s)
- Karol Nass
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,Paul Scherrer Institute (PSI), Forschungstrasse 111, 5232, Villigen, PSI, Switzerland
| | - Lars Redecke
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany.,German Centre for Infection Research, University of Lübeck, 23562, Lübeck, Germany.,Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestr. 85, 22607, Hamburg, Germany
| | - M Perbandt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761, Hamburg, Germany
| | - O Yefanov
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - M Klinge
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany.,BioAgilytix Europe GmbH, Lademannbogen 10, 22339, Hamburg, Germany
| | - R Koopmann
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str.4, 72076, Tübingen, Germany
| | - F Stellato
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,Dipartimento di Fisica, Università di Roma Tor Vergata and INFN, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - A Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Str., Pushchino, Moscow Region, Russia, 142290
| | - R Schönherr
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestr. 85, 22607, Hamburg, Germany
| | - D Rehders
- Joint Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, and Institute of Biochemistry, University of Lübeck, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany.,BODE Chemie GmbH, Melanchthonstraße 27, 22525, Hamburg, Germany
| | - J M Lahey-Rudolph
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - A Aquila
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - A Barty
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - S Basu
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-160, USA.,European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, Grenoble, France
| | - R B Doak
- Department of Physics, Arizona State University, Tempe, AZ, 85411, USA.,Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - R Duden
- Institute of Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - M Frank
- Biology and Biotechnology Division, Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA
| | - R Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-160, USA
| | - S Kassemeyer
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - G Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - R Kirian
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-160, USA
| | - H Liu
- Department of Physics, Arizona State University, Tempe, AZ, 85411, USA.,Complex Systems Division, Beijing Computational Science Research Center, 100193, Beijing, China
| | - I Majoul
- Institute of Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - J M Martin-Garcia
- Center for Applied Structural Discovery (CASD), Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ, 85287, USA
| | - M Messerschmidt
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.,Center for Applied Structural Discovery (CASD), Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ, 85287, USA
| | - R L Shoeman
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - U Weierstall
- Department of Physics, Arizona State University, Tempe, AZ, 85411, USA
| | - S Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - T A White
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - G J Williams
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.,Brookhaven National Laboratory (BNL), PO Box 5000, Upton, NY, 11973-5000, USA
| | - C H Yoon
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - N Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ, 85411, USA.,ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - P Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287-160, USA
| | - M Duszenko
- Institute of Neurophysiology, University of Tübingen, Keplerstr. 15, 72074, Tübingen, Germany
| | - H N Chapman
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - C Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, at Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607, Hamburg, Germany. .,The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
5
|
Yang L, Ru Y, Cai X, Yin Z, Liu X, Xiao Y, Zhang H, Zheng X, Wang P, Zhang Z. MoImd4 mediates crosstalk between MoPdeH-cAMP signalling and purine metabolism to govern growth and pathogenicity in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2019; 20:500-518. [PMID: 30426699 PMCID: PMC6422694 DOI: 10.1111/mpp.12770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The high-affinity cyclic adenosine monophosphate (cAMP) phosphodiesterase MoPdeH is important not only for cAMP signalling and pathogenicity, but also for cell wall integrity (CWI) maintenance in the rice blast fungus Magnaporthe oryzae. To explore the underlying mechanism, we identified MoImd4 as an inosine-5'-monophosphate dehydrogenase (IMPDH) homologue that interacts with MoPdeH. Targeted deletion of MoIMD4 resulted in reduced de novo purine biosynthesis and growth, as well as attenuated pathogenicity, which were suppressed by exogenous xanthosine monophosphate (XMP). Treatment with mycophenolic acid (MPA), which specifically inhibits MoImd4 activity, resulted in reduced growth and virulence attenuation. Intriguingly, further analysis showed that MoImd4 promotes the phosphodiesterase activity of MoPdeH, thereby decreasing intracellular cAMP levels, and MoPdeH also promotes the IMPDH activity of MoImd4. Our studies revealed the presence of a novel crosstalk between cAMP regulation and purine biosynthesis in M. oryzae, and indicated that such a link is also important in the pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Lina Yang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Yanyan Ru
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xingjia Cai
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Yuhan Xiao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ping Wang
- Departments of Pediatrics, and Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| |
Collapse
|
6
|
Juvale K, Purushothaman G, Singh V, Shaik A, Ravi S, Thiruvenkatam V, Kirubakaran S. Identification of selective inhibitors of Helicobacter pylori IMPDH as a targeted therapy for the infection. Sci Rep 2019; 9:190. [PMID: 30655593 PMCID: PMC6336804 DOI: 10.1038/s41598-018-37490-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/30/2018] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori (H. pylori), the major cause of several gastric disorders has been recognied as a type I carcinogen. By virtue of resistance developed by H. pylori strains, currently used antibiotic based treatments rather demonstrate high failure rates. Hence, there is an emerging need for identification of new targets to treat H. pylori infection. Inosine-5′-monophosphate dehydrogenase (IMPDH) has been studied as a potential target to treat H. pylori infection. Here, a detailed enzyme kinetic study of recombinant expressed H. pylori inosine-5′-monophosphate dehydrogenase (HpIMPDH) is presented. A new in-house synthesized indole-based scaffold is identified as an inhibitor for HpIMPDH. These indole-based compounds showed non-competitive inhibition against IMP and NAD+ whereas the benzimidazole compounds were found be uncompetitive inhibitors. The new indole scaffold ensures specificity due to its high selectivity for bacterial IMPDH over human IMPDH II. Our work aims to overcome the drawback of existing inhibitors by introducing new indole scaffold for targeting bacterial IMPDH.
Collapse
Affiliation(s)
- Kapil Juvale
- Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355, India.,Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Gayathri Purushothaman
- Biological engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355, India
| | - Vijay Singh
- Biological engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355, India
| | - Althaf Shaik
- Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355, India
| | - Srimadhavi Ravi
- Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355, India
| | - Vijay Thiruvenkatam
- Biological engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355, India.,Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355, India
| | - Sivapriya Kirubakaran
- Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355, India. .,Biological engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355, India.
| |
Collapse
|
7
|
Nakabayashi M, Shibata N, Ishido-Nakai E, Kanagawa M, Iio Y, Komori H, Ueda Y, Nakagawa N, Kuramitsu S, Higuchi Y. Crystal structure of a hypothetical protein, TTHA0829 from Thermus thermophilus HB8, composed of cystathionine-β-synthase (CBS) and aspartate-kinase chorismate-mutase tyrA (ACT) domains. Extremophiles 2016; 20:275-82. [DOI: 10.1007/s00792-016-0817-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/14/2016] [Indexed: 01/01/2023]
|
8
|
Labesse G, Alexandre T, Gelin M, Haouz A, Munier-Lehmann H. Crystallographic studies of two variants ofPseudomonas aeruginosaIMPDH with impaired allosteric regulation. ACTA ACUST UNITED AC 2015; 71:1890-9. [DOI: 10.1107/s1399004715013115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022]
Abstract
Inosine-5′-monophosphate dehydrogenases (IMPDHs), which are the rate-limiting enzymes in guanosine-nucleotide biosynthesis, are important therapeutic targets. Despite in-depth functional and structural characterizations of various IMPDHs, the role of the Bateman domain containing two CBS motifs remains controversial. Their involvement in the allosteric regulation ofPseudomonas aeruginosaIMPDH by Mg-ATP has recently been reported. To better understand the function of IMPDH and the importance of the CBS motifs, the structure of a variant devoid of these modules (ΔCBS) was solved at high resolution in the apo form and in complex with IMP. In addition, a single amino-acid substitution variant, D199N, was also structurally characterized: the mutation corresponds to the autosomal dominant mutant D226N of human IMPDH1, which is responsible for the onset of the retinopathy adRP10. These new structures shed light onto the possible mechanism of regulation of the IMPDH enzymatic activity. In particular, three conserved loops seem to be key players in this regulation as they connect the tetramer–tetramer interface with the active site and show significant modification upon substrate binding.
Collapse
|
9
|
Buey RM, Ledesma-Amaro R, Balsera M, de Pereda JM, Revuelta JL. Increased riboflavin production by manipulation of inosine 5'-monophosphate dehydrogenase in Ashbya gossypii. Appl Microbiol Biotechnol 2015; 99:9577-89. [PMID: 26150243 DOI: 10.1007/s00253-015-6710-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 12/13/2022]
Abstract
Guanine nucleotides are the precursors of essential biomolecules including nucleic acids and vitamins such as riboflavin. The enzyme inosine-5'-monophosphate dehydrogenase (IMPDH) catalyzes the ratelimiting step in the guanine nucleotide de novo biosynthetic pathway and plays a key role in controlling the cellular nucleotide pools. Thus, IMPDH is an important metabolic bottleneck in the guanine nucleotide synthesis, susceptible of manipulation by means of metabolic engineering approaches. Herein, we report the functional and structural characterization of the IMPDH enzyme from the industrial fungus Ashbya gossypii. Our data show that the overexpression of the IMPDH gene increases the metabolic flux through the guanine pathway and ultimately enhances 40 % riboflavin production with respect to the wild type. Also, IMPDH disruption results in a 100-fold increase of inosine excretion to the culture media. Our results contribute to the developing metabolic engineering toolbox aiming at improving the production of metabolites with biotechnological interest in A. gossypii.
Collapse
Affiliation(s)
- Rubén M Buey
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | | | - Mónica Balsera
- Department Abiotic Stress, Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, C/ Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - José María de Pereda
- Instituto de Biología Celular y Molecular del Cáncer, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José Luis Revuelta
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
10
|
Makowska-Grzyska M, Kim Y, Maltseva N, Osipiuk J, Gu M, Zhang M, Mandapati K, Gollapalli DR, Gorla SK, Hedstrom L, Joachimiak A. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity. J Biol Chem 2015; 290:5893-911. [PMID: 25572472 PMCID: PMC4342496 DOI: 10.1074/jbc.m114.619767] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+), which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD(+) and XMP/NAD(+). In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD(+) adenosine moiety. More importantly, this new NAD(+)-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD(+)-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization.
Collapse
Affiliation(s)
- Magdalena Makowska-Grzyska
- From the Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, Illinois 60637
| | - Youngchang Kim
- From the Center for Structural Genomics of Infectious Diseases, the Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, and Computational Institute, University of Chicago, Chicago, Illinois 60637
| | - Natalia Maltseva
- From the Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, Illinois 60637
| | - Jerzy Osipiuk
- From the Center for Structural Genomics of Infectious Diseases, the Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, and Computational Institute, University of Chicago, Chicago, Illinois 60637
| | - Minyi Gu
- From the Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, Illinois 60637
| | | | | | | | | | - Lizbeth Hedstrom
- the Departments of Biology and Chemistry, Brandeis University, Waltham, Massachusetts 024549110
| | - Andrzej Joachimiak
- From the Center for Structural Genomics of Infectious Diseases, the Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439, and Computational Institute, University of Chicago, Chicago, Illinois 60637,
| |
Collapse
|
11
|
Mandapati K, Gorla SK, House AL, McKenney ES, Zhang M, Rao SN, Gollapalli DR, Mann BJ, Goldberg JB, Cuny GD, Glomski IJ, Hedstrom L. Repurposing cryptosporidium inosine 5'-monophosphate dehydrogenase inhibitors as potential antibacterial agents. ACS Med Chem Lett 2014; 5:846-50. [PMID: 25147601 DOI: 10.1021/ml500203p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022] Open
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the pivotal step in guanine nucleotide biosynthesis. IMPDH is a target for immunosuppressive, antiviral, and anticancer drugs, but, as of yet, has not been exploited for antimicrobial therapy. We have previously reported potent inhibitors of IMPDH from the protozoan parasite Cryptosporidium parvum (CpIMPDH). Many pathogenic bacteria, including Bacillus anthracis, Staphylococcus aureus, and Listeria monocytogenes, contain IMPDHs that should also be inhibited by these compounds. Herein, we present the structure-activity relationships for the inhibition of B. anthracis IMPDH (BaIMPDH) and antibacterial activity of 140 compounds from five structurally distinct compound series. Many potent inhibitors of BaIMPDH were identified (78% with IC50 ≤ 1 μM). Four compounds had minimum inhibitory concentrations (MIC) of less than 2 μM against B. anthracis Sterne 770. These compounds also displayed antibacterial activity against S. aureus and L. monocytogenes.
Collapse
Affiliation(s)
| | | | - Amanda L. House
- Department of Microbiology, Immunology,
and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Elizabeth S. McKenney
- Department of Microbiology, Immunology,
and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| | | | | | | | - Barbara J. Mann
- Department of Microbiology, Immunology,
and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, United States
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Joanna B. Goldberg
- Department of Microbiology, Immunology,
and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Gregory D. Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College
of Pharmacy, University of Houston, 549A Science and Research Building
2, Houston, Texas 77204, United States
| | - Ian J. Glomski
- Department of Microbiology, Immunology,
and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| | | |
Collapse
|
12
|
Saccà ML, Fajardo C, Martinez-Gomariz M, Costa G, Nande M, Martin M. Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri. PLoS One 2014; 9:e89677. [PMID: 24586957 PMCID: PMC3934913 DOI: 10.1371/journal.pone.0089677] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Nanotoxicological studies were performed in vitro using the common soil bacterium Pseudomonas stutzeri to assess the potentially toxic impact of commercial nano-sized zero-valent iron (nZVI) particles, which are currently used for environmental remediation projects. The phenotypic response of P. stutzeri to nZVI toxicity includes an initial insult to the cell wall, as evidenced by TEM micrographs. Transcriptional analyses using genes of particular relevance in cellular activity revealed that no significant changes occurred among the relative expression ratios of narG, nirS, pykA or gyrA following nZVI exposure; however, a significant increase in katB expression was indicative of nZVI-induced oxidative stress in P. stutzeri. A proteomic approach identified two major defence mechanisms that occurred in response to nZVI exposure: a downregulation of membrane proteins and an upregulation of proteins involved in reducing intracellular oxidative stress. These biomarkers served as early indicators of nZVI response in this soil bacterium, and may provide relevant information for environmental hazard assessment.
Collapse
Affiliation(s)
- Maria Ludovica Saccà
- Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
- Moncloa Campus of International Excellence, Madrid, Spain
- * E-mail:
| | - Carmen Fajardo
- Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Gonzalo Costa
- Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Mar Nande
- Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Margarita Martin
- Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Rostirolla DC, Milech de Assunção T, Bizarro CV, Basso LA, Santos DS. Biochemical characterization of Mycobacterium tuberculosis IMP dehydrogenase: kinetic mechanism, metal activation and evidence of a cooperative system. RSC Adv 2014. [DOI: 10.1039/c4ra02142h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Proposed kinetic mechanism forMtIMPDH in the presence of K+.
Collapse
Affiliation(s)
- Diana Carolina Rostirolla
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde
| | | | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre, Brazil
| | - Luiz Augusto Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde
| | - Diogenes Santiago Santos
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF)
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB)
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
- Porto Alegre, Brazil
- Programa de Pós-Graduação em Medicina e Ciências da Saúde
| |
Collapse
|