1
|
Praditi C, Beverley-Stone E, Reid M, Burgess ER, Crake RL, Vissers MC, Royds JA, Slatter TL, Dachs GU, Phillips E. Iron content of glioblastoma tumours and role of ferrous iron in the hypoxic response in vitro. Front Oncol 2025; 15:1536549. [PMID: 40123902 PMCID: PMC11925887 DOI: 10.3389/fonc.2025.1536549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Glioblastomas are an aggressive primary brain cancer, characterised by hypoxia and poor patient survival. Iron is the most abundant transition metal in the brain, yet data on the iron content of brain cancers is sparse. Ferrous iron is an essential cofactor for a super-family of enzymes, the iron- and 2-oxoglutarate-dependent dioxygenase enzymes (2-OGDD). These enzymes control the response to hypoxia via hydroxylation of the hypoxia-inducible factor-1α (HIF-1α), and DNA demethylation via hydroxylation of 5-methyl cytosines (5hmC). Methods This study used clinical glioblastoma samples from 40 patients to determine the relationship between 2-OGDD activity and iron. Elemental iron was measured using inductively coupled plasma mass spectrometry (ICP-MS) and ferrous iron was measured using the colorimetric ferrozine assay. Iron measurements were compared against patient survival and clinicopathological data, and 2-OGDD-dependent activity of HIF-1 activation and 5hmC. Results and discussion Elemental and ferrous iron levels were weakly related. Higher ferrous iron content of clinical glioblastoma tissue was associated with longer overall survival compared to lower ferrous iron content, but elemental iron showed no such relationship. Neither form of iron was related to clinicopathological data or markers of 2-OGDD activity. The impact of iron supplementation on the hypoxic response was assessed in three glioblastoma cell lines in vitro, similarly showing only a limited influence of iron on these 2-OGDD enzymes. Our data, together with prior studies in anaemic patients, highlight the importance of healthy iron levels in patients with glioblastoma, but further mechanistic studies are needed to elucidate the molecular pathways involved.
Collapse
Affiliation(s)
- Citra Praditi
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Eira Beverley-Stone
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Malcolm Reid
- Centre for Trace Element Analysis, Department of Geology, University of Otago, Dunedin, New Zealand
| | - Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
- Department of Immunobiochemistry, Medical Faculty, Mannheim Institute for Innate Immunoscience (MI3), Heidelberg University, Mannheim, Germany
| | - Rebekah L. Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
- Oncogenic Transcription Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Margreet C.M. Vissers
- Mātai Hāora, Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Janice A. Royds
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L. Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
2
|
Papadopoulou V, Schiavini G, Stalder G, Basset V, Schoumans J, Nabergoj M, Schaller M. Characteristics and Prognosis of "Acute Promyelocytic Leukemia-like" Nucleophosmin-1-Mutated Acute Myeloid Leukemia in a Retrospective Patient Cohort. Biomedicines 2024; 12:2282. [PMID: 39457595 PMCID: PMC11505509 DOI: 10.3390/biomedicines12102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background: AML with NPM1 mutation is the largest subcategory of AML, representing about 35% of AML cases. It is characterized by CD34 negativity, which suggests a relatively differentiated state of the bulk of leukemic blasts. Notably, a significant subset of NPM1-mutated AML cases also exhibit HLA-DR negativity, classifying them as "double-negative", and mimicking, therefore, the CD34- HLA-DR- immunophenotype of acute promyelocytic leukemia (APL). Objectives: This study focuses on the "acute promyelocytic leukemia-like" ("APL-like") subset of NPM1-mutated AML, which can be challenging to distinguish from APL at presentation, prior to confirming RARa translocations. We aim to investigate the hematologic and immunophenotypic parameters that may aid to its distinction from APL. Additionally, we explore differences in genetic profile and prognosis between "APL-like" and "non-APL-like" NPM1-mutated AML cases. Methods: We conducted a retrospective evaluation of 77 NPM1-mutated AML cases and 28 APL cases. Results: Morphological characteristics, hematologic parameters (such as DD/WBC and PT/WBC), and specific immunophenotypic markers (including SSC, CD64, and CD4) can assist in the early distinction of "APL-like" NPM1-mutated AML from APL. Regarding differences in genetic profiles and outcomes between "APL-like" and non-"APL-like" NPM1-mutated AML cases, we observed a significantly higher incidence of IDH1/2 /TET2 mutations, along with a significantly lower incidence of DNMT3A mutations in the "APL-like" subset compared to the non-"APL-like" subset. The frequency of Ras-pathway and FLT3 mutations did not differ between these last two groups, nor did their prognoses. Conclusions: Our findings contribute to a comprehensive characterization of NPM1-mutated AML, enhancing diagnostic accuracy and aiding in the detailed classification of the disease. This information may potentially guide targeted therapies or differentiation-based treatment strategies.
Collapse
Affiliation(s)
- Vasiliki Papadopoulou
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Giulia Schiavini
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Gregoire Stalder
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Hematology Service, Department of Oncology, Cantonal Hospital of Valais, 1951 Sion, Switzerland
| | - Valentin Basset
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Jacqueline Schoumans
- Oncogenetics Unit, Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Mitja Nabergoj
- Hematology Service, Department of Oncology, Cantonal Hospital of Valais, 1951 Sion, Switzerland
| | - Muriel Schaller
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| |
Collapse
|
3
|
Samsami H, Maali-Amiri R. Global insights into intermediate metabolites: Signaling, metabolic divergence and stress response modulation in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108862. [PMID: 38917735 DOI: 10.1016/j.plaphy.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Climate change-induced environmental stresses pose significant challenges to plant survival and agricultural productivity. In response, many plants undergo genetic reprogramming, resulting in profound alterations in metabolic pathways and the production of diverse secondary metabolites. As a critical molecular junction, intermediate metabolites by targeted intensification or suppression of subpathways channel cell resources into a multifaceted array of functions such as cell signals, photosynthesis, energy metabolism, ROS homeostasis, producing defensive and protective molecules, epigenetic regulation and stress memory, phytohormones biosynthesis and cell wall architecture under stress conditions. Unlike the well-established functions of end products, intermediate metabolites are context-dependent and produce enigmatic alternatives during stress. As key components of signal transduction pathways, intermediate metabolites with relay and integration of stress signals ensure responses to stress combinations. Investigating efficient metabolic network pathways and their role in regulating unpredictable paths from upstream to downstream levels can unlock their full potential to shape the future of agriculture and ensure global food security. Here, we summarized the activity of some intermediate metabolites, from the perception step to tolerance responses to stress factors.
Collapse
Affiliation(s)
- Hanna Samsami
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
4
|
Papadopoulou V, Schoumans J, Basset V, Solly F, Pasquier J, Blum S, Spertini O. Single-center, observational study of AML/MDS-EB with IDH1/2 mutations: genetic profile, immunophenotypes, mutational kinetics and outcomes. Hematology 2023; 28:2180704. [PMID: 36815747 DOI: 10.1080/16078454.2023.2180704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE IDH1/2 mutations, intervening in epigenetic procedures, are frequently encountered in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Knowledge of the genetics, immunophenotypes, and mutational kinetics of IDH1/2-mutated AML can contribute to the understanding of AML clonal architecture and inform therapeutics and monitoring. METHODS We retrospectively analyzed 50 IDH1/2-mutated AML/MDS-EB cases of our institution, to identify recurrent co-mutations, immunophenotypes, patterns of co-variance of IDH1/2 allele burdens with those of recurrent co-mutations, frequency of persistent IDH1/2 mutation as clonal hematopoiesis of indeterminate potential (CHIP) in remission and response to hypomethylating agents. RESULTS Most frequently co-mutated genes were DNMT3A, SRSF2 and NPM1. Most cases with co-existent IDH1/2 and NPM1 mutations (11/13) showed an 'APL-like' immunophenotype (CD34-HLADR-). Allele burdens of mutated IDH1/2 were identical to mutated SRSF2 allele burdens at diagnosis and remission, but not always to mutated NPM1 allele burden in remission. We show persistence of significant mutIDH1/2 allele burden in approximately one-fourth of patients with deep remissions. IDH1/2 mutations were significantly more frequent among responders to first-line HMA-based regimens than among non-responders, in patients treated for myeloid neoplasms with excess blasts. CONCLUSIONS IDH1/2 mutations are most frequently accompanied by DNMT3A, SRSF2 and NPM1 mutations. NPM1-IDH1/2 mutated AML has a mature phenotype possibly amenable to differentiation therapies. IDH1/2 and SRSF2 mutations probably arise at the same developmental stage of the disease, as their allele burdens covariate. IDH1/2 mutation represents CHIP in a substantial proportion of cases and is therefore no reliable residual disease marker. The preferential presence of IDH1/2 mutations among HMA-responders could inform therapeutic decisions if confirmed in larger series.
Collapse
Affiliation(s)
- Vasiliki Papadopoulou
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jacqueline Schoumans
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Valentin Basset
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Françoise Solly
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jérôme Pasquier
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Sabine Blum
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Spertini
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
5
|
Zhang J, Qiu T, Yao X, Sun X. Insights into the role of N6-methyladenosine in ferroptosis. Biomed Pharmacother 2023; 165:115192. [PMID: 37487443 DOI: 10.1016/j.biopha.2023.115192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
N6-methyladenosine (m6A) methylation modification is one of the most prevalent epigenetic modifications of eukaryotic RNA. m6A methylation is widely associated with many biological processes through the modification of RNA metabolism and is associated with multiple disease states. As a newly discovered regulatory cell death in recent years, ferroptosis is an iron-dependent cell death characterized by excessive lipid peroxidation. Emerging evidence supports that ferroptosis has a significant role in the progression of diverse diseases. Besides, the key regulators of ferroptosis exhibit aberrant m6A levels under different pathological conditions. However, the correlation between m6A-modified ferroptosis and multiple diseases has not been well elucidated. In this review, we summarized the functions of m6A in ferroptosis, which are associated with the initiation and progression of multiple diseases. Investigating the role of m6A in ferroptosis might both facilitate a better understanding of the pathogenesis of these diseases and provide new opportunities for targeted treatment.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Tianming Qiu
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Xiance Sun
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China.
| |
Collapse
|
6
|
Lafont JE, Moustaghfir S, Durand AL, Mallein-Gerin F. The epigenetic players and the chromatin marks involved in the articular cartilage during osteoarthritis. Front Physiol 2023; 14:1070241. [PMID: 36733912 PMCID: PMC9887161 DOI: 10.3389/fphys.2023.1070241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Epigenetics defines the modifications of the genome that do not involve a change in the nucleotide sequence of DNA. These modifications constitute a mechanism of gene regulation poorly explored in the context of cartilage physiology. They are now intensively studied by the scientific community working on articular cartilage and its related pathology such as osteoarthritis. Indeed, epigenetic regulations can control the expression of crucial gene in the chondrocytes, the only resident cells of cartilage. Some epigenetic changes are considered as a possible cause of the abnormal gene expression and the subsequent alteration of the chondrocyte phenotype (hypertrophy, proliferation, senescence…) as observed in osteoarthritic cartilage. Osteoarthritis is a joint pathology, which results in impaired extracellular matrix homeostasis and leads ultimately to the progressive destruction of cartilage. To date, there is no pharmacological treatment and the exact causes have yet to be defined. Given that the epigenetic modifying enzymes can be controlled by pharmacological inhibitors, it is thus crucial to describe the epigenetic marks that enable the normal expression of extracellular matrix encoding genes, and those associated with the abnormal gene expression such as degradative enzyme or inflammatory cytokines encoding genes. In this review, only the DNA methylation and histone modifications will be detailed with regard to normal and osteoarthritic cartilage. Although frequently referred as epigenetic mechanisms, the regulatory mechanisms involving microRNAs will not be discussed. Altogether, this review will show how this nascent field influences our understanding of the pathogenesis of OA in terms of diagnosis and how controlling the epigenetic marks can help defining epigenetic therapies.
Collapse
|
7
|
Tariq A, Rehman HM, Mateen RM, Ali M, Mutahir Z, Afzal MS, Sajjad M, Gul R, Saleem M. A computer aided drug discovery based discovery of lead-like compounds against KDM5A for cancers using pharmacophore modeling and high-throughput virtual screening. Proteins 2022; 90:645-657. [PMID: 34642975 DOI: 10.1002/prot.26262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022]
Abstract
KDM5A over-expression mediates cancer cell proliferation and promotes resistance toward chemotherapy through epigenetic modifications. As its complete mechanism of action is still unknown, there is no KDM5A specific drug available at clinical level. In the current study, lead compounds for KDM5A were determined through pharmacophore modeling and high-throughput virtual screening from Asinex libraries containing 0.5 million compounds. These virtual hits were further evaluated and filtered for ADMET properties. Finally, 726 compounds were used for docking analysis against KDM5A. On the basis of docking score, 10 top-ranked compounds were selected and further evaluated for non-central nervous system (CNS) and CNS drug-like properties. Among these compounds, N-{[(7-Methyl-4-oxo-1,2,3,4-tetrahydrocyclopenta [c] chromen-9-yl) oxy]acetyl}-l-phenylalanine (G-score: -11.363 kcal/mol) was estimated to exhibit non-CNS properties while 2-(3,4-Dimethoxy-phenyl)-7-methoxy-chromen-4-one (G-score: -7.977 kcal/mol) was evaluated as CNS compound. Docked complexes of both compounds were finally selected for molecular dynamic simulation to examine the stability. This study concluded that both these compounds can serve as lead compounds in the quest of finding therapeutic agents against KDM5A associated cancers.
Collapse
Affiliation(s)
- Asma Tariq
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Rana Muhammad Mateen
- Department of Life sciences, School of Science, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Moazzam Ali
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Zeeshan Mutahir
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Muhammad Sohail Afzal
- Department of Life sciences, School of Science, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| | - Roquyya Gul
- Faculty of Life Sciences, Gulab Devi Educational Complex, Lahore, Punjab, Pakistan
| | - Mahjabeen Saleem
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| |
Collapse
|
8
|
Crake RLI, Burgess ER, Royds JA, Phillips E, Vissers MCM, Dachs GU. The Role of 2-Oxoglutarate Dependent Dioxygenases in Gliomas and Glioblastomas: A Review of Epigenetic Reprogramming and Hypoxic Response. Front Oncol 2021; 11:619300. [PMID: 33842321 PMCID: PMC8027507 DOI: 10.3389/fonc.2021.619300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Gliomas are a heterogeneous group of cancers that predominantly arise from glial cells in the brain, but may also arise from neural stem cells, encompassing low-grade glioma and high-grade glioblastoma. Whereas better diagnosis and new treatments have improved patient survival for many cancers, glioblastomas remain challenging with a highly unfavorable prognosis. This review discusses a super-family of enzymes, the 2-oxoglutarate dependent dioxygenase enzymes (2-OGDD) that control numerous processes including epigenetic modifications and oxygen sensing, and considers their many roles in the pathology of gliomas. We specifically describe in more detail the DNA and histone demethylases, and the hypoxia-inducible factor hydroxylases in the context of glioma, and discuss the substrate and cofactor requirements of the 2-OGDD enzymes. Better understanding of how these enzymes contribute to gliomas could lead to the development of new treatment strategies.
Collapse
Affiliation(s)
- Rebekah L. I. Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Janice A. Royds
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
9
|
Li F, Qasim S, Li D, Dou QP. Updated review on green tea polyphenol epigallocatechin-3-gallate as a cancer epigenetic regulator. Semin Cancer Biol 2021; 83:335-352. [PMID: 33453404 DOI: 10.1016/j.semcancer.2020.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
In-depth insights in cancer biology over the past decades have highlighted the important roles of epigenetic mechanisms in the initiation and progression of tumorigenesis. The cancer epigenome usually experiences multiple alternations, including genome-wide DNA hypomethylation and site-specific DNA hypermethylation, various histone posttranslational modifications, and dysregulation of non-coding RNAs (ncRNAs). These epigenetic changes are plastic and reversible, and could potentially occur in the early stage of carcinogenesis preceding genetic mutation, offering unique opportunities for intervention therapies. Therefore, targeting the cancer epigenome or cancer epigenetic dysregulation with some selected agents (called epi-drugs) represents an evolving and promising strategy for cancer chemoprevention and therapy. Phytochemicals, as a class of pleiotropic molecules, have manifested great potential in modulating different cancer processes through epigenetic machinery, of which green tea polyphenol epigallocatechin-3-gallate (EGCG) is one of the most extensively studied. In this review, we first summarize epigenetic events involved in the pathogenesis of cancer, including DNA/RNA methylations, histone modifications and ncRNAs' dysregulations. We then focus on the recently discovered roles of phytochemicals, with a special emphasis on EGCG, in modulating different cancer processes through regulating epigenetic machinery. We finally discuss limitations of EGCG as an epigenetic modulator for cancer chemoprevention and treatment and offer potential strategies to overcome the shortcomings.
Collapse
Affiliation(s)
- Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Syeda Qasim
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA; Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Q Ping Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
10
|
Xiao MZ, Liu JM, Xian CL, Chen KY, Liu ZQ, Cheng YY. Therapeutic potential of ALKB homologs for cardiovascular disease. Biomed Pharmacother 2020; 131:110645. [PMID: 32942149 DOI: 10.1016/j.biopha.2020.110645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of human death. Recently, ALKB homologs, including ALKBH1-8 and FTO, have been found to have a variety of biological functions, such as histone demethylation, RNA demethylation, and DNA demethylation. These functions may regulate the physiological and pathological processes of CVDs, including inflammation, oxidative stress, cell apoptosis, and mitochondrial, endothelial, and fat metabolism dysfunction. In the present review, we summarize the biological functions of ALKB homologs and the relationship between the ALKB homologs and CVDs. Importantly, we discuss the roles of ALKB homologs in the regulation of oxidative stress, inflammation, autophagy, and DNA damage in CVDs, as well as the practical applications of ALKB homologs inhibitors or agonists in treating CVDs. In conclusion, the ALKBH family might be a promising target for CVDs therapy.
Collapse
Affiliation(s)
- Ming-Zhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia-Ming Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Cui-Ling Xian
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Keng-Yu Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; The Second Affiliated Hospital of Guangdong Pharmaceutical University, Yunfu, 527300, China
| | - Zhong-Qiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yuan-Yuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
11
|
Parkinson EI, Erb A, Eliot AC, Ju KS, Metcalf WW. Fosmidomycin biosynthesis diverges from related phosphonate natural products. Nat Chem Biol 2019; 15:1049-1056. [PMID: 31451762 PMCID: PMC7098449 DOI: 10.1038/s41589-019-0343-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/09/2019] [Indexed: 12/04/2022]
Abstract
Fosmidomycin and related molecules comprise a family of phosphonate natural products with potent antibacterial, antimalarial and herbicidal activities. To understand the biosynthesis of these compounds, we characterized the fosmidomycin producer, Streptomyces lavendulae, using biochemical and genetic approaches. Surprisingly, we were unable to elicit production of fosmidomycin, instead observing the unsaturated derivative dehydrofosmidomycin, which we showed potently inhibits 1-deoxy-D-xylulose 5-phosphate reductoisomerase and has bioactivity against a number of bacteria. The genes required for dehydrofosmidomycin biosynthesis were established by heterologous expression experiments. Bioinformatics analyses, characterization of intermediates, and in vitro biochemistry show that the biosynthetic pathway involves conversion of a two-carbon phosphonate precursor into the unsaturated three-carbon product via a highly unusual rearrangement reaction, catalyzed by the 2-oxoglutarate dependent dioxygenase DfmD. The required genes and biosynthetic pathway for dehydrofosmidomycin differ substantially from that of the related natural product FR-900098, suggesting that the ability to produce these bioactive molecules arose via convergent evolution.
Collapse
Affiliation(s)
- Elizabeth I Parkinson
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Annette Erb
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew C Eliot
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kou-San Ju
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Microbiology and the Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH, USA
| | - William W Metcalf
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
12
|
Gažová I, Lengeling A, Summers KM. Lysine demethylases KDM6A and UTY: The X and Y of histone demethylation. Mol Genet Metab 2019; 127:31-44. [PMID: 31097364 DOI: 10.1016/j.ymgme.2019.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Histone demethylases remove transcriptional repressive marks from histones in the nucleus. KDM6A (also known as UTX) is a lysine demethylase which acts on the trimethylated lysine at position 27 in histone 3. The KDM6A gene is located on the X chromosome but escapes X inactivation even though it is not located in the pseudoautosomal region. There is a homologue of KDM6A on the Y chromosome, known as UTY. UTY was thought to have lost its demethylase activity and to represent a non-functional remnant of the ancestral KDM6A gene. However, results with knockout mice suggest that the gene is expressed and the protein performs some function within the cell. Female mice with homozygous deletion of Kdm6a do not survive, but hemizygous males are viable, attributed to the presence of the Uty gene. KDM6A is mutated in the human condition Kabuki syndrome type 2 (OMIM 300867) and in many cases of cancer. The amino acid sequence of KDM6A has been conserved across animal phyla, although it is only found on the X chromosome in eutherian mammals. In this review, we reanalyse existing data from various sources (protein sequence comparison, evolutionary genetics, transcription factor binding and gene expression analysis) to determine the function, expression and evolution of KDM6A and UTY and show that UTY has a functional role similar to KDM6A in metabolism and development.
Collapse
Affiliation(s)
- Iveta Gažová
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Andreas Lengeling
- Max Planck Society, Administrative Headquarters, Hofgartenstrasse 8, 80539 Munich, Germany
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
13
|
Dorokhov YL, Sheshukova EV, Bialik TE, Komarova TV. Human Endogenous Formaldehyde as an Anticancer Metabolite: Its Oxidation Downregulation May Be a Means of Improving Therapy. Bioessays 2018; 40:e1800136. [PMID: 30370669 DOI: 10.1002/bies.201800136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Malignant cells are characterized by an increased content of endogenous formaldehyde formed as a by-product of biosynthetic processes. Accumulation of formaldehyde in cancer cells is combined with activation of the processes of cellular formaldehyde clearance. These mechanisms include increased ALDH and suppressed ADH5/FDH activity, which oncologists consider poor and favorable prognostic markers, respectively. Here, the sources and regulation of formaldehyde metabolism in cancer cells are reviewed. The authors also analyze the participation of oncoproteins such as fibulins, FGFR1, HER2/neu, FBI-1, and MUC1-C in the control of genes related to formaldehyde metabolism, suggesting the existence of two mutually exclusive processes in cancer cells: 1) production and 2) oxidation and elimination of formaldehyde from the cell. The authors hypothesize that the study of the anticancer properties of disulfiram and alpha lipoic acid - which affect the balance of formaldehyde in the body - may serve as the basis of future anticancer therapy.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- N.I. Vavilov Institute of General Genetics of RAS, 119991, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - Tatiana E Bialik
- N.N. Blokhin National Medical Research Center of Oncology, 115478, Moscow, Russia
| | - Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics of RAS, 119991, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
14
|
Development of formaldehyde dehydrogenase-coupled assay and antibody-based assays for ALKBH5 activity evaluation. J Pharm Biomed Anal 2018; 162:9-15. [PMID: 30219599 DOI: 10.1016/j.jpba.2018.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 02/03/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification of eukaryotic messenger RNA (mRNA). Until now, two RNA demethylases have been identified, including FTO (fat mass and obesity-associated protein) and ALKBH5 (α-ketoglutarate-dependent dioxygenase alkB homologue 5). As a mammalian m6A demethylase, ALKBH5 significantly affects mRNA export and RNA metabolism as well as the assembly of mRNA processing factors in nuclear speckles, and ALKBH5 may play a significant role in these biological processes. Nevertheless, no modulator of ALKBH5 has been reported. The reason for that may be the lack of in vitro assays for ALKBH5 inhibitor screening. Herein, we describe the development of two homogeneous assays for ALKBH5 using N6-methyladenosine as substrate with different principles. Using ALKBH5 recombinant, we developed a formaldehyde dehydrogenase coupled fluorescence based assay and an antibody based assay for the activity evaluation of ALKBH5. These robust coupled assays are suitable for screening ALKBH5 inhibitors in 384-well format (Z' factors of 0.74), facilitating the discovery of modulators in the quest for the regulation of biological processes.
Collapse
|
15
|
Chang G, Leu JS, Ma L, Xie K, Huang S. Methylation of RNA N 6-methyladenosine in modulation of cytokine responses and tumorigenesis. Cytokine 2018; 118:35-41. [PMID: 30017390 DOI: 10.1016/j.cyto.2018.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
Among myriads of distinct chemical modification in RNAs, the dynamic, reversible and fine-tuned methylation of N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic mRNAs. This RNA mark is generated by proteins that act as m6A writers and can be reversed by proteins that act as m6A erasers. The RNA m6A modification is also mediated by another group of proteins capable of recognizing m6A that act as m6A readers. The m6A modification exerts direct control over the RNA metabolism including mRNA processing, mRNA exporting, translation initiation, mRNA stability and the biogenesis of long-non-coding RNA (LncRNA), thereby can influence various aspects of cell function. Evidently, m6A is intimately associated with cancer development and progression such as self-renewal capacity of cancer stem cells, proliferation, apoptosis and therapeutic resistance, and immune response. In this review, we will discuss the regulation and function of m6A, the various functions ascribed to these proteins and the emerging concepts that impact our knowledge of these proteins and their roles in the epitranscriptome. Conceivably, m6A may play pivotal roles in cytokine and immune response and carcinogenesis.
Collapse
Affiliation(s)
- Guoqiang Chang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jia-Shiun Leu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Li Ma
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, United States
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, United States.
| |
Collapse
|
16
|
Mateo-Bonmatí E, Esteve-Bruna D, Juan-Vicente L, Nadi R, Candela H, Lozano FM, Ponce MR, Pérez-Pérez JM, Micol JL. INCURVATA11 and CUPULIFORMIS2 Are Redundant Genes That Encode Epigenetic Machinery Components in Arabidopsis. THE PLANT CELL 2018; 30:1596-1616. [PMID: 29915151 PMCID: PMC6096603 DOI: 10.1105/tpc.18.00300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Accepted: 06/14/2018] [Indexed: 05/02/2023]
Abstract
All critical developmental and physiological events in a plant's life cycle depend on the proper activation and repression of specific gene sets, and this often involves epigenetic mechanisms. Some Arabidopsis thaliana mutants with disorders of the epigenetic machinery exhibit pleiotropic defects, including incurved leaves and early flowering, due to the ectopic and heterochronic derepression of developmental regulators. Here, we studied one such mutant class, the incurvata11 (icu11) loss-of-function mutants. We have identified ICU11 as the founding member of a small gene family that we have named CUPULIFORMIS (CP). This family is part of the 2-oxoglutarate/Fe(II)-dependent dioxygenase superfamily. ICU11 and its closest paralog, CP2, have unequally redundant functions: although cp2 mutants are phenotypically wild type, icu11 cp2 double mutants skip vegetative development and flower upon germination. This phenotype is reminiscent of loss-of-function mutants of the Polycomb-group genes EMBRYONIC FLOWER1 (EMF1) and EMF2 Double mutants harboring icu11 alleles and loss-of-function alleles of genes encoding components of the epigenetic machinery exhibit synergistic, severe phenotypes, and some are similar to those of emf mutants. Hundreds of genes are misexpressed in icu11 plants, including SEPALLATA3 (SEP3), and derepression of SEP3 causes the leaf phenotype of icu11 ICU11 and CP2 are nucleoplasmic proteins that act as epigenetic repressors through an unknown mechanism involving histone modification, but not DNA methylation.
Collapse
Affiliation(s)
- Eduardo Mateo-Bonmatí
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - David Esteve-Bruna
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Lucía Juan-Vicente
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Riad Nadi
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Francisca María Lozano
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
17
|
Dorokhov YL, Sheshukova EV, Komarova TV. Methanol in Plant Life. FRONTIERS IN PLANT SCIENCE 2018; 9:1623. [PMID: 30473703 PMCID: PMC6237831 DOI: 10.3389/fpls.2018.01623] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/18/2018] [Indexed: 05/19/2023]
Abstract
Until recently, plant-emitted methanol was considered a biochemical by-product, but studies in the last decade have revealed its role as a signal molecule in plant-plant and plant-animal communication. Moreover, methanol participates in metabolic biochemical processes during growth and development. The purpose of this review is to determine the impact of methanol on the growth and immunity of plants. Plants generate methanol in the reaction of the demethylation of macromolecules including DNA and proteins, but the main source of plant-derived methanol is cell wall pectins, which are demethylesterified by pectin methylesterases (PMEs). Methanol emissions increase in response to mechanical wounding or other stresses due to damage of the cell wall, which is the main source of methanol production. Gaseous methanol from the wounded plant induces defense reactions in intact leaves of the same and neighboring plants, activating so-called methanol-inducible genes (MIGs) that regulate plant resistance to biotic and abiotic factors. Since PMEs are the key enzymes in methanol production, their expression increases in response to wounding, but after elimination of the stress factor effects, the plant cell should return to the original state. The amount of functional PMEs in the cell is strictly regulated at both the gene and protein levels. There is negative feedback between one of the MIGs, aldose epimerase-like protein, and PME gene transcription; moreover, the enzymatic activity of PMEs is modulated and controlled by PME inhibitors (PMEIs), which are also induced in response to pathogenic attack.
Collapse
Affiliation(s)
- Yuri L. Dorokhov
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Yuri L. Dorokhov,
| | | | - Tatiana V. Komarova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
18
|
Boehm D, Ott M. Host Methyltransferases and Demethylases: Potential New Epigenetic Targets for HIV Cure Strategies and Beyond. AIDS Res Hum Retroviruses 2017; 33:S8-S22. [PMID: 29140109 DOI: 10.1089/aid.2017.0180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A successful HIV cure strategy may require reversing HIV latency to purge hidden viral reservoirs or enhancing HIV latency to permanently silence HIV transcription. Epigenetic modifying agents show promise as antilatency therapeutics in vitro and ex vivo, but also affect other steps in the viral life cycle. In this review, we summarize what we know about cellular DNA and protein methyltransferases (PMTs) as well as demethylases involved in HIV infection. We describe the biology and function of DNA methyltransferases, and their controversial role in HIV infection. We further explain the biology of PMTs and their effects on lysine and arginine methylation of histone and nonhistone proteins. We end with a focus on protein demethylases, their unique modes of action and their emerging influence on HIV infection. An outlook on the use of methylation-modifying agents in investigational HIV cure strategies is provided.
Collapse
Affiliation(s)
- Daniela Boehm
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
19
|
Abstract
N6-methyladenosine (m6A) as the most prevalent internal modification in mammalian RNAs has been increasingly realized as an important reversible mark that participates in various biological processes and cancer pathogenesis. In this review, we discuss the catalytic mechanisms of MT-A70 domain family proteins for mediating adenosine N6-methylation, the removal of this RNA mark by members of ALKB homologue domain family proteins, and the recognition of these m6A-modified RNAs by YTH domain family proteins. Our discussions focus on the recent advances in our understandings of the structural and functional properties of N6-methyladenosine methyltransferases, demethylases and reader proteins. Overall, we aim to mechanistically explain the reversible and dynamic nature of this unique RNA internal modification that contributes to the complexity of RNA-mediated gene regulation, and inspire new studies in epitranscriptomics.
Collapse
|
20
|
Morera L, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 2016; 8:57. [PMID: 27222667 PMCID: PMC4877953 DOI: 10.1186/s13148-016-0223-4] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
The term epigenetics is defined as heritable changes in gene expression that are not due to alterations of the DNA sequence. In the last years, it has become more and more evident that dysregulated epigenetic regulatory processes have a central role in cancer onset and progression. In contrast to DNA mutations, epigenetic modifications are reversible and, hence, suitable for pharmacological interventions. Reversible histone methylation is an important process within epigenetic regulation, and the investigation of its role in cancer has led to the identification of lysine methyltransferases and demethylases as promising targets for new anticancer drugs. In this review, we describe those enzymes and their inhibitors that have already reached the first stages of clinical trials in cancer therapy, namely the histone methyltransferases DOT1L and EZH2 as well as the demethylase LSD1.
Collapse
Affiliation(s)
- Ludovica Morera
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology and Oncology, University of Freiburg Medical Center, Hugstetter Straße 55, 79106 Freiburg, Germany ; German Cancer Consortium (DKTK), Freiburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstraße 25, 79104 Freiburg, Germany ; German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
21
|
Li D, Guo B, Wu H, Tan L, Lu Q. TET Family of Dioxygenases: Crucial Roles and Underlying Mechanisms. Cytogenet Genome Res 2015; 146:171-80. [PMID: 26302812 DOI: 10.1159/000438853] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 11/19/2022] Open
Abstract
DNA methylation plays an important role in the epigenetic regulation of mammalian gene expression. TET (ten-eleven translocation) proteins, newly discovered demethylases, have sparked great interest since their discovery. TET proteins catalyze 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in 3 consecutive Fe(II)- and 2-oxoglutarate (2-OG)-dependent oxidation reactions. TET proteins dynamically regulate global or locus-specific 5-methylcytosine and/or 5-hydroxymethylcytosine levels by facilitating active DNA demethylation. In fact, in addition to their role as methylcytosine dioxygenases, TET proteins are closely related to histone modification, interact with metabolic enzymes as well as other proteins, and cooperate in transcriptional regulation. In this review, we summarize the recent progress in this exciting field, highlighting the molecular mechanism by which TET enzymes regulate gene expression and their functions in health and disease. We also discuss the therapeutic potential of targeting TET proteins and aberrant DNA modifications.
Collapse
Affiliation(s)
- Duo Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | |
Collapse
|
22
|
Effect of combined deferasirox and 5-azacytidine treatment on human leukemia cells in vitro. Ann Hematol 2015; 94:1601-2. [PMID: 26044890 DOI: 10.1007/s00277-015-2417-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 05/30/2015] [Indexed: 01/10/2023]
|
23
|
Liu K, Liu Y, Lau JL, Min J. Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation. Pharmacol Ther 2015; 151:121-40. [PMID: 25857453 DOI: 10.1016/j.pharmthera.2015.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Chromatin structure is dynamically modulated by various chromatin modifications, such as histone/DNA methylation and demethylation. We have reviewed histone methyltransferases and methyllysine binders in terms of small molecule screening and drug discovery in the first part of this review series. In this part, we will summarize recent progress in chemical probe and drug discovery of histone demethylases and DNA methyltransferases. Histone demethylation and DNA methylation have attracted a lot of attention regarding their biology and disease implications. Correspondingly, many small molecule compounds have been designed to modulate the activity of histone demethylases and DNA methyltransferases, and some of them have been developed into therapeutic drugs or put into clinical trials.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Johnathan L Lau
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|