1
|
Kuschel S, Ho PJ, Al Haddad A, Zimmermann FF, Flueckiger L, Ware MR, Duris J, MacArthur JP, Lutman A, Lin MF, Li X, Nakahara K, Aldrich JW, Walter P, Young L, Bostedt C, Marinelli A, Gorkhover T. Non-linear enhancement of ultrafast X-ray diffraction through transient resonances. Nat Commun 2025; 16:847. [PMID: 39833149 PMCID: PMC11747624 DOI: 10.1038/s41467-025-56046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Diffraction-before-destruction imaging with ultrashort X-ray pulses can visualize non-equilibrium processes, such as chemical reactions, with sub-femtosecond precision in the native environment. Here, a nanospecimen diffracts a single X-ray flash before it disintegrates. The sample structure can be reconstructed from the coherent diffraction image (CDI). State-of-the-art X-ray snapshots lack high spatial resolution because of weak diffraction signal. Bleaching effects from photo-ionization significantly restrain image brightness scaling. We find that non-linear transient ion resonances can overcome this barrier if X-ray laser pulses are shorter than in most experiments. We compared snapshots from individual ≈ 100 nm Xe nanoparticles as a function of pulse duration and incoming X-ray fluence. Our experimental results and Monte Carlo simulations suggest that transient resonances can increase ionic scattering cross sections significantly beyond literature values. This provides a novel avenue towards substantial improvement of the spatial resolution in CDI in combination with sub-femtosecond temporal precision at the nanoscale.
Collapse
Affiliation(s)
- Stephan Kuschel
- SLAC National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, CA, USA.
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
- Institute for Experimental Physics/CFEL, University of Hamburg, Hamburg, Germany.
- Technical University Darmstadt, Institute of nuclear physics, Darmstadt, Germany.
| | - Phay J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
| | - Andre Al Haddad
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
- Paul Scherrer Institute, Villigen, Switzerland
| | - Felix F Zimmermann
- SLAC National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, CA, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- IOAP, Technical University of Berlin, Berlin, Germany
| | | | - Matthew R Ware
- SLAC National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, CA, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Joseph Duris
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | - Alberto Lutman
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Xiang Li
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, Kansas State University, J.R. Macdonald Laboratory, Manhattan, KS, USA
| | | | - Jeff W Aldrich
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Peter Walter
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
- Paul Scherrer Institute, Villigen, Switzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | | | - Tais Gorkhover
- SLAC National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, CA, USA.
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
- Institute for Experimental Physics/CFEL, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
2
|
Shen Z, Xavier PL, Bean R, Bielecki J, Bergemann M, Daurer BJ, Ekeberg T, Estillore AD, Fangohr H, Giewekemeyer K, Karnevskiy M, Kirian RA, Kirkwood H, Kim Y, Koliyadu JCP, Lange H, Letrun R, Lübke J, Mall A, Michelat T, Morgan AJ, Roth N, Samanta AK, Sato T, Sikorski M, Schulz F, Vagovic P, Wollweber T, Worbs L, Maia F, Horke DA, Küpper J, Mancuso AP, Chapman HN, Ayyer K, Loh ND. Resolving Nonequilibrium Shape Variations among Millions of Gold Nanoparticles. ACS NANO 2024; 18:15576-15589. [PMID: 38810115 PMCID: PMC11191741 DOI: 10.1021/acsnano.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles, exhibiting functionally relevant structural heterogeneity, are at the forefront of cutting-edge research. Now, high-throughput single-particle imaging (SPI) with X-ray free-electron lasers (XFELs) creates opportunities for recovering the shape distributions of millions of particles that exhibit functionally relevant structural heterogeneity. To realize this potential, three challenges have to be overcome: (1) simultaneous parametrization of structural variability in real and reciprocal spaces; (2) efficiently inferring the latent parameters of each SPI measurement; (3) scaling up comparisons between 105 structural models and 106 XFEL-SPI measurements. Here, we describe how we overcame these three challenges to resolve the nonequilibrium shape distributions within millions of gold nanoparticles imaged at the European XFEL. These shape distributions allowed us to quantify the degree of asymmetry in these particles, discover a relatively stable "shape envelope" among nanoparticles, discern finite-size effects related to shape-controlling surfactants, and extrapolate nanoparticles' shapes to their idealized thermodynamic limit. Ultimately, these demonstrations show that XFEL SPI can help transform nanoparticle shape characterization from anecdotally interesting to statistically meaningful.
Collapse
Affiliation(s)
- Zhou Shen
- Department
of Physics, National University of Singapore, 117551 Singapore
- Max Planck
Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science, 22761, Hamburg, Germany
| | - Paul Lourdu Xavier
- Max Planck
Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- European
XFEL, 22869 Schenefeld, Germany
| | | | | | | | - Benedikt J. Daurer
- Center
for
BioImaging Sciences, National University
of Singapore, 117557 Singapore
- Diamond
Light Source, Harwell Campus, Didcot OX11 0DE, U.K.
| | - Tomas Ekeberg
- Department
of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Armando D. Estillore
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | | | | | | | - Richard A. Kirian
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | | | | | | | - Holger Lange
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Institute
of Physics and Astronomy, Universität
Potsdam, Karl-Liebknecht-Str.
24, 14476 Potsdam, Germany
| | | | - Jannik Lübke
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Department
of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Abhishek Mall
- Max Planck
Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science, 22761, Hamburg, Germany
| | | | - Andrew J. Morgan
- University
of Melbourne, Physics, Melbourne, VIC 3010, Australia
| | - Nils Roth
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Department
of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Amit K. Samanta
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | | | | | - Florian Schulz
- Institute
of Nanostructure and Solid State Physics, University of Hamburg, 22761 Hamburg, Germany
| | - Patrik Vagovic
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- European
XFEL, 22869 Schenefeld, Germany
| | - Tamme Wollweber
- Max Planck
Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science, 22761, Hamburg, Germany
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
| | - Lena Worbs
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Department
of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Filipe Maia
- Department
of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
- NERSC,
Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel Alfred Horke
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Radboud
University Institute for Molecules and Materials, 6525 AJ Nijmegen, The Netherlands
| | - Jochen Küpper
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Department
of Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | - Adrian P. Mancuso
- European
XFEL, 22869 Schenefeld, Germany
- Diamond
Light Source, Harwell Campus, Didcot OX11 0DE, U.K.
- Department
of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Henry N. Chapman
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Department
of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Kartik Ayyer
- Max Planck
Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science, 22761, Hamburg, Germany
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
| | - N. Duane Loh
- Department
of Physics, National University of Singapore, 117551 Singapore
- Center
for
BioImaging Sciences, National University
of Singapore, 117557 Singapore
| |
Collapse
|
3
|
Ekeberg T, Assalauova D, Bielecki J, Boll R, Daurer BJ, Eichacker LA, Franken LE, Galli DE, Gelisio L, Gumprecht L, Gunn LH, Hajdu J, Hartmann R, Hasse D, Ignatenko A, Koliyadu J, Kulyk O, Kurta R, Kuster M, Lugmayr W, Lübke J, Mancuso AP, Mazza T, Nettelblad C, Ovcharenko Y, Rivas DE, Rose M, Samanta AK, Schmidt P, Sobolev E, Timneanu N, Usenko S, Westphal D, Wollweber T, Worbs L, Xavier PL, Yousef H, Ayyer K, Chapman HN, Sellberg JA, Seuring C, Vartanyants IA, Küpper J, Meyer M, Maia FRNC. Observation of a single protein by ultrafast X-ray diffraction. LIGHT, SCIENCE & APPLICATIONS 2024; 13:15. [PMID: 38216563 PMCID: PMC10786860 DOI: 10.1038/s41377-023-01352-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes. This was first demonstrated on biological samples a decade ago on the giant mimivirus. Since then, a large collaboration has been pushing the limit of the smallest sample that can be imaged. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale.
Collapse
Affiliation(s)
- Tomas Ekeberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Dameli Assalauova
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Benedikt J Daurer
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK
| | - Lutz A Eichacker
- University of Stavanger, Centre Organelle Research, Richard-Johnsensgate 4, 4021, Stavanger, Norway
| | - Linda E Franken
- Leibniz Institute for Experimental Virology (HPI), Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany
| | - Davide E Galli
- Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, via Celoria 16, 20133, Milano, Italy
| | - Luca Gelisio
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Lars Gumprecht
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
| | - Laura H Gunn
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | | | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Alexandr Ignatenko
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Jayanath Koliyadu
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Olena Kulyk
- ELI Beamlines/IoP Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Ruslan Kurta
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Markus Kuster
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Wolfgang Lugmayr
- Multi-User CryoEM Facility, Centre for Structural Systems Biology, Notkestr.85, 22607, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany
| | - Jannik Lübke
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Tommaso Mazza
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Carl Nettelblad
- Division of Scientific Computing, Science for Life Laboratory, Department of Information Technology, Uppsala University, Box 337, SE-75105, Uppsala, Sweden
| | | | | | - Max Rose
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Amit K Samanta
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
| | | | - Egor Sobolev
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Nicusor Timneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
| | - Sergey Usenko
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Tamme Wollweber
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Lena Worbs
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Paul Lourdu Xavier
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Hazem Yousef
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Kartik Ayyer
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jonas A Sellberg
- Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Carolin Seuring
- Multi-User CryoEM Facility, Centre for Structural Systems Biology, Notkestr.85, 22607, Hamburg, Germany
- Department of Chemistry, Universität Hamburg, 20146, Hamburg, Germany
| | - Ivan A Vartanyants
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden.
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Round A, Jungcheng E, Fortmann-Grote C, Giewekemeyer K, Graceffa R, Kim C, Kirkwood H, Mills G, Round E, Sato T, Pascarelli S, Mancuso A. Characterization of Biological Samples Using Ultra-Short and Ultra-Bright XFEL Pulses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:141-162. [PMID: 38507205 DOI: 10.1007/978-3-031-52193-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The advent of X-ray Free Electron Lasers (XFELs) has ushered in a transformative era in the field of structural biology, materials science, and ultrafast physics. These state-of-the-art facilities generate ultra-bright, femtosecond-long X-ray pulses, allowing researchers to delve into the structure and dynamics of molecular systems with unprecedented temporal and spatial resolutions. The unique properties of XFEL pulses have opened new avenues for scientific exploration that were previously considered unattainable. One of the most notable applications of XFELs is in structural biology. Traditional X-ray crystallography, while instrumental in determining the structures of countless biomolecules, often requires large, high-quality crystals and may not capture highly transient states of proteins. XFELs, with their ability to produce diffraction patterns from nanocrystals or even single particles, have provided solutions to these challenges. XFEL has expanded the toolbox of structural biologists by enabling structural determination approaches such as Single Particle Imaging (SPI) and Serial X-ray Crystallography (SFX). Despite their remarkable capabilities, the journey of XFELs is still in its nascent stages, with ongoing advancements aimed at improving their coherence, pulse duration, and wavelength tunability.
Collapse
Affiliation(s)
| | | | | | | | | | - Chan Kim
- European XFEL, Schenefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Yumoto H, Koyama T, Suzuki A, Joti Y, Niida Y, Tono K, Bessho Y, Yabashi M, Nishino Y, Ohashi H. High-fluence and high-gain multilayer focusing optics to enhance spatial resolution in femtosecond X-ray laser imaging. Nat Commun 2022; 13:5300. [PMID: 36100607 PMCID: PMC9470745 DOI: 10.1038/s41467-022-33014-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
With the emergence of X-ray free-electron lasers (XFELs), coherent diffractive imaging (CDI) has acquired a capability for single-particle imaging (SPI) of non-crystalline objects under non-cryogenic conditions. However, the single-shot spatial resolution is limited to ~5 nanometres primarily because of insufficient fluence. Here, we present a CDI technique whereby high resolution is achieved with very-high-fluence X-ray focusing using multilayer mirrors with nanometre precision. The optics can focus 4-keV XFEL down to 60 nm × 110 nm and realize a fluence of >3 × 105 J cm−2 pulse−1 or >4 × 1012 photons μm−2 pulse−1 with a tenfold increase in the total gain compared to conventional optics due to the high demagnification. Further, the imaging of fixed-target metallic nanoparticles in solution attained an unprecedented 2-nm resolution in single-XFEL-pulse exposure. These findings can further expand the capabilities of SPI to explore the relationships between dynamic structures and functions of native biomolecular complexes. Here, the authors realize an ultra-high fluence X-ray laser by high-gain multilayer focusing optics. This enables in-solution imaging with 2-nm resolution in a single-pulse exposure, making strides toward biomolecular imaging under physiological conditions.
Collapse
Affiliation(s)
- Hirokatsu Yumoto
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan. .,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Takahisa Koyama
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Akihiro Suzuki
- Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yoshiya Niida
- Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yoshitaka Bessho
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yoshinori Nishino
- Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan.
| | - Haruhiko Ohashi
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| |
Collapse
|
6
|
Peck A, Chang HY, Dujardin A, Ramalingam D, Uervirojnangkoorn M, Wang Z, Mancuso A, Poitevin F, Yoon CH. Skopi: a simulation package for diffractive imaging of noncrystalline biomolecules. J Appl Crystallogr 2022; 55:1002-1010. [PMID: 35974743 PMCID: PMC9348890 DOI: 10.1107/s1600576722005994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
X-ray free-electron lasers (XFELs) have the ability to produce ultra-bright femtosecond X-ray pulses for coherent diffraction imaging of biomolecules. While the development of methods and algorithms for macromolecular crystallography is now mature, XFEL experiments involving aerosolized or solvated biomolecular samples offer new challenges in terms of both experimental design and data processing. Skopi is a simulation package that can generate single-hit diffraction images for reconstruction algorithms, multi-hit diffraction images of aggregated particles for training machine learning classifiers using labeled data, diffraction images of randomly distributed particles for fluctuation X-ray scattering algorithms, and diffraction images of reference and target particles for holographic reconstruction algorithms. Skopi is a resource to aid feasibility studies and advance the development of algorithms for noncrystalline experiments at XFEL facilities.
Collapse
Affiliation(s)
- Ariana Peck
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hsing-Yin Chang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Antoine Dujardin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Deeban Ramalingam
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Monarin Uervirojnangkoorn
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Zhaoyou Wang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Adrian Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Frédéric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
7
|
Tokuhisa A, Akinaga Y, Terayama K, Okamoto Y, Okuno Y. Single-Image Super-Resolution Improvement of X-ray Single-Particle Diffraction Images Using a Convolutional Neural Network. J Chem Inf Model 2022; 62:3352-3364. [PMID: 35820663 PMCID: PMC9326892 DOI: 10.1021/acs.jcim.2c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Femtosecond X-ray pulse lasers are promising probes for
the elucidation
of the multiconformational states of biomolecules because they enable
snapshots of single biomolecules to be observed as coherent diffraction
images. Multi-image processing using an X-ray free-electron laser
has proven to be a successful structural analysis method for viruses.
However, the performance of single-particle analysis (SPA) for flexible
biomolecules with sizes ≤100 nm remains difficult. Owing to
the multiconformational states of biomolecules and noisy character
of diffraction images, diffraction image improvement by multi-image
processing is often ineffective for such molecules. Herein, a single-image
super-resolution (SR) model was constructed using an SR convolutional
neural network (SRCNN). Data preparation was performed in silico to
consider the actual observation situation with unknown molecular orientations
and the fluctuation of molecular structure and incident X-ray intensity.
It was demonstrated that the trained SRCNN model improved the single-particle
diffraction image quality, corresponding to an observed image with
an incident X-ray intensity (approximately three to seven times higher
than the original X-ray intensity), while retaining the individuality
of the diffraction images. The feasibility of SPA for flexible biomolecules
with sizes ≤100 nm was dramatically increased by introducing
the SRCNN improvement at the beginning of the various structural analysis
schemes.
Collapse
Affiliation(s)
- Atsushi Tokuhisa
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshinobu Akinaga
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,VINAS Co., Ltd., Keihan Dojima Bldg., Dojima 2 1 31, Kita-ku, Osaka 530-0003, Japan
| | - Kei Terayama
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Yuji Okamoto
- Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasushi Okuno
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
8
|
Bellisario A, Maia FRNC, Ekeberg T. Noise reduction and mask removal neural network for X-ray single-particle imaging. J Appl Crystallogr 2022; 55:122-132. [PMID: 35145358 PMCID: PMC8805166 DOI: 10.1107/s1600576721012371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022] Open
Abstract
Free-electron lasers could enable X-ray imaging of single biological macromolecules and the study of protein dynamics, paving the way for a powerful new imaging tool in structural biology, but a low signal-to-noise ratio and missing regions in the detectors, colloquially termed 'masks', affect data collection and hamper real-time evaluation of experimental data. In this article, the challenges posed by noise and masks are tackled by introducing a neural network pipeline that aims to restore diffraction intensities. For training and testing of the model, a data set of diffraction patterns was simulated from 10 900 different proteins with molecular weights within the range of 10-100 kDa and collected at a photon energy of 8 keV. The method is compared with a simple low-pass filtering algorithm based on autocorrelation constraints. The results show an improvement in the mean-squared error of roughly two orders of magnitude in the presence of masks compared with the noisy data. The algorithm was also tested at increasing mask width, leading to the conclusion that demasking can achieve good results when the mask is smaller than half of the central speckle of the pattern. The results highlight the competitiveness of this model for data processing and the feasibility of restoring diffraction intensities from unknown structures in real time using deep learning methods. Finally, an example is shown of this preprocessing making orientation recovery more reliable, especially for data sets containing very few patterns, using the expansion-maximization-compression algorithm.
Collapse
Affiliation(s)
- Alfredo Bellisario
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Tomas Ekeberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| |
Collapse
|
9
|
Cho DH, Shen Z, Ihm Y, Wi DH, Jung C, Nam D, Kim S, Park SY, Kim KS, Sung D, Lee H, Shin JY, Hwang J, Lee SY, Lee SY, Han SW, Noh DY, Loh ND, Song C. High-Throughput 3D Ensemble Characterization of Individual Core-Shell Nanoparticles with X-ray Free Electron Laser Single-Particle Imaging. ACS NANO 2021; 15:4066-4076. [PMID: 33506675 DOI: 10.1021/acsnano.0c07961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structures as building blocks for designing functional nanomaterials have fueled the development of versatile nanoprobes to understand local structures of noncrystalline specimens. Progress in analyzing structures of individual specimens with atomic scale accuracy has been notable recently. In most cases, however, only a limited number of specimens are inspected lacking statistics to represent the systems with structural inhomogeneity. Here, by employing single-particle imaging with X-ray free electron lasers and algorithms for multiple-model 3D imaging, we succeeded in investigating several thousand specimens in a couple of hours and identified intrinsic heterogeneities with 3D structures. Quantitative analysis has unveiled 3D morphology, facet indices, and elastic strain. The 3D elastic energy distribution is further corroborated by molecular dynamics simulations to gain mechanical insight at the atomic level. This work establishes a route to high-throughput characterization of individual specimens in large ensembles, hence overcoming statistical deficiency while providing quantitative information at the nanoscale.
Collapse
Affiliation(s)
- Do Hyung Cho
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Zhou Shen
- Department of Physics, National University of Singapore, Singapore 117551
| | - Yungok Ihm
- Department of Chemistry, POSTECH, Pohang 37673, Korea
| | - Dae Han Wi
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Chulho Jung
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Daewoong Nam
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sang-Youn Park
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Kyung Sook Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Daeho Sung
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Heemin Lee
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Jae-Yong Shin
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Junha Hwang
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Sung Yun Lee
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Su Yong Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Do Young Noh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - N Duane Loh
- Department of Physics, National University of Singapore, Singapore 117551
- Department of Biological Sciences, National University of Singapore, Singapore 117557
| | - Changyong Song
- Department of Physics and Photon Science Center, POSTECH, Pohang 37673, Korea
- Asia Pacific Center for Theoretical Physics (APCTP), POSTECH, Pohang 37673, Korea
| |
Collapse
|
10
|
Liu J, Engblom S, Nettelblad C. Flash X-ray diffraction imaging in 3D: a proposed analysis pipeline. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:1673-1686. [PMID: 33104615 DOI: 10.1364/josaa.390384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Modern Flash X-ray diffraction Imaging (FXI) acquires diffraction signals from single biomolecules at a high repetition rate from X-ray Free Electron Lasers (XFELs), easily obtaining millions of 2D diffraction patterns from a single experiment. Due to the stochastic nature of FXI experiments and the massive volumes of data, retrieving 3D electron densities from raw 2D diffraction patterns is a challenging and time-consuming task. We propose a semi-automatic data analysis pipeline for FXI experiments, which includes four steps: hit-finding and preliminary filtering, pattern classification, 3D Fourier reconstruction, and post-analysis. We also include a recently developed bootstrap methodology in the post-analysis step for uncertainty analysis and quality control. To achieve the best possible resolution, we further suggest using background subtraction, signal windowing, and convex optimization techniques when retrieving the Fourier phases in the post-analysis step. As an application example, we quantified the 3D electron structure of the PR772 virus using the proposed data analysis pipeline. The retrieved structure was above the detector edge resolution and clearly showed the pseudo-icosahedral capsid of the PR772.
Collapse
|
11
|
Sala S, Daurer BJ, Odstrcil M, Capotondi F, Pedersoli E, Hantke MF, Manfredda M, Loh ND, Thibault P, Maia FRNC. Pulse-to-pulse wavefront sensing at free-electron lasers using ptychography. J Appl Crystallogr 2020; 53:949-956. [PMID: 32788902 PMCID: PMC7401787 DOI: 10.1107/s1600576720006913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/22/2020] [Indexed: 11/14/2022] Open
Abstract
The pressing need for knowledge of the detailed wavefront properties of ultra-bright and ultra-short pulses produced by free-electron lasers has spurred the development of several complementary characterization approaches. Here a method based on ptychography is presented that can retrieve high-resolution complex-valued wavefunctions of individual pulses without strong constraints on the illumination or sample object used. The technique is demonstrated within experimental conditions suited for diffraction experiments and exploiting Kirkpatrick-Baez focusing optics. This lensless technique, applicable to many other short-pulse instruments, can achieve diffraction-limited resolution.
Collapse
Affiliation(s)
- Simone Sala
- Department of Physics and Astronomy, University College London, London, UK
- Department of Physics and Astronomy, University of Southampton, Southampton, UK
| | - Benedikt J. Daurer
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | - Max F. Hantke
- Department of Chemistry, Oxford University, Oxford, UK
| | | | - N. Duane Loh
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore
| | - Pierre Thibault
- Department of Physics and Astronomy, University of Southampton, Southampton, UK
| | | |
Collapse
|
12
|
Bielecki J, Maia FRNC, Mancuso AP. Perspectives on single particle imaging with x rays at the advent of high repetition rate x-ray free electron laser sources. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:040901. [PMID: 32818147 PMCID: PMC7413746 DOI: 10.1063/4.0000024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/21/2020] [Indexed: 05/20/2023]
Abstract
X-ray free electron lasers (XFELs) now routinely produce millijoule level pulses of x-ray photons with tens of femtoseconds duration. Such x-ray intensities gave rise to the idea that weakly scattering particles-perhaps single biomolecules or viruses-could be investigated free of radiation damage. Here, we examine elements from the past decade of so-called single particle imaging with hard XFELs. We look at the progress made to date and identify some future possible directions for the field. In particular, we summarize the presently achieved resolutions as well as identifying the bottlenecks and enabling technologies to future resolution improvement, which in turn enables application to samples of scientific interest.
Collapse
Affiliation(s)
- Johan Bielecki
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Author to whom correspondence should be addressed:
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | | |
Collapse
|
13
|
Tokuhisa A, Kanada R, Chiba S, Terayama K, Isaka Y, Ma B, Kamiya N, Okuno Y. Coarse-Grained Diffraction Template Matching Model to Retrieve Multiconformational Models for Biomolecule Structures from Noisy Diffraction Patterns. J Chem Inf Model 2020; 60:2803-2818. [PMID: 32469517 DOI: 10.1021/acs.jcim.0c00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomolecular imaging using X-ray free-electron lasers (XFELs) has been successfully applied to serial femtosecond crystallography. However, the application of single-particle analysis for structure determination using XFELs with 100 nm or smaller biomolecules has two practical problems: the incomplete diffraction data sets for reconstructing 3D assembled structures and the heterogeneous conformational states of samples. A new diffraction template matching method is thus presented here to retrieve a plausible 3D structural model based on single noisy target diffraction patterns, assuming candidate structures. Two concepts are introduced here: prompt candidate diffraction, generated by enhanced sampled coarse-grain (CG) candidate structures, and efficient molecular orientation searching for matching based on Bayesian optimization. A CG model-based diffraction-matching protocol is proposed that achieves a 100-fold speed increase compared to exhaustive diffraction matching using an all-atom model. The conditions that enable multiconformational analysis were also investigated by simulated diffraction data for various conformational states of chromatin and ribosomes. The proposed method can enable multiconformational analysis, with a structural resolution of at least 20 Å for 270-800 Å flexible biomolecules, in experimental single-particle structure analyses that employ XFELs.
Collapse
Affiliation(s)
- Atsushi Tokuhisa
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Computational Science, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ryo Kanada
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shuntaro Chiba
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kei Terayama
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan.,Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuta Isaka
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Biao Ma
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Narutoshi Kamiya
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasushi Okuno
- RIKEN Cluster for Science and Technology Hub, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
14
|
Abstract
The advent of the X-ray free electron laser (XFEL) in the last decade created the discipline of serial crystallography but also the challenge of how crystal samples are delivered to X-ray. Early sample delivery methods demonstrated the proof-of-concept for serial crystallography and XFEL but were beset with challenges of high sample consumption, jet clogging and low data collection efficiency. The potential of XFEL and serial crystallography as the next frontier of structural solution by X-ray for small and weakly diffracting crystals and provision of ultra-fast time-resolved structural data spawned a huge amount of scientific interest and innovation. To utilize the full potential of XFEL and broaden its applicability to a larger variety of biological samples, researchers are challenged to develop better sample delivery methods. Thus, sample delivery is one of the key areas of research and development in the serial crystallography scientific community. Sample delivery currently falls into three main systems: jet-based methods, fixed-target chips, and drop-on-demand. Huge strides have since been made in reducing sample consumption and improving data collection efficiency, thus enabling the use of XFEL for many biological systems to provide high-resolution, radiation damage-free structural data as well as time-resolved dynamics studies. This review summarizes the current main strategies in sample delivery and their respective pros and cons, as well as some future direction.
Collapse
|
15
|
Knoška J, Adriano L, Awel S, Beyerlein KR, Yefanov O, Oberthuer D, Peña Murillo GE, Roth N, Sarrou I, Villanueva-Perez P, Wiedorn MO, Wilde F, Bajt S, Chapman HN, Heymann M. Ultracompact 3D microfluidics for time-resolved structural biology. Nat Commun 2020; 11:657. [PMID: 32005876 PMCID: PMC6994545 DOI: 10.1038/s41467-020-14434-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/10/2019] [Indexed: 11/23/2022] Open
Abstract
To advance microfluidic integration, we present the use of two-photon additive manufacturing to fold 2D channel layouts into compact free-form 3D fluidic circuits with nanometer precision. We demonstrate this technique by tailoring microfluidic nozzles and mixers for time-resolved structural biology at X-ray free-electron lasers (XFELs). We achieve submicron jets with speeds exceeding 160 m s-1, which allows for the use of megahertz XFEL repetition rates. By integrating an additional orifice, we implement a low consumption flow-focusing nozzle, which is validated by solving a hemoglobin structure. Also, aberration-free in operando X-ray microtomography is introduced to study efficient equivolumetric millisecond mixing in channels with 3D features integrated into the nozzle. Such devices can be printed in minutes by locally adjusting print resolution during fabrication. This technology has the potential to permit ultracompact devices and performance improvements through 3D flow optimization in all fields of microfluidic engineering.
Collapse
Affiliation(s)
- Juraj Knoška
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Luigi Adriano
- DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
- EuXFEL, Sample Environment & Characterization Group, European XFEL Holzkoppel 4, 22869, Schenefeld, Germany
| | - Salah Awel
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- CUI, Center for Ultrafast Imaging, Universität Hamburg, 22761, Hamburg, Germany
| | - Kenneth R Beyerlein
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, 22761, Germany
| | - Oleksandr Yefanov
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Dominik Oberthuer
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Gisel E Peña Murillo
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Nils Roth
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Iosifina Sarrou
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Pablo Villanueva-Perez
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Synchrotron Radiation Research, Lund University, Box 118, SE-221 00, Lund, Sweden
| | - Max O Wiedorn
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Fabian Wilde
- Helmholtz-Zentrum Geesthacht, Institut für Werkstoffforschung, Max-Planck-Straße. 1, 21502, Geesthacht, Germany
| | - Saša Bajt
- DESY, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany
| | - Henry N Chapman
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
- CUI, Center for Ultrafast Imaging, Universität Hamburg, 22761, Hamburg, Germany.
| | - Michael Heymann
- CFEL, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany.
- IBBS, Institut für Biomaterialien und Biomolekulare Systeme, Universität Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany.
| |
Collapse
|
16
|
Ho PJ, Daurer BJ, Hantke MF, Bielecki J, Al Haddad A, Bucher M, Doumy G, Ferguson KR, Flückiger L, Gorkhover T, Iwan B, Knight C, Moeller S, Osipov T, Ray D, Southworth SH, Svenda M, Timneanu N, Ulmer A, Walter P, Hajdu J, Young L, Maia FRNC, Bostedt C. The role of transient resonances for ultra-fast imaging of single sucrose nanoclusters. Nat Commun 2020; 11:167. [PMID: 31919346 PMCID: PMC6952381 DOI: 10.1038/s41467-019-13905-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2019] [Indexed: 11/09/2022] Open
Abstract
Intense x-ray free-electron laser (XFEL) pulses hold great promise for imaging function in nanoscale and biological systems with atomic resolution. So far, however, the spatial resolution obtained from single shot experiments lags averaging static experiments. Here we report on a combined computational and experimental study about ultrafast diffractive imaging of sucrose clusters which are benchmark organic samples. Our theoretical model matches the experimental data from the water window to the keV x-ray regime. The large-scale dynamic scattering calculations reveal that transient phenomena driven by non-linear x-ray interaction are decisive for ultrafast imaging applications. Our study illuminates the complex interplay of the imaging process with the rapidly changing transient electronic structures in XFEL experiments and shows how computational models allow optimization of the parameters for ultrafast imaging experiments. X-ray free electron lasers provide high photon flux to explore single particle diffraction imaging of biological samples. Here the authors present dynamic electronic structure calculations and benchmark them to single-particle XFEL diffraction data of sucrose clusters to predict optimal single-shot imaging conditions.
Collapse
Affiliation(s)
- Phay J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
| | - Benedikt J Daurer
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Max F Hantke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden.,Chemistry Research Laboratory, Department of Chemistry, Oxford University, 12 Mansfield Rd, Oxford, OX1 3TA, UK
| | - Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden.,European XFEL GmbH, Holzkoppel 4, D-22869, Schenefeld, Germany
| | - Andre Al Haddad
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Maximilian Bucher
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Ken R Ferguson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Leonie Flückiger
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Tais Gorkhover
- Stanford Pulse Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Bianca Iwan
- Stanford Pulse Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Christopher Knight
- Computational Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Stefan Moeller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Timur Osipov
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Dipanwita Ray
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Nicusor Timneanu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden.,Department of Physics and Astronomy, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Anatoli Ulmer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623, Berlin, Germany
| | - Peter Walter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA.,Department of Physics and James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden.
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA. .,Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA. .,Paul-Scherrer Institute, CH-5232, Villigen PSI, Switzerland. .,LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
Lee H, Shin J, Cho DH, Jung C, Sung D, Ahn K, Nam D, Kim S, Kim KS, Park SY, Fan J, Jiang H, Kang HC, Tono K, Yabashi M, Ishikawa T, Noh DY, Song C. Characterizing the intrinsic properties of individual XFEL pulses via single-particle diffraction. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:17-24. [PMID: 31868731 DOI: 10.1107/s1600577519015443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
With each single X-ray pulse having its own characteristics, understanding the individual property of each X-ray free-electron laser (XFEL) pulse is essential for its applications in probing and manipulating specimens as well as in diagnosing the lasing performance. Intensive research using XFEL radiation over the last several years has introduced techniques to characterize the femtosecond XFEL pulses, but a simple characterization scheme, while not requiring ad hoc assumptions, to address multiple aspects of XFEL radiation via a single data collection process is scant. Here, it is shown that single-particle diffraction patterns collected using single XFEL pulses can provide information about the incident photon flux and coherence property simultaneously, and the X-ray beam profile is inferred. The proposed scheme is highly adaptable to most experimental configurations, and will become an essential approach to understanding single X-ray pulses.
Collapse
Affiliation(s)
- Heemin Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Jaeyong Shin
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Do Hyung Cho
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Chulho Jung
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Daeho Sung
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Kangwoo Ahn
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Daewoong Nam
- PAL-XFEL Beamline Division, Pohang Accelerator Laboratory, Pohang 37673, South Korea
| | - Sangsoo Kim
- PAL-XFEL Beamline Division, Pohang Accelerator Laboratory, Pohang 37673, South Korea
| | - Kyung Sook Kim
- PAL-XFEL Beamline Division, Pohang Accelerator Laboratory, Pohang 37673, South Korea
| | - Sang Yeon Park
- PAL-XFEL Beamline Division, Pohang Accelerator Laboratory, Pohang 37673, South Korea
| | - Jiadong Fan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Huaidong Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Hyun Chol Kang
- Department of Materials Science and Engineering, Chosun University, Gwangju 61452, South Korea
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | - Do Young Noh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Changyong Song
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, South Korea
| |
Collapse
|
18
|
Tokuhisa A. Characterization of X-ray diffraction intensity function from a biological molecule for single particle imaging. Biophys Physicobiol 2019; 16:430-443. [PMID: 31984195 PMCID: PMC6975897 DOI: 10.2142/biophysico.16.0_430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/03/2019] [Indexed: 12/01/2022] Open
Abstract
An attainable structural resolution of single particle imaging is determined by the characteristics of X-ray diffraction intensity, which depend on the incident X-ray intensity density and molecule size. To estimate the attainable structural resolution even for molecules whose coordinates are unknown, this research aimed to clarify how these characteristics of X-ray diffraction intensity are determined from the structure of a molecule. The functional characteristics of X-ray diffraction intensity of a single biomolecule were theoretically and computationally evaluated. The wavenumber dependence of the average diffraction intensity on a sphere of constant wavenumber was observable by small-angle X-ray solution scattering. An excellent approximation was obtained, in which this quantity was expressed by an integral transform of the product of the external molecular shape and a universal function related to its atom packing. A standard model protein was defined by an analytical form of the first factor characterized by molecular volume and length. It estimated the numerically determined wavenumber dependence with a worst-case error of approximately a factor of five. The distribution of the diffraction intensity on a sphere of constant wavenumber was also examined. Finally, the correlation of diffraction intensities in the wavenumber space was assessed. This analysis enabled the estimation of an attainable structural resolution as a function of the incident X-ray intensity density and the volume and length of a target molecule, even in the absence of molecular coordinates.
Collapse
Affiliation(s)
- Atsushi Tokuhisa
- RIKEN Cluster for Science and Technology Hub, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
19
|
Abstract
Until recently X-ray crystallography has been the standard technique for virus structure determinations. Available X-ray sources have continuously improved over the decades, leading to the realization of X-ray free-electron lasers (XFELs). They provide high-intensity femtosecond X-ray pulses, which allow for new kinds of experiments by making use of the diffraction-before-destruction principle. By overcoming classical dose constraints, they at least in principle allow researchers to perform X-ray virus structure determination for single particles at room temperature. Simultaneously, the availability of XFELs led to the development of the method of serial femtosecond crystallography, where a crystal structure is determined from the measurement of hundreds to thousands of microcrystals. In the case of virus crystallography this method does not require freezing of the crystals and allows researchers to perform experiments under non-equilibrium conditions (e.g., by laser-induced temperature jumps or rapid chemical mixing), which is currently not possible with electron microscopy.
Collapse
Affiliation(s)
- A. Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - M.O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
20
|
Mühlig K, Gañán-Calvo AM, Andreasson J, Larsson DSD, Hajdu J, Svenda M. Nanometre-sized droplets from a gas dynamic virtual nozzle. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719008318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This paper reports on improved techniques to create and characterize nanometre-sized droplets from dilute aqueous solutions by using a gas dynamic virtual nozzle (GDVN). It describes a method to measure the size distribution of uncharged droplets, using an environmental scanning electron microscope, and provides theoretical models for the droplet sizes created. The results show that droplet sizes can be tuned by adjusting the gas and liquid flow rates in the GDVN, and at the lowest liquid flow rates, the size of the water droplets peaks at about 120 nm. This droplet size is similar to droplet sizes produced by electrospray ionization but requires neither electrolytes nor charging of the solution. The results presented here identify a new operational regime for GDVNs and show that predictable droplet sizes, comparable to those obtained by electrospray ionization, can be produced by purely mechanical means in GDVNs.
Collapse
|
21
|
Abstract
X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
22
|
Daurer BJ, Okamoto K, Bielecki J, Maia FRNC, Mühlig K, Seibert MM, Hantke MF, Nettelblad C, Benner WH, Svenda M, Tîmneanu N, Ekeberg T, Loh ND, Pietrini A, Zani A, Rath AD, Westphal D, Kirian RA, Awel S, Wiedorn MO, van der Schot G, Carlsson GH, Hasse D, Sellberg JA, Barty A, Andreasson J, Boutet S, Williams G, Koglin J, Andersson I, Hajdu J, Larsson DSD. Erratum: Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. Corrigendum. IUCRJ 2019; 6:500. [PMID: 31098030 PMCID: PMC6503930 DOI: 10.1107/s2052252519004317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
[This corrects the article DOI: 10.1107/S2052252517003591.].
Collapse
Affiliation(s)
- Benedikt J. Daurer
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Kenta Okamoto
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kerstin Mühlig
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - M. Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Max F. Hantke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Carl Nettelblad
- Division of Scientific Computing, Department of Information Technology, Science for Life Laboratory, Uppsala University, Lägerhyddsvägen 2 (Box 337), SE-751 05 Uppsala, Sweden
| | - W. Henry Benner
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Nicuşor Tîmneanu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1 (Box 516), SE-751 20 Uppsala, Sweden
| | - Tomas Ekeberg
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - N. Duane Loh
- Centre for BioImaging Sciences, National University of Singapore, Singapore
| | - Alberto Pietrini
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Alessandro Zani
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Asawari D. Rath
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Bhabha Atomic Research Center, Mumbai 400 085, India
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Richard A. Kirian
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Salah Awel
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gijs van der Schot
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Gunilla H. Carlsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Jonas A. Sellberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jakob Andreasson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- ELI Beamlines, Institute of Physics, Czech Academy of Science, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Garth Williams
- Brookhaven National Laboratory, 743 Brookhaven Avenue, Upton, NY 11973, USA
| | - Jason Koglin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Daniel S. D. Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| |
Collapse
|
23
|
Mancuso AP, Aquila A, Batchelor L, Bean RJ, Bielecki J, Borchers G, Doerner K, Giewekemeyer K, Graceffa R, Kelsey OD, Kim Y, Kirkwood HJ, Legrand A, Letrun R, Manning B, Lopez Morillo L, Messerschmidt M, Mills G, Raabe S, Reimers N, Round A, Sato T, Schulz J, Signe Takem C, Sikorski M, Stern S, Thute P, Vagovič P, Weinhausen B, Tschentscher T. The Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography instrument of the European XFEL: initial installation. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:660-676. [PMID: 31074429 PMCID: PMC6510195 DOI: 10.1107/s1600577519003308] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/07/2019] [Indexed: 05/22/2023]
Abstract
The European X-ray Free-Electron Laser (FEL) became the first operational high-repetition-rate hard X-ray FEL with first lasing in May 2017. Biological structure determination has already benefitted from the unique properties and capabilities of X-ray FELs, predominantly through the development and application of serial crystallography. The possibility of now performing such experiments at data rates more than an order of magnitude greater than previous X-ray FELs enables not only a higher rate of discovery but also new classes of experiments previously not feasible at lower data rates. One example is time-resolved experiments requiring a higher number of time steps for interpretation, or structure determination from samples with low hit rates in conventional X-ray FEL serial crystallography. Following first lasing at the European XFEL, initial commissioning and operation occurred at two scientific instruments, one of which is the Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument. This instrument provides a photon energy range, focal spot sizes and diagnostic tools necessary for structure determination of biological specimens. The instrumentation explicitly addresses serial crystallography and the developing single particle imaging method as well as other forward-scattering and diffraction techniques. This paper describes the major science cases of SPB/SFX and its initial instrumentation - in particular its optical systems, available sample delivery methods, 2D detectors, supporting optical laser systems and key diagnostic components. The present capabilities of the instrument will be reviewed and a brief outlook of its future capabilities is also described.
Collapse
Affiliation(s)
- Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrew Aquila
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | | | | | | | - Rita Graceffa
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Yoonhee Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Romain Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | - Grant Mills
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Steffen Raabe
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Nadja Reimers
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adam Round
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | | | | | | | - Stephan Stern
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Prasad Thute
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Patrik Vagovič
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | | | | |
Collapse
|
24
|
Bielecki J, Hantke MF, Daurer BJ, Reddy HKN, Hasse D, Larsson DSD, Gunn LH, Svenda M, Munke A, Sellberg JA, Flueckiger L, Pietrini A, Nettelblad C, Lundholm I, Carlsson G, Okamoto K, Timneanu N, Westphal D, Kulyk O, Higashiura A, van der Schot G, Loh NTD, Wysong TE, Bostedt C, Gorkhover T, Iwan B, Seibert MM, Osipov T, Walter P, Hart P, Bucher M, Ulmer A, Ray D, Carini G, Ferguson KR, Andersson I, Andreasson J, Hajdu J, Maia FRNC. Electrospray sample injection for single-particle imaging with x-ray lasers. SCIENCE ADVANCES 2019; 5:eaav8801. [PMID: 31058226 PMCID: PMC6499549 DOI: 10.1126/sciadv.aav8801] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/19/2019] [Indexed: 05/11/2023]
Abstract
The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.
Collapse
Affiliation(s)
- Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Max F. Hantke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Chemistry Research Laboratory, Department of Chemistry, Oxford University, 12 Mansfield Rd, Oxford OX1 3TA, UK
| | - Benedikt J. Daurer
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - Hemanth K. N. Reddy
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Daniel S. D. Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Laura H. Gunn
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Anna Munke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Jonas A. Sellberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Leonie Flueckiger
- ARC Centre of Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Alberto Pietrini
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Carl Nettelblad
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Division of Scientific Computing, Department of Information Technology, Science for Life Laboratory, Uppsala University, Lägerhyddsvägen 2 (Box 337), SE-751 05 Uppsala, Sweden
| | - Ida Lundholm
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Gunilla Carlsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Kenta Okamoto
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Nicusor Timneanu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Olena Kulyk
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | - Akifumi Higashiura
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Gijs van der Schot
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, Netherlands
| | - Ne-Te Duane Loh
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Taylor E. Wysong
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Tais Gorkhover
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Bianca Iwan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - M. Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Timur Osipov
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Peter Walter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Philip Hart
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Maximilian Bucher
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Anatoli Ulmer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Dipanwita Ray
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Gabriella Carini
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ken R. Ferguson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | - Jakob Andreasson
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
- Condensed Matter Physics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author.
| |
Collapse
|
25
|
Uetrecht C, Lorenzen K, Kitel M, Heidemann J, Robinson Spencer JH, Schlüter H, Schulz J. Native mass spectrometry provides sufficient ion flux for XFEL single-particle imaging. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:653-659. [PMID: 31074428 PMCID: PMC6510201 DOI: 10.1107/s1600577519002686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/21/2019] [Indexed: 05/11/2023]
Abstract
The SPB/SFX instrument at the European XFEL provides unique conditions for single-particle imaging (SPI) experiments due to its high brilliance, nano-focus and unique pulse structure. Promising initial results provided by the international LCLS (Linac Coherent Light Source) SPI initiative highlight the potential of SPI. Current available injection methods generally have high sample consumption and do not provide any options for pulsing, selection or orientation of particles, which poses a problem for data evaluation. Aerosol-injector-based sample delivery is the current method of choice for SPI experiments, although, to a lesser extent, electrospray and electrospinning are used. Single particles scatter only a limited number of photons providing a single orientation for data evaluation, hence large datasets are required from particles in multiple orientations in order to reconstruct a structure. Here, a feasibility study demonstrates that nano-electrospray ionization, usually employed in biomolecular mass spectrometry, provides enough ion flux for SPI experiments. A novel instrument setup at the SPB/SFX instrument is proposed, which has the benefit of extremely low background while delivering mass over charge and conformation-selected ions for SPI.
Collapse
Affiliation(s)
- Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | | | - Matthäus Kitel
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | - Johannes Heidemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
| | - Jesse Huron Robinson Spencer
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
- Institute for Clinical Chemistry, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Hartmut Schlüter
- Institute for Clinical Chemistry, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| |
Collapse
|
26
|
Giewekemeyer K, Aquila A, Loh NTD, Chushkin Y, Shanks KS, Weiss J, Tate MW, Philipp HT, Stern S, Vagovic P, Mehrjoo M, Teo C, Barthelmess M, Zontone F, Chang C, Tiberio RC, Sakdinawat A, Williams GJ, Gruner SM, Mancuso AP. Experimental 3D coherent diffractive imaging from photon-sparse random projections. IUCRJ 2019; 6:357-365. [PMID: 31098017 PMCID: PMC6503918 DOI: 10.1107/s2052252519002781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/24/2019] [Indexed: 05/19/2023]
Abstract
The routine atomic resolution structure determination of single particles is expected to have profound implications for probing structure-function relationships in systems ranging from energy-storage materials to biological molecules. Extremely bright ultrashort-pulse X-ray sources - X-ray free-electron lasers (XFELs) - provide X-rays that can be used to probe ensembles of nearly identical nanoscale particles. When combined with coherent diffractive imaging, these objects can be imaged; however, as the resolution of the images approaches the atomic scale, the measured data are increasingly difficult to obtain and, during an X-ray pulse, the number of photons incident on the 2D detector is much smaller than the number of pixels. This latter concern, the signal 'sparsity', materially impedes the application of the method. An experimental analog using a conventional X-ray source is demonstrated and yields signal levels comparable with those expected from single biomolecules illuminated by focused XFEL pulses. The analog experiment provides an invaluable cross check on the fidelity of the reconstructed data that is not available during XFEL experiments. Using these experimental data, it is established that a sparsity of order 1.3 × 10-3 photons per pixel per frame can be overcome, lending vital insight to the solution of the atomic resolution XFEL single-particle imaging problem by experimentally demonstrating 3D coherent diffractive imaging from photon-sparse random projections.
Collapse
Affiliation(s)
| | - A. Aquila
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - N.-T. D. Loh
- Centre for Bio-imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore
| | - Y. Chushkin
- ESRF – The European Synchrotron, 71 avenue des Martyrs, 38000 Grenoble, France
| | - K. S. Shanks
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - J.T. Weiss
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - M. W. Tate
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - H. T. Philipp
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | - S. Stern
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - P. Vagovic
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - M. Mehrjoo
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - C. Teo
- Centre for Bio-imaging Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore
| | - M. Barthelmess
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - F. Zontone
- ESRF – The European Synchrotron, 71 avenue des Martyrs, 38000 Grenoble, France
| | - C. Chang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - R. C. Tiberio
- Stanford Nano Shared Facilities, Stanford University, 348 Via Pueblo, Stanford, CA 94305, USA
| | - A. Sakdinawat
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - G. J. Williams
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - S. M. Gruner
- Laboratory for Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - A. P. Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
27
|
Liu J, van der Schot G, Engblom S. Supervised classification methods for flash X-ray single particle diffraction imaging. OPTICS EXPRESS 2019; 27:3884-3899. [PMID: 30876013 DOI: 10.1364/oe.27.003884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Current Flash X-ray single-particle diffraction Imaging (FXI) experiments, which operate on modern X-ray Free Electron Lasers (XFELs), can record millions of interpretable diffraction patterns from individual biomolecules per day. Due to the practical limitations with the FXI technology, those patterns will to a varying degree include scatterings from contaminated samples. Also, the heterogeneity of the sample biomolecules is unavoidable and complicates data processing. Reducing the data volumes and selecting high-quality single-molecule patterns are therefore critical steps in the experimental setup. In this paper, we present two supervised template-based learning methods for classifying FXI patterns. Our Eigen-Image and Log-Likelihood classifier can find the best-matched template for a single-molecule pattern within a few milliseconds. It is also straightforward to parallelize them so as to match the XFEL repetition rate fully, thereby enabling processing at site. The methods perform in a stable way on various kinds of synthetic data. As a practical example we tested our methods on a real mimivirus dataset, obtaining a convincing classification accuracy of 0.9.
Collapse
|
28
|
Lunin VY, Lunina NL, Petrova TE, Baumstark MW, Urzhumtsev AG. Mask-based approach to phasing of single-particle diffraction data. II. Likelihood-based selection criteria. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:79-89. [DOI: 10.1107/s2059798318016959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/28/2018] [Indexed: 11/10/2022]
Abstract
A new type of mask-selection criterion is suggested for mask-based phasing. In this phasing approach, a large number of connected molecular masks are randomly generated. Structure-factor phases corresponding to a trial mask are accepted as an admissible solution of the phase problem if the mask satisfies some specified selection rules that are key to success. The admissible phase sets are aligned and averaged to give a preliminary solution of the phase problem. The new selection rule is based on the likelihood of the generated mask. It is defined as the probability of reproducing the observed structure-factor magnitudes by placing atoms randomly into the mask. While the result of the direct comparison of mask structure-factor magnitudes with observed ones using a correlation coefficient is highly dominated by a few very strong low-resolution reflections, a new method gives higher weight to relatively weak high-resolution reflections that allows them to be phased accurately. This mask-based phasing procedure with likelihood-based selection has been applied to simulated single-particle diffraction data of the photosystem II monomer. The phase set obtained resulted in a 16 Å resolution Fourier synthesis (more than 4000 reflections) with 98% correlation with the exact phase set and 69% correlation for about 2000 reflections in the highest resolution shell (20–16 Å). This work also addresses another essential problem of phasing methods, namely adequate estimation of the resolution achieved. A model-trapping analysis of the phase sets obtained by the mask-based phasing procedure suggests that the widely used `50% shell correlation' criterion may be too optimistic in some cases.
Collapse
|
29
|
Hantke MF, Bielecki J, Kulyk O, Westphal D, Larsson DSD, Svenda M, Reddy HKN, Kirian RA, Andreasson J, Hajdu J, Maia FRNC. Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams. IUCRJ 2018; 5:673-680. [PMID: 30443352 PMCID: PMC6211534 DOI: 10.1107/s2052252518010837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/26/2018] [Indexed: 05/25/2023]
Abstract
Ultra-bright femtosecond X-ray pulses generated by X-ray free-electron lasers (XFELs) can be used to image high-resolution structures without the need for crystallization. For this approach, aerosol injection has been a successful method to deliver 70-2000 nm particles into the XFEL beam efficiently and at low noise. Improving the technique of aerosol sample delivery and extending it to single proteins necessitates quantitative aerosol diagnostics. Here a lab-based technique is introduced for Rayleigh-scattering microscopy allowing us to track and size aerosolized particles down to 40 nm in diameter as they exit the injector. This technique was used to characterize the 'Uppsala injector', which is a pioneering and frequently used aerosol sample injector for XFEL single-particle imaging. The particle-beam focus, particle velocities, particle density and injection yield were measured at different operating conditions. It is also shown how high particle densities and good injection yields can be reached for large particles (100-500 nm). It is found that with decreasing particle size, particle densities and injection yields deteriorate, indicating the need for different injection strategies to extend XFEL imaging to smaller targets, such as single proteins. This work demonstrates the power of Rayleigh-scattering microscopy for studying focused aerosol beams quantitatively. It lays the foundation for lab-based injector development and online injection diagnostics for XFEL research. In the future, the technique may also find application in other fields that employ focused aerosol beams, such as mass spectrometry, particle deposition, fuel injection and three-dimensional printing techniques.
Collapse
Affiliation(s)
- Max F. Hantke
- Chemistry Research Laboratory, Department of Chemistry, Oxford University, 12 Mansfield Rd, Oxford OX1 3TA, UK
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
- European XFEL GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | - Olena Kulyk
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague CZ-18221, Czech Republic
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Daniel S. D. Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Hemanth K. N. Reddy
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
| | - Richard A. Kirian
- Department of Physics, Arizona State University, 550 E. Tyler Drive, Tempe, AZ 85287, USA
| | - Jakob Andreasson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague CZ-18221, Czech Republic
- Condensed Matter Physics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague CZ-18221, Czech Republic
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala SE-75124, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
30
|
Lundholm IV, Sellberg JA, Ekeberg T, Hantke MF, Okamoto K, van der Schot G, Andreasson J, Barty A, Bielecki J, Bruza P, Bucher M, Carron S, Daurer BJ, Ferguson K, Hasse D, Krzywinski J, Larsson DSD, Morgan A, Mühlig K, Müller M, Nettelblad C, Pietrini A, Reddy HKN, Rupp D, Sauppe M, Seibert M, Svenda M, Swiggers M, Timneanu N, Ulmer A, Westphal D, Williams G, Zani A, Faigel G, Chapman HN, Möller T, Bostedt C, Hajdu J, Gorkhover T, Maia FRNC. Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging. IUCRJ 2018; 5:531-541. [PMID: 30224956 PMCID: PMC6126651 DOI: 10.1107/s2052252518010047] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/11/2018] [Indexed: 05/19/2023]
Abstract
Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patterns collected at the LINAC Coherent Light Source (LCLS) as well as reconstructions from simulated data exploring the consequences of different kinds of experimental sources of noise. The reconstruction from experimental data suffers from a strong artifact in the center of the particle. This could be reproduced with simulated data by adding experimental background to the diffraction patterns. In those simulations, the relative density of the artifact increases linearly with background strength. This suggests that the artifact originates from the Fourier transform of the relatively flat background, concentrating all power in a central feature of limited extent. We support these findings by significantly reducing the artifact through background removal before the phase-retrieval step. Large amounts of blurring in the diffraction patterns were also found to introduce diffuse artifacts, which could easily be mistaken as biologically relevant features. Other sources of noise such as sample heterogeneity and variation of pulse energy did not significantly degrade the quality of the reconstructions. Larger data volumes, made possible by the recent inauguration of high repetition-rate XFELs, allow for increased signal-to-background ratio and provide a way to minimize these artifacts. The anticipated development of three-dimensional Fourier-volume-assembly algorithms which are background aware is an alternative and complementary solution, which maximizes the use of data.
Collapse
Affiliation(s)
- Ida V. Lundholm
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Jonas A. Sellberg
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Tomas Ekeberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | | | - Kenta Okamoto
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Gijs van der Schot
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Jakob Andreasson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- ELI Beamlines, Institute of Physics, Czech Academy of Science, Na Slovance 2, CZ-182 21 Prague, Czech Republic
- Condensed Matter Physics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Petr Bruza
- Condensed Matter Physics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Max Bucher
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Sebastian Carron
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
| | - Benedikt J. Daurer
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Ken Ferguson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
- PULSE Institute and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Jacek Krzywinski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
| | - Daniel S. D. Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Andrew Morgan
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kerstin Mühlig
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Maria Müller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Carl Nettelblad
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Division of Scientific Computing, Department of Information Technology, Science for Life Laboratory, Uppsala University, Lagerhyddsvägen 2 (Box 337), SE-751 05 Uppsala, Sweden
| | - Alberto Pietrini
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Hemanth K. N. Reddy
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Daniela Rupp
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Mario Sauppe
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Michelle Swiggers
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
| | - Nicusor Timneanu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Anatoli Ulmer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Garth Williams
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
- NSLS-II, Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973, USA
| | - Alessandro Zani
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Gyula Faigel
- Research Institute for Solid State Physics and Optics, 1525 Budapest, Hungary
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Thomas Möller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Christoph Bostedt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- PULSE Institute and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Department of Physics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- ELI Beamlines, Institute of Physics, Czech Academy of Science, Na Slovance 2, CZ-182 21 Prague, Czech Republic
| | - Tais Gorkhover
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, USA
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
- PULSE Institute and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
- NERSC, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| |
Collapse
|
31
|
Sun Z, Fan J, Li H, Liu H, Nam D, Kim C, Kim Y, Han Y, Zhang J, Yao S, Park J, Kim S, Tono K, Yabashi M, Ishikawa T, Song C, Fan C, Jiang H. Necessary Experimental Conditions for Single-Shot Diffraction Imaging of DNA-Based Structures with X-ray Free-Electron Lasers. ACS NANO 2018; 12:7509-7518. [PMID: 29986128 DOI: 10.1021/acsnano.8b01838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It has been proposed that the radiation damage to biological particles and soft condensed matter can be overcome by ultrafast and ultraintense X-ray free-electron lasers (FELs) with short pulse durations. The successful demonstration of the "diffraction-before-destruction" concept has made single-shot diffraction imaging a promising tool to achieve high resolutions under the native states of samples. However, the resolution is still limited because of the low signal-to-noise ratio, especially for biological specimens such as cells, viruses, and macromolecular particles. Here, we present a demonstration single-shot diffraction imaging experiment of DNA-based structures at SPring-8 Angstrom Compact Free Electron Laser (SACLA), Japan. Through quantitative analysis of the reconstructed images, the scattering abilities of gold and DNA were demonstrated. Suggestions for extracting valid DNA signals from noisy diffraction patterns were also explained and outlined. To sketch out the necessary experimental conditions for the 3D imaging of DNA origami or DNA macromolecular particles, we carried out numerical simulations with practical detector noise and experimental geometry using the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory, USA. The simulated results demonstrate that it is possible to capture images of DNA-based structures at high resolutions with the technique development of current and next-generation X-ray FEL facilities.
Collapse
Affiliation(s)
- Zhibin Sun
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Jiadong Fan
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Haoyuan Li
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
- Department of Physics , Stanford University , Stanford , California 94305 , United States
| | - Huajie Liu
- Laboratory of Physical Biology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Daewoong Nam
- Pohang Accelerator Laboratory , Pohang University of Science and Technology , Pohang 37673 , Korea
- Department of Physics , Pohang University of Science and Technology , Pohang 37673 , Korea
| | - Chan Kim
- European XFEL GmbH , Holzkoppel 4 , Schenefeld 22869 , Germany
- Department of Physics and Photon Science & School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Korea
| | - Yoonhee Kim
- European XFEL GmbH , Holzkoppel 4 , Schenefeld 22869 , Germany
- Department of Physics and Photon Science & School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Korea
| | - Yubo Han
- Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Jianhua Zhang
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Shengkun Yao
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Jaehyun Park
- Pohang Accelerator Laboratory , Pohang University of Science and Technology , Pohang 37673 , Korea
| | - Sunam Kim
- Pohang Accelerator Laboratory , Pohang University of Science and Technology , Pohang 37673 , Korea
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute , Kouto, Sayo-cho, Sayo-gun , Hyogo 679-5198 , Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center , Kouto, Sayo-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center , Kouto, Sayo-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Changyong Song
- Department of Physics , Pohang University of Science and Technology , Pohang 37673 , Korea
| | - Chunhai Fan
- Laboratory of Physical Biology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Huaidong Jiang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
32
|
Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 2018; 115:5652-5657. [PMID: 29760050 DOI: 10.1073/pnas.1711220115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 106 J/cm2 These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.
Collapse
|
33
|
Awel S, Kirian RA, Wiedorn MO, Beyerlein KR, Roth N, Horke DA, Oberthür D, Knoska J, Mariani V, Morgan A, Adriano L, Tolstikova A, Xavier PL, Yefanov O, Aquila A, Barty A, Roy-Chowdhury S, Hunter MS, James D, Robinson JS, Weierstall U, Rode AV, Bajt S, Küpper J, Chapman HN. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. J Appl Crystallogr 2018; 51:133-139. [PMID: 29507547 PMCID: PMC5822990 DOI: 10.1107/s1600576717018131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 12/19/2017] [Indexed: 11/10/2022] Open
Abstract
High-resolution Bragg diffraction from aerosolized single granulovirus nanocrystals using an X-ray free-electron laser is demonstrated. The outer dimensions of the in-vacuum aerosol injector components are identical to conventional liquid-microjet nozzles used in serial diffraction experiments, which allows the injector to be utilized with standard mountings. As compared with liquid-jet injection, the X-ray scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. Such reduction is required for diffraction measurements of small macromolecular nanocrystals and single particles. High particle speeds are achieved, making the approach suitable for use at upcoming high-repetition-rate facilities.
Collapse
Affiliation(s)
- Salah Awel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Max O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Kenneth R. Beyerlein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Nils Roth
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Daniel A. Horke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrew Morgan
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Luigi Adriano
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - P. Lourdu Xavier
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrew Aquila
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Mark S. Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | | | - Joseph S. Robinson
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | | | - Andrei V. Rode
- Laser Physics Centre, Research School of Physics and Engineering, Australian National University, ACT 2601, Canberra, Australia
| | - Saša Bajt
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
34
|
Current Status of Single Particle Imaging with X-ray Lasers. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8010132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Pietrini A, Nettelblad C. Artifact reduction in the CSPAD detectors used for LCLS experiments. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:1092-1097. [PMID: 28862634 DOI: 10.1107/s160057751701058x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
The existence of noise and column-wise artifacts in the CSPAD-140K detector and in a module of the CSPAD-2.3M large camera, respectively, is reported for the L730 and L867 experiments performed at the CXI Instrument at the Linac Coherent Light Source (LCLS), in low-flux and low signal-to-noise ratio regime. Possible remedies are discussed and an additional step in the preprocessing of data is introduced, which consists of performing a median subtraction along the columns of the detector modules. Thus, we reduce the overall variation in the photon count distribution, lowering the mean false-positive photon detection rate by about 4% (from 5.57 × 10-5 to 5.32 × 10-5 photon counts pixel-1 frame-1 in L867, cxi86715) and 7% (from 1.70 × 10-3 to 1.58 × 10-3 photon counts pixel-1 frame-1 in L730, cxi73013), and the standard deviation in false-positive photon count per shot by 15% and 35%, while not making our average photon detection threshold more stringent. Such improvements in detector noise reduction and artifact removal constitute a step forward in the development of flash X-ray imaging techniques for high-resolution, low-signal and in serial nano-crystallography experiments at X-ray free-electron laser facilities.
Collapse
Affiliation(s)
- Alberto Pietrini
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala 751 24, Sweden
| | - Carl Nettelblad
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), Uppsala 751 24, Sweden
| |
Collapse
|
36
|
Fortmann-Grote C, Buzmakov A, Jurek Z, Loh NTD, Samoylova L, Santra R, Schneidmiller EA, Tschentscher T, Yakubov S, Yoon CH, Yurkov MV, Ziaja-Motyka B, Mancuso AP. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser. IUCRJ 2017; 4:560-568. [PMID: 28989713 PMCID: PMC5619849 DOI: 10.1107/s2052252517009496] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/26/2017] [Indexed: 05/23/2023]
Abstract
Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. It is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.
Collapse
Affiliation(s)
| | - Alexey Buzmakov
- FSRC ‘Crystallography and Photonics’, Russian Academy of Sciences, Moscow, Russian Federation
| | - Zoltan Jurek
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ne-Te Duane Loh
- Centre for Bio-Imaging Sciences, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore
| | | | - Robin Santra
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | | | | | | | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park CA 94025, USA
| | | | - Beata Ziaja-Motyka
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | | |
Collapse
|