1
|
Ascher DB, Kaminskas LM, Myung Y, Pires DEV. Using Graph-Based Signatures to Guide Rational Antibody Engineering. Methods Mol Biol 2023; 2552:375-397. [PMID: 36346604 DOI: 10.1007/978-1-0716-2609-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibodies are essential experimental and diagnostic tools and as biotherapeutics have significantly advanced our ability to treat a range of diseases. With recent innovations in computational tools to guide protein engineering, we can now rationally design better antibodies with improved efficacy, stability, and pharmacokinetics. Here, we describe the use of the mCSM web-based in silico suite, which uses graph-based signatures to rapidly identify the structural and functional consequences of mutations, to guide rational antibody engineering to improve stability, affinity, and specificity.
Collapse
Affiliation(s)
- David B Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Biochemistry, Cambridge University, Cambridge, UK
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Lisa M Kaminskas
- School of Biological Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Yoochan Myung
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Douglas E V Pires
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia.
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- School of Computing and Information Systems, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Zhang T, Nagel‐Steger L, Willbold D. Solution-Based Determination of Dissociation Constants for the Binding of Aβ42 to Antibodies. ChemistryOpen 2019; 8:989-994. [PMID: 31367507 PMCID: PMC6643301 DOI: 10.1002/open.201900167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Indexed: 11/26/2022] Open
Abstract
Amyloid β-peptides (Aβ) play a major role in the pathogenesis of Alzheimer's disease. Therefore, numerous monoclonal antibodies against Aβ have been developed for basic and clinical research. The present study applied fluorescence based analytical ultracentrifugation and microscale thermophoresis to characterize the interaction between Aβ42 monomers and three popular, commercially available antibodies, namely 6E10, 4G8 and 12F4. Both methods allowed us to analyze the interactions at low nanomolar concentrations of analytes close to their dissociation constants (K D) as required for the study of high affinity interactions. Furthermore, the low concentrations minimized the unwanted self-aggregation of Aβ. Our study demonstrates that all three antibodies bind to Aβ42 monomers with comparable affinities in the low nanomolar range. K D values for Aβ42 binding to 6E10 and 4G8 are in good agreement with formerly reported values from SPR studies, while the K D for 12F4 binding to Aβ42 monomer is reported for the first time.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Complex Systems, Structural Biochemistry (ICS-6)Forschungszentrum Jülich52425JülichGermany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Luitgard Nagel‐Steger
- Institute of Complex Systems, Structural Biochemistry (ICS-6)Forschungszentrum Jülich52425JülichGermany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6)Forschungszentrum Jülich52425JülichGermany
- Institut für Physikalische BiologieHeinrich-Heine-Universität Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
3
|
Drummond E, Goñi F, Liu S, Prelli F, Scholtzova H, Wisniewski T. Potential Novel Approaches to Understand the Pathogenesis and Treat Alzheimer's Disease. J Alzheimers Dis 2019; 64:S299-S312. [PMID: 29562516 DOI: 10.3233/jad-179909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is growing genetic and proteomic data highlighting the complexity of Alzheimer's disease (AD) pathogenesis. Greater use of unbiased "omics" approaches is being increasingly recognized as essential for the future development of effective AD research, that need to better reflect the multiple distinct pathway abnormalities that can drive AD pathology. The track record of success in AD clinical trials thus far has been very poor. In part, this high failure rate has been related to the premature translation of highly successful results in animal models that mirror only limited aspects of AD pathology to humans. We highlight our recent efforts to increase use of human tissue to gain a better understanding of the AD pathogenesis subtype variety and to develop several distinct therapeutic approaches tailored to address this diversity. These therapeutic approaches include the blocking of the Aβ/apoE interaction, stimulation of innate immunity, and the simultaneous blocking of Aβ/tau oligomer toxicity. We believe that future successful therapeutic approaches will need to be combined to better reflect the complexity of the abnormal pathways triggered in AD pathogenesis.
Collapse
Affiliation(s)
- Eleanor Drummond
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Fernando Goñi
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Shan Liu
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Frances Prelli
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Henrieta Scholtzova
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci Rep 2018; 8:6412. [PMID: 29686315 PMCID: PMC5913127 DOI: 10.1038/s41598-018-24501-0] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Aducanumab, a human-derived antibody targeting amyloid-β (Aβ), is in Phase 3 clinical trials for the treatment of Alzheimer’s disease. Biochemical and structural analyses show that aducanumab binds a linear epitope formed by amino acids 3–7 of the Aβ peptide. Aducanumab discriminates between monomers and oligomeric or fibrillar aggregates based on weak monovalent affinity, fast binding kinetics and strong avidity for epitope-rich aggregates. Direct comparative studies with analogs of gantenerumab, bapineuzumab and solanezumab demonstrate clear differentiation in the binding properties of these antibodies. The crystal structure of the Fab fragment of aducanumab bound to its epitope peptide reveals that aducanumab binds to the N terminus of Aβ in an extended conformation, distinct from those seen in structures with other antibodies that target this immunodominant epitope. Aducanumab recognizes a compact epitope that sits in a shallow pocket on the antibody surface. In silico analyses suggest that aducanumab interacts weakly with the Aβ monomer and may accommodate a variety of peptide conformations, further supporting its selectivity for Aβ aggregates. Our studies provide a structural rationale for the low affinity of aducanumab for non-pathogenic monomers and its greater selectivity for aggregated forms than is seen for other Aβ-targeting antibodies.
Collapse
|
5
|
Production of Monoclonal Antibodies to Pathologic β-sheet Oligomeric Conformers in Neurodegenerative Diseases. Sci Rep 2017; 7:9881. [PMID: 28852189 PMCID: PMC5575137 DOI: 10.1038/s41598-017-10393-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/07/2017] [Indexed: 01/12/2023] Open
Abstract
We describe a novel approach to produce conformational monoclonal antibodies selected to specifically react with the β-sheet secondary structure of pathological oligomeric conformers, characteristic of many neurodegenerative diseases. Contrary to past and current efforts, we utilize a mammalian non-self-antigen as an immunogen. The small, non-self peptide selected was covalently polymerized with glutaraldehyde until it reached a high β-sheet secondary structure content, and species between 10–100kDa that are immunogenic, stable and soluble (p13Bri). Inoculation of p13Bri in mice elicited antibodies to the peptide and the β-sheet secondary structure conformation. Hybridomas were produced and clones selected for their reactivity with at least two different oligomeric conformers from Alzheimer’s, Parkinson and/or Prion diseases. The resulting conformational monoclonals are able to detect pathological oligomeric forms in different human neurodegenerative diseases by ELISA, immunohistochemistry and immunoblots. This technological approach may be useful to develop tools for detection, monitoring and treatment of multiple misfolding disorders.
Collapse
|
6
|
Pires DEV, Ascher DB. mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Res 2016; 44:W469-73. [PMID: 27216816 PMCID: PMC4987957 DOI: 10.1093/nar/gkw458] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/12/2016] [Indexed: 12/14/2022] Open
Abstract
Computational methods have traditionally struggled to predict the effect of mutations in antibody–antigen complexes on binding affinity. This has limited their usefulness during antibody engineering and development, and their ability to predict biologically relevant escape mutations. Here we present mCSM-AB, a user-friendly web server for accurately predicting antibody–antigen affinity changes upon mutation which relies on graph-based signatures. We show that mCSM-AB performs better than comparable methods that have been previously used for antibody engineering. mCSM-AB web server is available at http://structure.bioc.cam.ac.uk/mcsm_ab.
Collapse
Affiliation(s)
- Douglas E V Pires
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - David B Ascher
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK Department of Biochemistry, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
7
|
Crespi GAN, Hermans SJ, Parker MW, Miles LA. Molecular basis for mid-region amyloid-β capture by leading Alzheimer's disease immunotherapies. Sci Rep 2015; 5:9649. [PMID: 25880481 PMCID: PMC4549621 DOI: 10.1038/srep09649] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/12/2015] [Indexed: 12/24/2022] Open
Abstract
Solanezumab (Eli Lilly) and crenezumab (Genentech) are the leading clinical antibodies targeting Amyloid-β (Aβ) to be tested in multiple Phase III clinical trials for the prevention of Alzheimer's disease in at-risk individuals. Aβ capture by these clinical antibodies is explained here with the first reported mid-region Aβ-anti-Aβ complex crystal structure. Solanezumab accommodates a large Aβ epitope (960 Å(2) buried interface over residues 16 to 26) that forms extensive contacts and hydrogen bonds to the antibody, largely via main-chain Aβ atoms and a deeply buried Phe19-Phe20 dipeptide core. The conformation of Aβ captured is an intermediate between observed sheet and helical forms with intramolecular hydrogen bonds stabilising residues 20-26 in a helical conformation. Remarkably, Aβ-binding residues are almost perfectly conserved in crenezumab. The structure explains the observed shared cross reactivity of solanezumab and crenezumab with proteins abundant in plasma that exhibit this Phe-Phe dipeptide.
Collapse
MESH Headings
- Alzheimer Disease/therapy
- Amyloid beta-Peptides/chemistry
- Amyloid beta-Peptides/immunology
- Amyloid beta-Peptides/metabolism
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Binding Sites
- Crystallography, X-Ray
- Dipeptides/blood
- Dipeptides/immunology
- Humans
- Hydrogen Bonding
- Immunotherapy
- Molecular Dynamics Simulation
- Protein Structure, Tertiary
Collapse
Affiliation(s)
- Gabriela A. N. Crespi
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Stefan J. Hermans
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Michael W. Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Luke A. Miles
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|