1
|
Lutsko JF, Schoonen C. A microscopic approach to crystallization: Challenging the classical/non-classical dichotomy. J Chem Phys 2024; 161:104502. [PMID: 39254162 DOI: 10.1063/5.0225658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
We present a fundamental framework for the study of crystallization based on a combination of classical density functional theory and fluctuating hydrodynamics that is free of any assumptions regarding order parameters and that requires no input other than molecular interaction potentials. We use it to study the nucleation of both droplets and crystalline solids from a low-concentration solution of colloidal particles using two different interaction potentials. We find that the nucleation pathways of both droplets and crystals are remarkably similar at the early stages of nucleation until they diverge due to a rapid ordering along the solid pathways in line with the paradigm of "non-classical" crystallization. We compute the unstable modes at the critical clusters and find that despite the non-classical nature of solid nucleation, the size of the nucleating clusters remains the principle order parameter in all cases, supporting a "classical" description of the dynamics of crystallization. We show that nucleation rates can be extracted from our formalism in a systematic way. Our results suggest that in some cases, despite the non-classical nature of the nucleation pathways, classical nucleation theory can give reasonable results for solids but that there are circumstances where it may fail. This contributes a nuanced perspective to recent experimental and simulation work, suggesting that important aspects of crystal nucleation can be described within a classical framework.
Collapse
Affiliation(s)
- James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Blvd. du Triomphe, 1050 Brussels, Belgium
| | - Cédric Schoonen
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Blvd. du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
2
|
Kakkar S, Bhattacharya S, Cazade PA, Thompson D, Rasmuson Å. Tracking Prenucleation Molecular Clustering of Salicylamide in Organic Solvents. CRYSTAL GROWTH & DESIGN 2024; 24:5740-5753. [PMID: 38983120 PMCID: PMC11228918 DOI: 10.1021/acs.cgd.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Crystal nucleation shapes the structure and product size distribution of solid-state pharmaceuticals and is seeded by early-stage molecular self-assemblies formed in host solution. Here, molecular clustering of salicylamide in ethyl acetate, methanol, and acetonitrile was investigated using photon correlation spectroscopy. Cluster size steadily increased over 3 days and with concentration across the range from undersaturated to supersaturated solutions. Solute concentration normalized by solubility provided more sensitive characterization of molecular-level conditions than concentration alone. In saturated solution, cluster size is independent of solvent, while at equal supersaturation, solvent-dependent cluster size increases as methanol < acetonitrile < ethyl acetate, commensurate with increasing nucleation propensity. In ethyl acetate, with largest prenucleation clusters, the driving force required for nucleation is lowest, compared to methanol with smallest clusters and highest driving force. To understand solvent-solute effects, we performed IR spectroscopy supported by molecular simulations. We observe solute-solvent interaction weakening in the same order: methanol < acetonitrile < ethyl acetate, quantifying the weaker solvent-solute interactions that permit the formation of larger prenucleation clusters. Our results support the hypothesis that nucleation is easier in weaker solvents because weak solute-solvent interactions favor growth of large clusters, as opposed to relying solely on ease of desolvation.
Collapse
Affiliation(s)
- Shubhangi Kakkar
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Shayon Bhattacharya
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Pierre-André Cazade
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Damien Thompson
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Åke Rasmuson
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
- Department of Chemical Engineering and Technology, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| |
Collapse
|
3
|
Barua H, Svärd M, Rasmuson ÅC, Hudson SP, Cookman J. Mesoscale Clusters in the Crystallisation of Organic Molecules. Angew Chem Int Ed Engl 2024; 63:e202312100. [PMID: 38055699 DOI: 10.1002/anie.202312100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
The early stages of the molecular self-assembly pathway leading to crystal nucleation have a significant influence on the properties and purity of organic materials. This mini review collates the work on organic mesoscale clusters and discusses their importance in nucleation processes, with a particular focus on their critical properties and susceptibility to sample treatment parameters. This is accomplished by a review of detection methods, including dynamic light scattering, nanoparticle tracking analysis, small angle X-ray scattering, and transmission electron microscopy. Considering the challenges associated with crystallisation of flexible and large-molecule active pharmaceutical ingredients, the dynamic nature of mesoscale clusters has the potential to expand the discovery of novel crystal forms. By collating literature on mesoscale clusters for organic molecules, a more comprehensive understanding of their role in nucleation will evolve and can guide further research efforts.
Collapse
Affiliation(s)
- Harsh Barua
- Chemical Sciences Department, SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick Castletroy, Limerick, V94 T9PX, Ireland
| | - Michael Svärd
- KTH Royal Institute of Technology, Department of Chemical Engineering, 10044, Stockholm, Sweden
| | - Åke C Rasmuson
- Chemical Sciences Department, SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick Castletroy, Limerick, V94 T9PX, Ireland
- KTH Royal Institute of Technology, Department of Chemical Engineering, 10044, Stockholm, Sweden
| | - Sarah P Hudson
- Chemical Sciences Department, SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick Castletroy, Limerick, V94 T9PX, Ireland
| | - Jennifer Cookman
- Chemical Sciences Department, SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick Castletroy, Limerick, V94 T9PX, Ireland
| |
Collapse
|
4
|
Rogal J, Díaz Leines G. Controlling crystallization: what liquid structure and dynamics reveal about crystal nucleation mechanisms. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220249. [PMID: 37211029 DOI: 10.1098/rsta.2022.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/06/2022] [Indexed: 05/23/2023]
Abstract
Over recent years, molecular simulations have provided invaluable insights into the microscopic processes governing the initial stages of crystal nucleation and growth. A key aspect that has been observed in many different systems is the formation of precursors in the supercooled liquid that precedes the emergence of crystalline nuclei. The structural and dynamical properties of these precursors determine to a large extent the nucleation probability as well as the formation of specific polymorphs. This novel microscopic view on nucleation mechanisms has further implications for our understanding of the nucleating ability and polymorph selectivity of nucleating agents, as these appear to be strongly linked to their ability in modifying structural and dynamical characteristics of the supercooled liquid, namely liquid heterogeneity. In this perspective, we highlight recent progress in exploring the connection between liquid heterogeneity and crystallization, including the effects of templates, and the potential impact for controlling crystallization processes. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- Jutta Rogal
- Department of Chemistry, New York University, New York, NY 10003, USA
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Grisell Díaz Leines
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
5
|
Guo M, Jones MJ, Goh R, Verma V, Guinn E, Heng JYY. The Effect of Chain Length and Conformation on the Nucleation of Glycine Homopeptides during the Crystallization Process. CRYSTAL GROWTH & DESIGN 2023; 23:1668-1675. [PMID: 36879769 PMCID: PMC9983003 DOI: 10.1021/acs.cgd.2c01229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Indexed: 05/14/2023]
Abstract
To explore the effect of chain length and conformation on the nucleation of peptides, the primary nucleation induction time of glycine homopeptides in pure water at different supersaturation levels under various temperatures has been determined. Nucleation data suggest that longer chains will prolong the induction time, especially for chains longer than three, where nucleation will occur over several days. In contrast, the nucleation rate increased with an increase in the supersaturation for all homopeptides. Induction time and nucleation difficulty increase at lower temperatures. However, for triglycine, the dihydrate form was produced with an unfolded peptide conformation (pPII) at low temperature. The interfacial energy and activation Gibbs energy of this dihydrate form are both lower than those at high temperature, while the induction time is longer, indicating the classical nucleation theory is not suitable to explain the nucleation phenomenon of triglycine dihydrate. Moreover, gelation and liquid-liquid separation of longer chain glycine homopeptides were observed, which was normally classified to nonclassical nucleation theory. This work provides insight into how the nucleation process evolves with increasing chain length and variable conformation, thereby offering a fundamental understanding of the critical peptide chain length for the classical nucleation theory and complex nucleation process for peptides.
Collapse
Affiliation(s)
- Mingxia Guo
- Department
of Chemical Engineering, Imperial
College London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| | - Marie J. Jones
- Department
of Chemical Engineering, Imperial
College London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| | - Racheal Goh
- Department
of Chemical Engineering, Imperial
College London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| | - Vivek Verma
- Department
of Chemical Engineering, Imperial
College London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| | - Emily Guinn
- Synthetic
Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46221, United States
| | - Jerry Y. Y. Heng
- Department
of Chemical Engineering, Imperial
College London, South Kensington
Campus, LondonSW7 2AZ, U.K.
- Institute
for Molecular Science and Engineering, Imperial
College London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| |
Collapse
|
6
|
Marchenkova MA, Boikova AS, Ilina KB, Konarev PV, Pisarevsky YV, Dyakova YA, Kovalchuk MV. The Relationship of Precursor Cluster Concentration in a Saturated Crystallization Solution to Long-Range Order During the Transition to the Solid Phase. Acta Naturae 2023; 15:58-68. [PMID: 37153505 PMCID: PMC10154781 DOI: 10.32607/actanaturae.11815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/11/2023] [Indexed: 05/09/2023] Open
Abstract
A model for the transition from disordered liquid state to the solid phase has been proposed based on establishing a correlation between the concentration of precursor clusters in a saturated solution and the features of solid phase formation. The validity of the model has been verified experimentally by simultaneously studying the oligomeric structure of lysozyme protein solutions and the peculiarities of solid phase formation from these solutions. It was shown that no solid phase is formed in the absence of precursor clusters (octamers) in solution; perfect monocrystals are formed at a small concentration of octamers; mass crystallization is observed with an increasing degree of supersaturation (and concentration of octamers); further increase in octamer concentration leads to the formation of an amorphous phase.
Collapse
Affiliation(s)
- M. A. Marchenkova
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, 119333 Russian Federation
| | - A. S. Boikova
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, 119333 Russian Federation
| | - K. B. Ilina
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, 119333 Russian Federation
| | - P. V. Konarev
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, 119333 Russian Federation
| | - Yu. V. Pisarevsky
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, 119333 Russian Federation
| | - Yu. A. Dyakova
- National Research Centre “Kurchatov Institute”, Moscow, 123182 Russian Federation
| | - M. V. Kovalchuk
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, 119333 Russian Federation
- National Research Centre “Kurchatov Institute”, Moscow, 123182 Russian Federation
| |
Collapse
|
7
|
Krzek M, Stroobants S, Gelin P, De Malsche W, Maes D. Influence of Centrifugation and Shaking on the Self-Assembly of Lysozyme Fibrils. Biomolecules 2022; 12:biom12121746. [PMID: 36551175 PMCID: PMC9775142 DOI: 10.3390/biom12121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Protein self-assembly into fibrils and oligomers plays a key role in the etiology of degenerative diseases. Several pathways for this self-assembly process have been described and shown to result in different types and ratios of final assemblies, therewith defining the effective physiological response. Known factors that influence assembly pathways are chemical conditions and the presence or lack of agitation. However, in natural and industrial systems, proteins are exposed to a sequence of different and often complex mass transfers. In this paper, we compare the effect of two fundamentally different mass transfer processes on the fibrilization process. Aggregation-prone solutions of hen egg white lysozyme were subjected to predominantly non-advective mass transfer by employing centrifugation and to advective mass transport represented by orbital shaking. In both cases, fibrilization was triggered, while in quiescent only oligomers were formed. The fibrils obtained by shaking compared to fibrils obtained through centrifugation were shorter, thicker, and more rigid. They had rod-like protofibrils as building blocks and a significantly higher β-sheet content was observed. In contrast, fibrils from centrifugation were more flexible and braided. They consisted of intertwined filaments and had low β-sheet content at the expense of random coil. To the best of our knowledge, this is the first evidence of a fibrilization pathway selectivity, with the fibrilization route determined by the mass transfer and mixing configuration (shaking versus centrifugation). This selectivity can be potentially employed for directed protein fibrilization.
Collapse
Affiliation(s)
- Marzena Krzek
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Sander Stroobants
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Pierre Gelin
- μFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Wim De Malsche
- μFlow Group, Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Dominique Maes
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Correspondence:
| |
Collapse
|
8
|
Ahn B, Chen M, Mazzotti M. Online Monitoring of the Concentrations of Amorphous and Crystalline Mesoscopic Species Present in Solution. CRYSTAL GROWTH & DESIGN 2022; 22:5071-5080. [PMID: 35942122 PMCID: PMC9354028 DOI: 10.1021/acs.cgd.2c00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/30/2022] [Indexed: 06/01/2023]
Abstract
Despite the growing evidence for the existence of amorphous mesoscopic species in a solution and their crucial roles in crystallization, there has been the lack of a suitable method to measure the time-resolved concentrations of amorphous and crystalline mesospecies in a lab-scale stirred reactor. This has limited experimental investigations to understand the kinetics of amorphous and crystalline mesospecies formation in stirred solutions and made it challenging to measure the crystal nucleation rate directly. Here, we used depolarized light sheet microscopy to achieve time-resolved measurements of amorphous and crystalline mesospecies concentrations in solutions at varying temperatures. After demonstrating that the concentration measurement method is reasonably accurate, precise, and sensitive, we utilized this method to examine mesospecies formation both in a mixture of two miscible liquids and in an undersaturated solution of dl-valine, thus revealing the importance of a temperature change in the formation of metastable and amorphous mesospecies as well as the reproducibility of the measurements. Moreover, we used the presented method to monitor both mesospecies formation and crystal nucleation in dl-valine solutions at four different levels of supersaturation, while achieving the direct measurement of the crystal nucleation rates in stirred solutions. Our results show that, as expected, the inherent variability in nucleation originating from its stochastic nature reduces with increasing supersaturation, and the dependence of the measured nucleation rate on supersaturation is in reasonable agreement with that predicted by the classical nucleation theory.
Collapse
|
9
|
Panjwani D, Patel S, Mishra D, Patel V, Yadav M, Dharamsi A, Patel A. Avidin-Biotin functionalized self-assembled protein nanoparticles as EGFR targeted therapeutics for the treatment of lung cancer: characterization and cell viability. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2099888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Deepak Mishra
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Viral Patel
- Department of Civil and Petroleum Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - MangeRam Yadav
- Centre for Research and Development, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Abhay Dharamsi
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| | - Asha Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
10
|
Identification of the Precursor Cluster in the Crystallization Solution of Proteinase K Protein by Molecular Dynamics Methods. CRYSTALS 2022. [DOI: 10.3390/cryst12040484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
It is known that precursor clusters appear in solution prior to protein crystallization. For proteinase K, as it was found by SAXS, such clusters are dimers, but the accuracy of the method did not allow for determining its type. In this work, the behavior of six possible types of precursor clusters was simulated by the molecular dynamics technique. Stability analysis revealed the most probable type of dimer formed in the proteinase K solution before its crystallization. SAXS data modelling also supported the MD calculations. The dynamics of this precursor cluster was modeled at three temperatures: 20, 30, and 40 °C. At 40 °C, an abnormal increase in the stability of the thermophilic proteinase K was found.
Collapse
|
11
|
Zhang TD, Deng X, Wang MY, Chen LL, Wang XT, Li CY, Shi WP, Lin WJ, Li Q, Pan W, Ni X, Pan T, Yin DC. Formation of β-Lactoglobulin Self-Assemblies via Liquid-Liquid Phase Separation for Applications beyond the Biological Functions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46391-46405. [PMID: 34570465 DOI: 10.1021/acsami.1c14634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteins are like miracle machines, playing important roles in living organisms. They perform vital biofunctions by further combining together and/or with other biomacromolecules to form assemblies or condensates such as membraneless organelles. Therefore, studying the self-assembly of biomacromolecules is of fundamental importance. In addition to their biological activities, protein assemblies also exhibit extra properties that enable them to achieve applications beyond their original functions. Herein, this study showed that in the presence of monosaccharides, ethylene glycols, and amino acids, β-lactoglobulin (β-LG) can form assemblies with specific structures, which were highly reproducible. The mechanism of the assembly process was studied through multi-scale observations and theoretical analysis, and it was found that the assembling all started from the formation of solute-rich liquid droplets via liquid-liquid phase separation (LLPS). These droplets then combined together to form condensates with elaborate structures, and the condensates finally evolved to form assemblies with various morphologies. Such a mechanism of the assembly is valuable for studying the assembly processes that frequently occur in living organisms. Detailed studies concerning the properties and applications of the obtained β-LG assemblies showed that the assemblies exhibited significantly better performances than the protein itself in terms of autofluorescence, antioxidant activity, and metal ion absorption, which indicates broad applications of these assemblies in bioimaging, biodetection, biodiagnosis, health maintenance, and pollution treatment. This study revealed that biomacromolecules, especially proteins, can be assembled via LLPS, and some unexpected application potentials could be found beyond their original biological functions.
Collapse
Affiliation(s)
- Tuo-Di Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, People's Republic of China
| | - Xudong Deng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, People's Republic of China
| | - Meng-Ying Wang
- Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, c/o DESY, Building 22a, Notkestr. 85, Hamburg 22607, Germany
| | - Liang-Liang Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, People's Republic of China
| | - Xue-Ting Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, People's Republic of China
| | - Chen-Yuan Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, People's Republic of China
| | - Wen-Pu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, People's Republic of China
| | - Wen-Juan Lin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, People's Republic of China
| | - Qiang Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, People's Republic of China
| | - Weichun Pan
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Xiaodan Ni
- Laboratory of Membrane Proteins and Structural Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tiezheng Pan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, People's Republic of China
| | - Da-Chuan Yin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, People's Republic of China
| |
Collapse
|
12
|
Liu H, Zou S, Dai S, Zhang J, Li W. Dopamine sheathing facilitates the anisotropic growth of lysozyme crystals. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Houben L, Weissman H, Wolf SG, Rybtchinski B. A mechanism of ferritin crystallization revealed by cryo-STEM tomography. Nature 2020; 579:540-543. [DOI: 10.1038/s41586-020-2104-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/16/2020] [Indexed: 11/10/2022]
|
14
|
Ferreira J, Castro F, Kuhn S, Rocha F. Controlled protein crystal nucleation in microreactors: the effect of the droplet volume versus high supersaturation ratios. CrystEngComm 2020. [DOI: 10.1039/d0ce00517g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Control of the enhanced lysozyme nucleation under high supersaturation ratios for a broad range of droplet volumes.
Collapse
Affiliation(s)
- Joana Ferreira
- Department of Chemical Engineering
- KU Leuven
- 3001 Leuven
- Belgium
- LEPABE – Laboratory for Process Engineering
| | - Filipa Castro
- LEPABE – Laboratory for Process Engineering
- Biotechnology and Energy
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| | - Simon Kuhn
- Department of Chemical Engineering
- KU Leuven
- 3001 Leuven
- Belgium
| | - Fernando Rocha
- LEPABE – Laboratory for Process Engineering
- Biotechnology and Energy
- Faculty of Engineering
- University of Porto
- 4200-465 Porto
| |
Collapse
|
15
|
Mudogo CN, Falke S, Brognaro H, Duszenko M, Betzel C. Protein phase separation and determinants of in cell crystallization. Traffic 2019; 21:220-230. [DOI: 10.1111/tra.12711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Celestin N. Mudogo
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
- Department of Basic Sciences, School of MedicineUniversity of Kinshasa Kinshasa Democratic Republic of Congo
| | - Sven Falke
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
| | - Hévila Brognaro
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
- Centre for Free‐Electron‐Laser Science Hamburg Germany
| | - Michael Duszenko
- Institute of Neurophysiology, University of Tübingen Tübingen Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
| |
Collapse
|
16
|
Wiedenbeck E, Kovermann M, Gebauer D, Cölfen H. Flüssige metastabile Vorstufen von Ibuprofen als Zwischenprodukt der Nukleation in wässriger Lösung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eduard Wiedenbeck
- Physical ChemistryUniversity of Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Michael Kovermann
- Physical ChemistryUniversity of Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Denis Gebauer
- Leibniz University of Hannover, Institut für Anorganische Chemie Callinstraße 9 30167 Hannover Deutschland
| | - Helmut Cölfen
- Physical ChemistryUniversity of Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
17
|
Wiedenbeck E, Kovermann M, Gebauer D, Cölfen H. Liquid Metastable Precursors of Ibuprofen as Aqueous Nucleation Intermediates. Angew Chem Int Ed Engl 2019; 58:19103-19109. [PMID: 31556970 PMCID: PMC6972611 DOI: 10.1002/anie.201910986] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 01/25/2023]
Abstract
The nucleation mechanism of crystals of small organic molecules, postulated based on computer simulations, still lacks experimental evidence. In this study we designed an experimental approach to monitor the early stages of the crystallization of ibuprofen as a model system for small organic molecules. Ibuprofen undergoes liquid–liquid phase separation prior to nucleation. The binodal and spinodal limits of the corresponding liquid–liquid miscibility gap were analyzed and confirmed. An increase in viscosity sustains the kinetic stability of the dense liquid intermediate. Since the distances between ibuprofen molecules within the dense liquid phase are similar to those in the crystal forms, this dense liquid phase is identified as a precursor phase in the nucleation of ibuprofen, in which densification is followed by generation of structural order. This discovery may make it possible to enrich poorly soluble pharmaceuticals beyond classical solubility limitations in aqueous environments.
Collapse
Affiliation(s)
- Eduard Wiedenbeck
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Michael Kovermann
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Denis Gebauer
- Leibniz University of Hannover, Institute of Inorganic Chemistry, Callinstraße 9, 30167, Hannover, Germany
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
18
|
Fujiwara H, Hongo K, Hori Y, Yoshida N, Makabe K. β-sheet elasticity of peptide self-assembly mimic, PSAM, with a grafted sequence characterized by comprehensive analyses of isomorphous crystals. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Sleutel M, Van Driessche AES. Nucleation of protein crystals - a nanoscopic perspective. NANOSCALE 2018; 10:12256-12267. [PMID: 29947625 DOI: 10.1039/c8nr02867b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Macromolecular phase transitions bear great medical, scientific and industrial relevance, yet the molecular picture of their earliest beginnings is still far from complete. For decades, progress has been hampered by the challenges associated with studying stochastic nucleation phenomena occurring on nanoscopic length scales. In the last 5 years, however, the field has advanced with great strides due to the recent buildout of experimental techniques that allow us to observe details of the nucleation process on the nanoscale. In this review, we present a historical overview and state-of-the-art analysis of protein crystal nucleation from an experimentalist's perspective. After a short introduction of key concepts from classical nucleation theory, we discuss the advancements that have led to the development of alternative models of protein nucleation. We summarize the experimental proof in favour of these various models, but we also focus on some of their shortcomings and experimental blind spots. In our penultimate section we highlight recent works that have provided direct nanoscopic insight into the nucleation of protein crystals. We end with concluding paragraphs discussing outstanding questions and possible strategies to advance the field further in the future.
Collapse
Affiliation(s)
- Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | | |
Collapse
|
20
|
Berry J, Brangwynne CP, Haataja M. Physical principles of intracellular organization via active and passive phase transitions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:046601. [PMID: 29313527 DOI: 10.1088/1361-6633/aaa61e] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.
Collapse
Affiliation(s)
- Joel Berry
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America. Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | | |
Collapse
|
21
|
Chatani E, Yamamoto N. Recent progress on understanding the mechanisms of amyloid nucleation. Biophys Rev 2017; 10:527-534. [PMID: 29214606 DOI: 10.1007/s12551-017-0353-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023] Open
Abstract
Amyloid fibrils are supramolecular protein assemblies with a fibrous morphology and cross-β structure. The formation of amyloid fibrils typically follows a nucleation-dependent polymerization mechanism, in which a one-step nucleation scheme has widely been accepted. However, a variety of oligomers have been identified in early stages of fibrillation, and a nucleated conformational conversion (NCC) mechanism, in which oligomers serve as a precursor of amyloid nucleation and convert to amyloid nuclei, has been proposed. This development has raised the need to consider more complicated multi-step nucleation processes in addition to the simplest one-step process, and evidence for the direct involvement of oligomers as nucleation precursors has been obtained both experimentally and theoretically. Interestingly, the NCC mechanism has some analogy with the two-step nucleation mechanism proposed for inorganic and organic crystals and protein crystals, although a more dramatic conformational conversion of proteins should be considered in amyloid nucleation. Clarifying the properties of the nucleation precursors of amyloid fibrils in detail, in comparison with those of crystals, will allow a better understanding of the nucleation of amyloid fibrils and pave the way to develop techniques to regulate it.
Collapse
Affiliation(s)
- Eri Chatani
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan.
| | - Naoki Yamamoto
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
22
|
Chen YW, Lee CH, Wang YL, Li TL, Chang HC. Nanodiamonds as Nucleating Agents for Protein Crystallization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6521-6527. [PMID: 28602087 DOI: 10.1021/acs.langmuir.7b00578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanodiamond (ND) is a carbon-based nanomaterial with potential for a wide range of biological applications. One of such applications is to facilitate the nucleation of protein crystals in aqueous solution. Here, we show that NDs (nominal diameters of 30 and 100 nm) after surface oxidation in air and subsequent treatment in strong acids are useful as heterogeneous nucleating agents for protein crystallization. Tested with lysozyme, ribonuclease A, proteinase K, and catalase, the nanomaterials in either aggregate or film form are found to be able to increase the crystallization efficiency of all proteins. Particularly, for 30 nm NDs, the films with an area of ∼2 mm2 can effectively induce the crystallization of lysozyme at a concentration as low as 5 mg/mL. The efficiency can be further improved by adding preformed protein clusters (∼300 nm in diameter) as inherent nucleation precursors, as demonstrated for ribonuclease A. This combined approach is easy to implement, highly compatible with existing technologies, and can be applied to other protein samples as well.
Collapse
Affiliation(s)
- Yen-Wei Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan
| | - Chien-Hsun Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan
| | - Yung-Lin Wang
- Genomics Research Center, Academia Sinica , Taipei 115, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica , Taipei 115, Taiwan
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan
- Genomics Research Center, Academia Sinica , Taipei 115, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology , Taipei 106, Taiwan
| |
Collapse
|
23
|
Boikova AS, Dyakova YA, Ilina KB, Konarev PV, Kryukova AE, Kuklin AI, Marchenkova MA, Nabatov BV, Blagov AE, Pisarevsky YV, Kovalchuk MV. Octamer formation in lysozyme solutions at the initial crystallization stage detected by small-angle neutron scattering. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:591-599. [PMID: 28695859 DOI: 10.1107/s2059798317007422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/19/2017] [Indexed: 11/10/2022]
Abstract
Solutions of lysozyme in heavy water were studied by small-angle neutron scattering (SANS) at concentrations of 40, 20 and 10 mg ml-1 with and without the addition of precipitant, and at temperatures of 10, 20 and 30°C. In addition to the expected protein monomers, dimeric and octameric species were identified in solutions at the maximum concentration and close to the optimal conditions for crystallization. An optimal temperature for octamer formation was identified and both deviation from this temperature and a reduction in protein concentration led to a significant decrease in the volume fractions of octamers detected. In the absence of precipitant, only monomers and a minor fraction of dimers are present in solution.
Collapse
Affiliation(s)
- Anastasiia S Boikova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre `Crystallography and Photonics', Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russian Federation
| | - Yulia A Dyakova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre `Crystallography and Photonics', Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russian Federation
| | - Kseniia B Ilina
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre `Crystallography and Photonics', Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russian Federation
| | - Petr V Konarev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre `Crystallography and Photonics', Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russian Federation
| | - Alyona E Kryukova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre `Crystallography and Photonics', Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russian Federation
| | - Alexandr I Kuklin
- The Joint Institute for Nuclear Research, Joliot-Curie str. 6, Dubna 141980, Russian Federation
| | - Margarita A Marchenkova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre `Crystallography and Photonics', Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russian Federation
| | - Boris V Nabatov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre `Crystallography and Photonics', Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russian Federation
| | - Alexandr E Blagov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre `Crystallography and Photonics', Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russian Federation
| | - Yurii V Pisarevsky
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre `Crystallography and Photonics', Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russian Federation
| | - Mikhail V Kovalchuk
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre `Crystallography and Photonics', Russian Academy of Sciences, Leninskii pr. 59, Moscow 119333, Russian Federation
| |
Collapse
|
24
|
Ferreira C, Barbosa S, Taboada P, Rocha FA, Damas AM, Martins PM. The nucleation of protein crystals as a race against time with on- and off-pathways. J Appl Crystallogr 2017. [DOI: 10.1107/s1600576717007312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
High supersaturation levels are a necessary but insufficient condition for the crystallization of purified proteins. Unlike most small molecules, proteins can take diverse aggregation pathways that make the outcome of crystallization assays quite unpredictable. Here, dynamic light scattering and optical microscopy were used to show that the nucleation of lysozyme crystals is preceded by an initial step of protein oligomerization and by the progressive formation of metastable clusters. Because these steps deplete the concentration of soluble monomers, the probability of obtaining protein crystals decreases as time progresses. Stochastic variations of the induction time are thus amplified to a point where fast crystallization can coexist with unyielding regimes in the same conditions. With an initial hydrodynamic radius of ∼100 nm, the metastable clusters also promote the formation of protein crystals through a mechanism of heterogeneous nucleation. Crystal growth (on-pathway) takes place in parallel with cluster growth (off-pathway). The Janus-faced influence of the mesoscopic clusters is beneficial when it accelerates the formation of the first precrystalline nuclei and is detrimental as it depletes the solution of protein ready to crystallize. Choosing the right balance between the two effects is critical for determining the success of protein crystallization trials. The results presented here suggest that a mild oligomerization degree promotes the formation of a small number of metastable clusters which then catalyze the nucleation of well differentiated crystals.
Collapse
|
25
|
The "Sticky Patch" Model of Crystallization and Modification of Proteins for Enhanced Crystallizability. Methods Mol Biol 2017; 1607:77-115. [PMID: 28573570 DOI: 10.1007/978-1-4939-7000-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Crystallization of macromolecules has long been perceived as a stochastic process, which cannot be predicted or controlled. This is consistent with another popular notion that the interactions of molecules within the crystal, i.e., crystal contacts, are essentially random and devoid of specific physicochemical features. In contrast, functionally relevant surfaces, such as oligomerization interfaces and specific protein-protein interaction sites, are under evolutionary pressures so their amino acid composition, structure, and topology are distinct. However, current theoretical and experimental studies are significantly changing our understanding of the nature of crystallization. The increasingly popular "sticky patch" model, derived from soft matter physics, describes crystallization as a process driven by interactions between select, specific surface patches, with properties thermodynamically favorable for cohesive interactions. Independent support for this model comes from various sources including structural studies and bioinformatics. Proteins that are recalcitrant to crystallization can be modified for enhanced crystallizability through chemical or mutational modification of their surface to effectively engineer "sticky patches" which would drive crystallization. Here, we discuss the current state of knowledge of the relationship between the microscopic properties of the target macromolecule and its crystallizability, focusing on the "sticky patch" model. We discuss state-of-the-art in silico methods that evaluate the propensity of a given target protein to form crystals based on these relationships, with the objective to design variants with modified molecular surface properties and enhanced crystallization propensity. We illustrate this discussion with specific cases where these approaches allowed to generate crystals suitable for structural analysis.
Collapse
|
26
|
Vorontsova MA, Vekilov PG, Maes D. Characterization of the diffusive dynamics of particles with time-dependent asymmetric microscopy intensity profiles. SOFT MATTER 2016; 12:6926-6936. [PMID: 27489111 DOI: 10.1039/c6sm00946h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We put forth an algorithm to track isolated micron-size solid and liquid particles that produce time-dependent asymmetric intensity patterns. This method quantifies the displacement of a particle in the image plane from the peak of a spatial cross-correlation function with a reference image. The peak sharpness results in subpixel resolution. We demonstrate the utility of the method for tracking liquid droplets with changing shapes and micron-size particles producing images with exaggerated asymmetry. We compare the accuracy of diffusivity determination with particles of known size by this method to that by common tracking techniques and demonstrate that our algorithm is superior. We address several open questions on the characterization of diffusive behaviors. We show that for particles, diffusing with a root-mean-square displacement of 0.6 pixel widths in the time between two successive recorded frames, more accurate diffusivity determinations result from mean squared displacement (MSD) for lag times up to 5 time intervals and that MSDs determined from non-overlapping displacements do not yield more accurate diffusivities. We discuss the optimal length of image sequences and demonstrate that lower frame rates do not affect the accuracy of the estimated diffusivity.
Collapse
Affiliation(s)
- Maria A Vorontsova
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA.
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA. and Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Dominique Maes
- Structural Biology Brussels, SBB, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
27
|
Byington MC, Safari MS, Conrad JC, Vekilov PG. Protein Conformational Flexibility Enables the Formation of Dense Liquid Clusters: Tests Using Solution Shear. J Phys Chem Lett 2016; 7:2339-2345. [PMID: 27267087 DOI: 10.1021/acs.jpclett.6b00822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
According to recently proposed two-step nucleation mechanisms, crystal nuclei form within preexisting dense liquid clusters. Clusters with radii about 100 nm, which capture from 10(-7) to 10(-3) of the total protein, have been observed with numerous proteins and shown to host crystal nucleation. Theories aiming to understand the mesoscopic size and small protein fraction held in the clusters have proposed that in solutions of single-chain proteins, the clusters consist of partially misfolded protein molecules. To test this conjecture, we perturb the protein conformation by shearing solutions of the protein lysozyme. We demonstrate that shear rates greater than a threshold applied for longer than 1 h reduce the volume of the cluster population. The likely mechanism of the observed response involves enhanced partial unfolding of lysozyme molecules, which exposes hydrophobic surfaces between the constituent domains to the aqueous solution.
Collapse
Affiliation(s)
- Michael C Byington
- Department of Chemical and Biomolecular Engineering and ‡Department of Chemistry, University of Houston , 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Mohammad S Safari
- Department of Chemical and Biomolecular Engineering and ‡Department of Chemistry, University of Houston , 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering and ‡Department of Chemistry, University of Houston , 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering and ‡Department of Chemistry, University of Houston , 4726 Calhoun Road, Houston, Texas 77204-4004, United States
| |
Collapse
|
28
|
Minton AP. Recent applications of light scattering measurement in the biological and biopharmaceutical sciences. Anal Biochem 2016; 501:4-22. [PMID: 26896682 PMCID: PMC5804501 DOI: 10.1016/j.ab.2016.02.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Allen P Minton
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, 20892, USA.
| |
Collapse
|
29
|
Safari MS, Vorontsova MA, Poling-Skutvik R, Vekilov PG, Conrad JC. Differential dynamic microscopy of weakly scattering and polydisperse protein-rich clusters. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042712. [PMID: 26565277 DOI: 10.1103/physreve.92.042712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 05/09/2023]
Abstract
Nanoparticle dynamics impact a wide range of biological transport processes and applications in nanomedicine and natural resource engineering. Differential dynamic microscopy (DDM) was recently developed to quantify the dynamics of submicron particles in solutions from fluctuations of intensity in optical micrographs. Differential dynamic microscopy is well established for monodisperse particle populations, but has not been applied to solutions containing weakly scattering polydisperse biological nanoparticles. Here we use bright-field DDM (BDDM) to measure the dynamics of protein-rich liquid clusters, whose size ranges from tens to hundreds of nanometers and whose total volume fraction is less than 10(-5). With solutions of two proteins, hemoglobin A and lysozyme, we evaluate the cluster diffusion coefficients from the dependence of the diffusive relaxation time on the scattering wave vector. We establish that for weakly scattering populations, an optimal thickness of the sample chamber exists at which the BDDM signal is maximized at the smallest sample volume. The average cluster diffusion coefficient measured using BDDM is consistently lower than that obtained from dynamic light scattering at a scattering angle of 90°. This apparent discrepancy is due to Mie scattering from the polydisperse cluster population, in which larger clusters preferentially scatter more light in the forward direction.
Collapse
Affiliation(s)
- Mohammad S Safari
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
| | - Maria A Vorontsova
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
| | - Peter G Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
- Department of Chemistry, University of Houston, Houston, Texas 77204-4004, USA
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
| |
Collapse
|
30
|
Maes D, Vorontsova MA, Potenza MAC, Sanvito T, Sleutel M, Giglio M, Vekilov PG. Do protein crystals nucleate within dense liquid clusters? Acta Crystallogr F Struct Biol Commun 2015; 71:815-22. [PMID: 26144225 PMCID: PMC4498701 DOI: 10.1107/s2053230x15008997] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/09/2015] [Indexed: 11/10/2022] Open
Abstract
Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10(-3) of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in lysozyme and glucose isomerase solutions are locations for crystal nucleation.
Collapse
Affiliation(s)
- Dominique Maes
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Maria A. Vorontsova
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | | | - Tiziano Sanvito
- Dipartimento de Fisica, Universita di Milano, 20133 Milano, Italy
| | - Mike Sleutel
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Marzio Giglio
- Dipartimento de Fisica, Universita di Milano, 20133 Milano, Italy
| | - Peter G. Vekilov
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
31
|
Shaw Stewart P, Mueller-Dieckmann J. Automation in biological crystallization. Acta Crystallogr F Struct Biol Commun 2014; 70:686-96. [PMID: 24915074 PMCID: PMC4051518 DOI: 10.1107/s2053230x14011601] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/20/2014] [Indexed: 11/11/2022] Open
Abstract
Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.
Collapse
Affiliation(s)
- Patrick Shaw Stewart
- Douglas Instruments Ltd, Douglas House, East Garston, Hungerford, Berkshire RG17 7HD, England
| | | |
Collapse
|