1
|
Ghevondyan D, Soghomonyan T, Hovhannisyan P, Margaryan A, Paloyan A, Birkeland NK, Antranikian G, Panosyan H. Detergent-resistant α-amylase derived from Anoxybacillus karvacharensis K1 and its production based on whey. Sci Rep 2024; 14:12682. [PMID: 38830978 DOI: 10.1038/s41598-024-63606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
In the field of biotechnology, the utilization of agro-industrial waste for generating high-value products, such as microbial biomass and enzymes, holds significant importance. This study aimed to produce recombinant α-amylase from Anoxybacillus karvacharensis strain K1, utilizing whey as an useful growth medium. The purified hexahistidine-tagged α-amylase exhibited remarkable homogeneity, boasting a specific activity of 1069.2 U mg-1. The enzyme displayed its peak activity at 55 °C and pH 6.5, retaining approximately 70% of its activity even after 3 h of incubation at 55 °C. Its molecular weight, as determined via SDS-PAGE, was approximately 69 kDa. The α-amylase demonstrated high activity against wheat starch (1648.8 ± 16.8 U mg-1) while exhibiting comparatively lower activity towards cyclodextrins and amylose (≤ 200.2 ± 16.2 U mg-1). It exhibited exceptional tolerance to salt, withstanding concentrations of up to 2.5 M. Interestingly, metal ions and detergents such as sodium dodecyl sulfate (SDS), Triton 100, Triton 40, and Tween 80, 5,5'-dithio-bis-[2-nitrobenzoic acid (DNTB), β-mercaptoethanol (ME), and dithiothreitol (DTT) had no significant inhibitory effect on the enzyme's activity, and the presence of CaCl2 (2 mM) even led to a slight activation of the recombinant enzyme (1.4 times). The Michaelis constant (Km) and maximum reaction rate (Vmax), were determined using soluble starch as a substrate, yielding values of 1.2 ± 0.19 mg mL-1 and 1580.3 ± 183.7 μmol mg-1 protein min-1, respectively. Notably, the most favorable conditions for biomass and recombinant α-amylase production were achieved through the treatment of acid whey with β-glucosidase for 24 h.
Collapse
Affiliation(s)
- Diana Ghevondyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
- Biology Faculty, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Tigran Soghomonyan
- Laboratory of Protein Technologies, Scientific and Production Center "Armbiotechnology" NAS RA, 0056, Yerevan, Armenia
| | - Pargev Hovhannisyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
- Department of Biological Sciences, University of Bergen, NO-5020, Bergen, Norway
- Department of Microbiology, Biocenter, University of Wuerzburg, 97074, Wuerzburg, Germany
| | - Armine Margaryan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
- Biology Faculty, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Ani Paloyan
- Laboratory of Protein Technologies, Scientific and Production Center "Armbiotechnology" NAS RA, 0056, Yerevan, Armenia
| | - Nils-Kåre Birkeland
- Department of Biological Sciences, University of Bergen, NO-5020, Bergen, Norway
| | - Garabed Antranikian
- Center of Biobased Solutions (CBBS), Institute of Technical Biocatalysis, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Hovik Panosyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia.
- Biology Faculty, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia.
| |
Collapse
|
2
|
Nie M, Khalid F, Hu Q, Khalid A, Wu Q, Huang S, Wang Z. Site-Directed Mutagenesis: Improving the Acid Resistance and Thermostability of Bacillus velezensis α-Amylase and Its Preliminary Feed Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10487-10496. [PMID: 38683727 DOI: 10.1021/acs.jafc.4c01630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The current study aimed to improve the acid resistance and thermostability of Bacillus velezensis α-amylase through site-directed mutagenesis, with a specific focus on its applicability to the feed industry. Four mutation sites, P546E, H572D, A614E, and K622E, were designed in the C domain of α-amylase, and three mutants, Mut1 (E), Mut2 (ED), and Mut3 (EDEE), were produced. The results showed that the specific activity of Mut3 was 50 U/mg higher than the original α-amylase (Ori) after incubation at 40 °C for 4 h. Compared to Ori, the acid resistance of Mut3 showed a twofold increase in specific activity at pH 2.0. Moreover, the results of preliminary feed hydrolysis were compared between Ori and Mut3 by designing three factors, three levels of orthogonal experiment for enzymatic hydrolysis time, feed quantity, and amount of amylase. It was observed that the enzymatic hydrolysis time and feed quantity showed an extremely significant difference (p < 0.01) in Mut3 compared to Ori. However, the amount of enzyme showed significant (p < 0.05) improvement in the enzymatic hydrolysis in Mut3 as compared to Ori. The study identified Mut3 as a promising candidate for the application of α-amylase in the feed industry.
Collapse
Affiliation(s)
- Ming Nie
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei 230036, Anhui, People's Republic of China
- School of Chemical and Biomolecular Engineering, Faculty of Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, Anhui, People's Republic of China
| | - Fatima Khalid
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Qian Hu
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Anam Khalid
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Qi Wu
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Shoujun Huang
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, No. 130, Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| |
Collapse
|
3
|
Hu YT, Hong XZ, Li HM, Yang JK, Shen W, Wang YW, Liu YH. Modifying the amino acids in conformational motion pathway of the α-amylase of Geobacillus stearothermophilus improved its activity and stability. Front Microbiol 2023; 14:1261245. [PMID: 38143856 PMCID: PMC10740195 DOI: 10.3389/fmicb.2023.1261245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Amino acids along the conformational motion pathway of the enzyme molecule correlated to its flexibility and rigidity. To enhance the enzyme activity and thermal stability, the motion pathway of Geobacillus stearothermophilus α-amylase has been identified and molecularly modified by using the neural relational inference model and deep learning tool. The significant differences in substrate specificity, enzymatic kinetics, optimal temperature, and thermal stability were observed among the mutants with modified amino acids along the pathway. Mutants especially the P44E demonstrated enhanced hydrolytic activity and catalytic efficiency (kcat/KM) than the wild-type enzyme to 95.0% and 93.8% respectively, with the optimum temperature increased to 90°C. This mutation from proline to glutamic acid has increased the number and the radius of the bottleneck of the channels, which might facilitate transporting large starch substrates into the enzyme. The mutation could also optimize the hydrogen bonding network of the catalytic center, and diminish the spatial hindering to the substrate entry and exit from the catalytic center.
Collapse
Affiliation(s)
- Yu-Ting Hu
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Xi-Zhi Hong
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Hui-Min Li
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jiang-Ke Yang
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Wei Shen
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Ya-Wei Wang
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yi-Han Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
4
|
Pijning T, te Poele EM, de Leeuw TC, Guskov A, Dijkhuizen L. Crystal Structure of 4,6-α-Glucanotransferase GtfC-ΔC from Thermophilic Geobacillus 12AMOR1: Starch Transglycosylation in Non-Permuted GH70 Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15283-15295. [PMID: 36442227 PMCID: PMC9732880 DOI: 10.1021/acs.jafc.2c06394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
GtfC-type 4,6-α-glucanotransferase (α-GT) enzymes from Glycoside Hydrolase Family 70 (GH70) are of interest for the modification of starch into low-glycemic index food ingredients. Compared to the related GH70 GtfB-type α-GTs, found exclusively in lactic acid bacteria (LAB), GtfCs occur in non-LAB, share low sequence identity, lack circular permutation of the catalytic domain, and feature a single-segment auxiliary domain IV and auxiliary C-terminal domains. Despite these differences, the first crystal structure of a GtfC, GbGtfC-ΔC from Geobacillus 12AMOR1, and the first one representing a non-permuted GH70 enzyme, reveals high structural similarity in the core domains with most GtfBs, featuring a similar tunneled active site. We propose that GtfC (and related GtfD) enzymes evolved from starch-degrading α-amylases from GH13 by acquiring α-1,6 transglycosylation capabilities, before the events that resulted in circular permutation of the catalytic domain observed in other GH70 enzymes (glucansucrases, GtfB-type α-GTs). AlphaFold modeling and sequence alignments suggest that the GbGtfC structure represents the GtfC subfamily, although it has a so far unique alternating α-1,4/α-1,6 product specificity, likely determined by residues near acceptor binding subsites +1/+2.
Collapse
Affiliation(s)
- Tjaard Pijning
- Biomolecular
X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology
Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Evelien M. te Poele
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- CarbExplore
Research B.V., Zernikelaan
8, 9747 AA Groningen, The Netherlands
| | - Tijn C. de Leeuw
- CarbExplore
Research B.V., Zernikelaan
8, 9747 AA Groningen, The Netherlands
| | - Albert Guskov
- Biomolecular
X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology
Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- CarbExplore
Research B.V., Zernikelaan
8, 9747 AA Groningen, The Netherlands
| |
Collapse
|
5
|
Temperature and pH Profiling of Extracellular Amylase from Antarctic and Arctic Soil Microfungi. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While diversity studies and screening for enzyme activities are important elements of understanding fungal roles in the soil ecosystem, extracting and purifying the target enzyme from the fungal cellular system is also required to characterize the enzyme. This is, in particular, necessary before developing the enzyme for industrial-scale production. In the present study, partially purified α-amylase was obtained from strains of Pseudogymnoascus sp. obtained from Antarctic and Arctic locations. Partially purified α-amylases from these polar fungi exhibited very similar characteristics, including being active at 15 °C, although having a small difference in optimum pH. Both fungal taxa are good candidates for the potential application of cold-active enzymes in biotechnological industries, and further purification and characterization steps are now required. The α-amylases from polar fungi are attractive in terms of industrial development because they are active at lower temperatures and acidic pH, thus potentially creating energy and cost savings. Furthermore, they prevent the production of maltulose, which is an undesirable by-product often formed under alkaline conditions. Psychrophilic amylases from the polar Pseudogymnoascus sp. investigated in the present study could provide a valuable future contribution to biotechnological applications.
Collapse
|
6
|
Lim SJ, Oslan SN. Native to designed: microbial -amylases for industrial applications. PeerJ 2021; 9:e11315. [PMID: 34046253 PMCID: PMC8139272 DOI: 10.7717/peerj.11315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background -amylases catalyze the endo-hydrolysis of -1,4-D-glycosidic bonds in starch into smaller moieties. While industrial processes are usually performed at harsh conditions, -amylases from mainly the bacteria, fungi and yeasts are preferred for their stabilities (thermal, pH and oxidative) and specificities (substrate and product). Microbial -amylases can be purified and characterized for industrial applications. While exploring novel enzymes with these properties in the nature is time-costly, the advancements in protein engineering techniques including rational design, directed evolution and others have privileged their modifications to exhibit industrially ideal traits. However, the commentary on the strategies and preferably mutated residues are lacking, hindering the design of new mutants especially for enhanced substrate specificity and oxidative stability. Thus, our review ensures wider accessibility of the previously reported experimental findings to facilitate the future engineering work. Survey methodology and objectives A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries. Conclusions Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Farooq MA, Ali S, Hassan A, Tahir HM, Mumtaz S, Mumtaz S. Biosynthesis and industrial applications of α-amylase: a review. Arch Microbiol 2021; 203:1281-1292. [PMID: 33481073 DOI: 10.1007/s00203-020-02128-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023]
Abstract
Amylase is amongst the most indispensable enzymes that have a large number of applications in laboratories and industries. Mostly, α-amylase is synthesized from microbes such as bacteria, fungi and yeast. Due to the high demand for α-amylase, its synthesis can be enhanced using recombinant DNA technology, different fermentation methods, less expensive and good carbon and nitrogen sources, and optimizing the various parameters during fermentation, e.g., temperature, pH and fermentation duration. Various methods are used to measure the production and activity of synthesized α-amylase like iodine, DNS, NS and dextrinizing methods. The activity of crude α-amylase can be elevated to the maximum level by optimizing the temperature and pH. Some metals also interact with α-amylase and increase its activity like K+, Na+, Mg2+ and Ca2+. Some industries such as starch conversion, food, detergent, paper, textile industries and fuel alcohol production extensively utilize α-amylase for their various purposes.
Collapse
Affiliation(s)
- Muhammad Adeel Farooq
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Ali Hassan
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Hafiz Muhammad Tahir
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Samaira Mumtaz
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shumaila Mumtaz
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
8
|
Božić N, Rozeboom HJ, Lončar N, Slavić MŠ, Janssen DB, Vujčić Z. Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase. Int J Biol Macromol 2020; 165:1529-1539. [PMID: 33058974 DOI: 10.1016/j.ijbiomac.2020.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022]
Abstract
α-Amylase from Bacillus paralicheniformis (BliAmy), belonging to GH13_5 subfamily of glycoside hydrolases, was proven to be a highly efficient raw starch digesting enzyme. The ability of some α-amylases to hydrolyze raw starch is related to the existence of surface binding sites (SBSs) for polysaccharides that can be distant from the active site. Crystallographic studies performed on BliAmy in the apo form and of enzyme bound with different oligosaccharides and oligosaccharide precursors revealed binding of these ligands to one SBS with two amino acids F257 and Y358 mainly involved in complex formation. The role of this SBS in starch binding and degradation was probed by designing enzyme variants mutated in this region (F257A and Y358A). Kinetic studies with different substrates show that starch binding through the SBS is disrupted in the mutants and that F257 and Y358 contributed cumulatively to binding and hydrolysis. Mutation of both sites (F257A/Y358A) resulted in a 5-fold lower efficacy with raw starch as substrate and at least 5.5-fold weaker binding compared to the wild type BliAmy, suggesting that the ability of BliAmy to hydrolyze raw starch with high efficiency is related to the level of its adsorption onto starch granules.
Collapse
Affiliation(s)
- Nataša Božić
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Henriëtte J Rozeboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands
| | - Nikola Lončar
- GECCO Biotech, Nijenborgh 4, Groningen 9747AG, the Netherlands
| | - Marinela Šokarda Slavić
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dick B Janssen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands
| | - Zoran Vujčić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Structure Prediction of a Thermostable SR74 α-Amylase from Geobacillus stearothermophilus Expressed in CTG-Clade Yeast Meyerozyma guilliermondii Strain SO. Catalysts 2020. [DOI: 10.3390/catal10091059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
α-amylase which catalyzes the hydrolysis of α-1,4-glycosidic bonds in starch have frequently been cloned into various microbial workhorses to yield a higher recombinant titer. A thermostable SR74 α-amylase from Geobacillus stearothermophilus was found to have a huge potential in detergent industries due to its thermostability properties. The gene was cloned into a CTG-clade yeast Meyerozyma guilliermondii strain SO. However, the CUG ambiguity present in the strain SO has possibly altered the amino acid residues in SR74 amylase wild type (WT) encoded by CUG the codon from the leucine to serine. From the multiple sequence alignment, six mutations were found in recombinant SR74 α-amylase (rc). Their effects on SR74 α-amylase structure and function remain unknown. Herein, we predicted the structures of the SR74 amylases (WT and rc) using the template 6ag0.1.A (PDB ID: 6ag0). We sought to decipher the possible effects of CUG ambiguity in strain SO via in silico analysis. They are structurally identical, and the metal triad (CaI–CaIII) might contribute to the thermostability while CaIV was attributed to substrate specificity. Since the pairwise root mean square deviation (RMSD) between the WT and rc SR74 α-amylase was lower than the template, we suggest that the biochemical properties of rc SR74 α-amylase were better deduced from its WT, especially its thermostability.
Collapse
|
10
|
Low molecular weight alkaline thermostable α-amylase from Geobacillus sp. nov. Heliyon 2019; 5:e02171. [PMID: 31388592 PMCID: PMC6667821 DOI: 10.1016/j.heliyon.2019.e02171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/30/2019] [Accepted: 07/24/2019] [Indexed: 01/11/2023] Open
Abstract
Industrial demands for enzymes that are stable in a broad range of conditions are increasing. Such enzymes, one of which is α-amylase, could be produced by extremophiles. This study reports a thermostable α-amylase produced by a newly isolated Geobacillus sp. nov. from a geothermal area. The phylogenetic analysis of the 16S rRNA gene showed that the isolate formed a separate branch with 95% homology to Geobacillus sp. After precipitation using ammonium sulphate followed by ion-exchange chromatography, the enzyme produced a specific activity of 25.1 (U/mg) with a purity of 6.5-fold of the crude extract. The molecular weight of the enzyme was approximately 12.2 kDa. The optimum activity was observed at 75 °C and pH 8. The activity increased in the presence of Ba2+ and Fe2+ but decreased in the presence of K+ and Mg2+. Ca2+ and Mn2+ increased the activity slightly. The activity completely diminished with the addition of Cu2+. EDTA and PMSF also sharply reduced enzyme activity. Although the stability was moderate, the low molecular weight could be an important feature for its future applications.
Collapse
|
11
|
Xie X, Li Y, Ban X, Zhang Z, Gu Z, Li C, Hong Y, Cheng L, Jin T, Li Z. Crystal structure of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Int J Biol Macromol 2019; 138:394-402. [PMID: 31325505 DOI: 10.1016/j.ijbiomac.2019.07.104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022]
Abstract
To better understand structure-function relationships, an X-ray crystal structure of the maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04 (Bst-MFA) with bound acarbose has been determined at 2.2 Å. The structure revealed a classical three-domain fold stabilized by four calcium ions, in which CaI-CaIII form an unprecedented linear metal triad in the interior of domain B. Catalytic residues are deduced to be two aspartic acids and one glutamic acid (Asp234, Glu264, Asp331), and the acarbose is bound to surrounding amino acid residues, mainly through extensive hydrogen bonds. Furthermore, analysis of the structure indicates the existence of at least 8 subsites in Bst-MFA, six glycone sites (-6, -5, -4, -3, -2, -1) and two aglycone sites (+1, +2). Subsite +3 remains to be further explored. Sugar-binding subsites contribute to further presentation of the oligosaccharide-binding mode, which explains the product specificity of Bst-MFA to some extent. In addition, we propose a mechanism by which maltooligosaccharide-forming amylases produce particular maltooligosaccharide products, a result different from that seen with typical α-amylases. Finally, the three-dimensional structure of Bst-MFA complexed with acarbose provides the basis for further studies, designed to increase product specificity.
Collapse
Affiliation(s)
- Xiaofang Xie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuelong Li
- School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, People's Republic of China.
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ziqian Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Tengchuan Jin
- School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, People's Republic of China; Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
12
|
Agirre J, Moroz O, Meier S, Brask J, Munch A, Hoff T, Andersen C, Wilson KS, Davies GJ. The structure of the AliC GH13 α-amylase from Alicyclobacillus sp. reveals the accommodation of starch branching points in the α-amylase family. Acta Crystallogr D Struct Biol 2019; 75:1-7. [PMID: 30644839 PMCID: PMC6333287 DOI: 10.1107/s2059798318014900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/21/2018] [Indexed: 10/06/2023] Open
Abstract
α-Amylases are glycoside hydrolases that break the α-1,4 bonds in starch and related glycans. The degradation of starch is rendered difficult by the presence of varying degrees of α-1,6 branch points and their possible accommodation within the active centre of α-amylase enzymes. Given the myriad industrial uses for starch and thus also for α-amylase-catalysed starch degradation and modification, there is considerable interest in how different α-amylases might accommodate these branches, thus impacting on the potential processing of highly branched post-hydrolysis remnants (known as limit dextrins) and societal applications. Here, it was sought to probe the branch-point accommodation of the Alicyclobacillus sp. CAZy family GH13 α-amylase AliC, prompted by the observation of a molecule of glucose in a position that may represent a branch point in an acarbose complex solved at 2.1 Å resolution. Limit digest analysis by two-dimensional NMR using both pullulan (a regular linear polysaccharide of α-1,4, α-1,4, α-1,6 repeating trisaccharides) and amylopectin starch showed how the Alicyclobacillus sp. enzyme could accept α-1,6 branches in at least the -2, +1 and +2 subsites, consistent with the three-dimensional structures with glucosyl moieties in the +1 and +2 subsites and the solvent-exposure of the -2 subsite 6-hydroxyl group. Together, the work provides a rare insight into branch-point acceptance in these industrial catalysts.
Collapse
Affiliation(s)
- Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Olga Moroz
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jesper Brask
- Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | - Astrid Munch
- Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | - Tine Hoff
- Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | | | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England
| |
Collapse
|
13
|
Lebre PH, Aliyu H, De Maayer P, Cowan DA. In silico characterization of the global Geobacillus and Parageobacillus secretome. Microb Cell Fact 2018; 17:156. [PMID: 30285747 PMCID: PMC6171300 DOI: 10.1186/s12934-018-1005-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
Background Geobacillus and Parageobacillus are two ecologically diverse thermophilic genera within the phylum Firmicutes. These taxa have long been of biotechnological interest due to their ability to secrete thermostable enzymes and other biomolecules that have direct applications in various industrial and clinical fields. Despite the commercial and industrial interest in these microorganisms, the full scope of the secreted protein, i.e. the secretome, of Geobacillus and Parageobacillus species remains largely unexplored, with most studies focusing on single enzymes. A genome-wide exploration of the global secretome can provide a platform for understanding the extracellular functional “protein cloud” and the roles that secreted proteins play in the survival and adaptation of these biotechnologically relevant organisms. Results In the present study, the global secretion profile of 64 Geobacillus and Parageobacillus strains, comprising 772 distinct proteins, was predicted using comparative genomic approaches. Thirty-one of these proteins are shared across all strains used in this study and function in cell-wall/membrane biogenesis as well as transport and metabolism of carbohydrates, amino acids and inorganic ions. An analysis of the clustering patterns of the secretomes of the 64 strains according to shared functional orthology revealed a correlation between the secreted profiles of different strains and their phylogeny, with Geobacillus and Parageobacillus species forming two distinct functional clades. Conclusions The in silico characterization of the global secretome revealed a metabolically diverse set of secreted proteins, which include proteases, glycoside hydrolases, nutrient binding proteins and toxins. Electronic supplementary material The online version of this article (10.1186/s12934-018-1005-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Habibu Aliyu
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Pieter De Maayer
- School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
14
|
Li Z, Duan X, Chen S, Wu J. Improving the reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase through stabilizing a long loop in domain B. PLoS One 2017; 12:e0173187. [PMID: 28253342 PMCID: PMC5333897 DOI: 10.1371/journal.pone.0173187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/16/2017] [Indexed: 11/29/2022] Open
Abstract
The reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase were improved through site-directed mutagenesis. By using multiple sequence alignment and PoPMuSiC algorithm, Ser187 and Asn188, which located within a long loop in Domain B of Bacillus licheniformis α-amylase, were selected for mutation. In addition, Ala269, which is adjacent to Ser187 and Asn188, was also investigated. Seven mutants carrying the mutations S187D, N188T, N188S, A269K, A269K/S187D, S187D/N188T, and A269K/S187D/N188T were generated and characterized. The most thermostable mutant, A269K/S187D/N188T, exhibited a 9-fold improvement in half-life at 95°C and pH 5.5, compared with that of the wild-type enzyme. Mutant A269K/S187D/N188T also exhibited improved catalytic efficiency. The catalytic efficiency of mutant A269K/S187D/N188T reached 5.87×103±0.17 g·L-1·s-1 at pH 5.5, which is 1.84-fold larger than the corresponding value determined for the wild-type enzyme. Furthermore, the structure analysis showed that immobilization of the loop containing Ser187 and Asn188 plays a significant role in developing the properties of Bacillus licheniformis α-amylase.
Collapse
Affiliation(s)
- Zhu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xuguo Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Department of Food Science and Engineering, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Božić N, Lončar N, Slavić MŠ, Vujčić Z. Raw starch degrading α-amylases: an unsolved riddle. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/amylase-2017-0002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractStarch is an important food ingredient and a substrate for the production of many industrial products. Biological and industrial processes involve hydrolysis of raw starch, such as digestion by humans and animals, starch metabolism in plants, and industrial starch conversion for obtaining glucose, fructose and maltose syrup or bioethanol. Raw starch degrading α-amylases (RSDA) can directly degrade raw starch below the gelatinization temperature of starch. Knowledge of the structures and properties of starch and RSDA has increased significantly in recent years. Understanding the relationships between structural peculiarities and properties of RSDA is a prerequisite for efficient application in different aspects of human benefit from health to the industry. This review summarizes recent advances on RSDA research with emphasizes on representatives of glycoside hydrolase family GH13. Definite understanding of raw starch digesting ability is yet to come with accumulating structural and functional studies of RSDA.
Collapse
|
16
|
Gao Y, Huang M, Sun X, Zhang X, Zhang Y, Zhou X, Cai M. Single-site mutation of C363G or N463T strengthens thermostability improvement of IG181–182 deleted acidic α-amylase from deep-sea thermophile Geobacillus sp. FOOD BIOTECHNOL 2017. [DOI: 10.1080/08905436.2016.1276462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yanyun Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Mengmeng Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoyue Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaoxu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Møller MS, Svensson B. Structural biology of starch-degrading enzymes and their regulation. Curr Opin Struct Biol 2016; 40:33-42. [DOI: 10.1016/j.sbi.2016.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 02/05/2023]
|
18
|
Abstract
The genus Geobacillus comprises a group of Gram-positive thermophilic bacteria, including obligate aerobes, denitrifiers, and facultative anaerobes that can grow over a range of 45-75°C. Originally classified as group five Bacillus spp., strains of Bacillus stearothermophilus came to prominence as contaminants of canned food and soon became the organism of choice for comparative studies of metabolism and enzymology between mesophiles and thermophiles. More recently, their catabolic versatility, particularly in the degradation of hemicellulose and starch, and rapid growth rates have raised their profile as organisms with potential for second-generation (lignocellulosic) biorefineries for biofuel or chemical production. The continued development of genetic tools to facilitate both fundamental investigation and metabolic engineering is now helping to realize this potential, for both metabolite production and optimized catabolism. In addition, this catabolic versatility provides a range of useful thermostable enzymes for industrial application. A number of genome-sequencing projects have been completed or are underway allowing comparative studies. These reveal a significant amount of genome rearrangement within the genus, the presence of large genomic islands encompassing all the hemicellulose utilization genes and a genomic island incorporating a set of long chain alkane monooxygenase genes. With G+C contents of 45-55%, thermostability appears to derive in part from the ability to synthesize protamine and spermine, which can condense DNA and raise its Tm.
Collapse
|