1
|
Baroni L, Abreu-Filho PG, Pereira LM, Nagl M, Yatsuda AP. Recombinant actin-depolymerizing factor of the apicomplexan Neospora caninum (NcADF) is susceptible to oxidation. Front Cell Infect Microbiol 2022; 12:952720. [PMID: 36601306 PMCID: PMC9806845 DOI: 10.3389/fcimb.2022.952720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
Neospora caninum is a member of Apicomplexa Phylum and the causative agent of neosporosis, a disease responsible for abortions in cattle. Apicomplexan parasites have a limited set of actin-binding proteins conducting the regulation of the dynamics of nonconventional actin. The parasite actin-based motility is implicated in the parasite invasion process in the host cell. Once no commercial strategy for the neosporosis control is available, the interference in the parasite actin function may result in novel drug targets. Actin-depolymerization factor (ADF) is a member of the ADF/cofilin family, primarily known for its function in actin severing and depolymerization. ADF/cofilins are versatile proteins modulated by different mechanisms, including reduction and oxidation. In apicomplexan parasites, the mechanisms involved in the modulation of ADF function are barely explored and the effects of oxidation in the protein are unknown so far. In this study, we used the oxidants N-chlorotaurine (NCT) and H2O2 to investigate the susceptibility of the recombinant N. caninum ADF (NcADF) to oxidation. After exposing the protein to either NCT or H2O2, the dimerization status and cysteine residue oxidation were determined. Also, the interference of NcADF oxidation in the interaction with actin was assessed. The treatment of the recombinant protein with oxidants reversibly induced the production of dimers, indicating that disulfide bonds between NcADF cysteine residues were formed. In addition, the exposure of NcADF to NCT resulted in more efficient oxidation of the cysteine residues compared to H2O2. Finally, the oxidation of NcADF by NCT reduced the ability of actin-binding and altered the function of NcADF in actin polymerization. Altogether, our results clearly show that recombinant NcADF is sensitive to redox conditions, indicating that the function of this protein in cellular processes involving actin dynamics may be modulated by oxidation.
Collapse
Affiliation(s)
- Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Péricles Gama Abreu-Filho
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Markus Nagl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ana Patricia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil,*Correspondence: Ana Patricia Yatsuda,
| |
Collapse
|
2
|
Vahokoski J, Calder LJ, Lopez AJ, Molloy JE, Kursula I, Rosenthal PB. High-resolution structures of malaria parasite actomyosin and actin filaments. PLoS Pathog 2022; 18:e1010408. [PMID: 35377914 PMCID: PMC9037914 DOI: 10.1371/journal.ppat.1010408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/25/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022] Open
Abstract
Malaria is responsible for half a million deaths annually and poses a huge economic burden on the developing world. The mosquito-borne parasites (Plasmodium spp.) that cause the disease depend upon an unconventional actomyosin motor for both gliding motility and host cell invasion. The motor system, often referred to as the glideosome complex, remains to be understood in molecular terms and is an attractive target for new drugs that might block the infection pathway. Here, we present the high-resolution structure of the actomyosin motor complex from Plasmodium falciparum. The complex includes the malaria parasite actin filament (PfAct1) complexed with the class XIV myosin motor (PfMyoA) and its two associated light-chains. The high-resolution core structure reveals the PfAct1:PfMyoA interface in atomic detail, while at lower-resolution, we visualize the PfMyoA light-chain binding region, including the essential light chain (PfELC) and the myosin tail interacting protein (PfMTIP). Finally, we report a bare PfAct1 filament structure at improved resolution.
Collapse
Affiliation(s)
- Juha Vahokoski
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lesley J. Calder
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Andrea J. Lopez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Justin E. Molloy
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
3
|
Structure and function of an atypical homodimeric actin capping protein from the malaria parasite. Cell Mol Life Sci 2022; 79:125. [PMID: 35132495 PMCID: PMC8821504 DOI: 10.1007/s00018-021-04032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022]
Abstract
Apicomplexan parasites, such as Plasmodium spp., rely on an unusual actomyosin motor, termed glideosome, for motility and host cell invasion. The actin filaments are maintained by a small set of essential regulators, which provide control over actin dynamics in the different stages of the parasite life cycle. Actin filament capping proteins (CPs) are indispensable heterodimeric regulators of actin dynamics. CPs have been extensively characterized in higher eukaryotes, but their role and functional mechanism in Apicomplexa remain enigmatic. Here, we present the first crystal structure of a homodimeric CP from the malaria parasite and compare the homo- and heterodimeric CP structures in detail. Despite retaining several characteristics of a canonical CP, the homodimeric Plasmodium berghei (Pb)CP exhibits crucial differences to the canonical heterodimers. Both homo- and heterodimeric PbCPs regulate actin dynamics in an atypical manner, facilitating rapid turnover of parasite actin, without affecting its critical concentration. Homo- and heterodimeric PbCPs show partially redundant activities, possibly to rescue actin filament capping in life cycle stages where the β-subunit is downregulated. Our data suggest that the homodimeric PbCP also influences actin kinetics by recruiting lateral actin dimers. This unusual function could arise from the absence of a β-subunit, as the asymmetric PbCP homodimer lacks structural elements essential for canonical barbed end interactions suggesting a novel CP binding mode. These findings will facilitate further studies aimed at elucidating the precise actin filament capping mechanism in Plasmodium.
Collapse
|
4
|
Das S, Stortz JF, Meissner M, Periz J. The multiple functions of actin in apicomplexan parasites. Cell Microbiol 2021; 23:e13345. [PMID: 33885206 DOI: 10.1111/cmi.13345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
The cytoskeletal protein actin is highly abundant and conserved in eukaryotic cells. It occurs in two different states- the globular (G-actin) form, which can polymerise into the filamentous (F-actin) form, fulfilling various critical functions including cytokinesis, cargo trafficking and cellular motility. In higher eukaryotes, there are several actin isoforms with nearly identical amino acid sequences. Despite the high level of amino acid identity, they display regulated expression patterns and unique non-redundant roles. The number of actin isoforms together with conserved sequences may reflect the selective pressure exerted by scores of actin binding proteins (ABPs) in higher eukaryotes. In contrast, in many protozoans such as apicomplexan parasites which possess only a few ABPs, the regulatory control of actin and its multiple functions are still obscure. Here, we provide a summary of the regulation and biological functions of actin in higher eukaryotes and compare it with the current knowledge in apicomplexans. We discuss future experiments that will help us understand the multiple, critical roles of this fascinating system in apicomplexans.
Collapse
Affiliation(s)
- Sujaan Das
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Johannes Felix Stortz
- Department Metabolism of Infection, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Markus Meissner
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Javier Periz
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
5
|
Wilkie J, Cameron TC, Beddoe T. Characterization of a profilin-like protein from Fasciola hepatica. PeerJ 2020; 8:e10503. [PMID: 33354436 PMCID: PMC7727368 DOI: 10.7717/peerj.10503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022] Open
Abstract
Fasciola hepatica is the causative agent of fasciolosis, an important disease of humans and livestock around the world. There is an urgent requirement for novel treatments for F. hepatica due to increasing reports of drug resistance appearing around the world. The outer body covering of F. hepatica is referred to as the tegument membrane which is of crucial importance for the modulation of the host response and parasite survival; therefore, tegument proteins may represent novel drug or vaccine targets. Previous studies have identified a profilin-like protein in the tegument of F. hepatica. Profilin is a regulatory component of the actin cytoskeleton in all eukaryotic cells, and in some protozoan parasites, profilin has been shown to drive a potent IL-12 response. This study characterized the identified profilin form F. hepatica (termed FhProfilin) for the first time. Recombinant expression of FhProfilin resulted in a protein approximately 14 kDa in size which was determined to be dimeric like other profilins isolated from a range of eukaryotic organisms. FhProfilin was shown to bind poly-L-proline (pLp) and sequester actin monomers which is characteristic of the profilin family; however, there was no binding of FhProfilin to phosphatidylinositol lipids. Despite FhProfilin being a component of the tegument, it was shown not to generate an immune response in experimentally infected sheep or cattle.
Collapse
Affiliation(s)
- Jessica Wilkie
- Centre for Livestock Interactions with Pathogens (CLiP), La Trobe University, Bundoora, VIC, Australia.,Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Bundoora, VIC, Australia
| | - Timothy C Cameron
- Centre for Livestock Interactions with Pathogens (CLiP), La Trobe University, Bundoora, VIC, Australia.,Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Bundoora, VIC, Australia
| | - Travis Beddoe
- Centre for Livestock Interactions with Pathogens (CLiP), La Trobe University, Bundoora, VIC, Australia.,Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
6
|
Bendes ÁÁ, Chatterjee M, Götte B, Kursula P, Kursula I. Functional homo- and heterodimeric actin capping proteins from the malaria parasite. Biochem Biophys Res Commun 2020; 525:681-686. [PMID: 32139121 DOI: 10.1016/j.bbrc.2020.02.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/23/2022]
Abstract
Actin capping proteins belong to the core set of proteins minimally required for actin-based motility and are present in virtually all eukaryotic cells. They bind to the fast-growing barbed end of an actin filament, preventing addition and loss of monomers, thus restricting growth to the slow-growing pointed end. Actin capping proteins are usually heterodimers of two subunits. The Plasmodium orthologs are an exception, as their α subunits are able to form homodimers. We show here that, while the β subunit alone is unstable, the α subunit of the Plasmodium actin capping protein forms functional homo- and heterodimers. This implies independent functions for the αα homo- and αβ heterodimers in certain stages of the parasite life cycle. Structurally, the homodimers resemble canonical αβ heterodimers, although certain rearrangements at the interface must be required. Both homo- and heterodimers bind to actin filaments in a roughly equimolar ratio, indicating they may also bind other sites than barbed ends.
Collapse
Affiliation(s)
- Ábris Ádám Bendes
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.
| | - Moon Chatterjee
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and DESY, Notkestrasse 85, 22607, Hamburg, Germany.
| | - Benjamin Götte
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and DESY, Notkestrasse 85, 22607, Hamburg, Germany.
| | - Petri Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, 5009, Norway.
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland; Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and DESY, Notkestrasse 85, 22607, Hamburg, Germany; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, 5009, Norway.
| |
Collapse
|
7
|
Wall RJ, Zeeshan M, Katris NJ, Limenitakis R, Rea E, Stock J, Brady D, Waller RF, Holder AA, Tewari R. Systematic analysis of Plasmodium myosins reveals differential expression, localisation, and function in invasive and proliferative parasite stages. Cell Microbiol 2019; 21:e13082. [PMID: 31283102 PMCID: PMC6851706 DOI: 10.1111/cmi.13082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 11/28/2022]
Abstract
The myosin superfamily comprises of actin-dependent eukaryotic molecular motors important in a variety of cellular functions. Although well studied in many systems, knowledge of their functions in Plasmodium, the causative agent of malaria, is restricted. Previously, six myosins were identified in this genus, including three Class XIV myosins found only in Apicomplexa and some Ciliates. The well characterized MyoA is a Class XIV myosin essential for gliding motility and invasion. Here, we characterize all other Plasmodium myosins throughout the parasite life cycle and show that they have very diverse patterns of expression and cellular location. MyoB and MyoE, the other two Class XIV myosins, are expressed in all invasive stages, with apical and basal locations, respectively. Gene deletion revealed that MyoE is involved in sporozoite traversal, MyoF and MyoK are likely essential in the asexual blood stages, and MyoJ and MyoB are not essential. Both MyoB and its essential light chain (MCL-B) are localised at the apical end of ookinetes but expressed at completely different time points. This work provides a better understanding of the role of actomyosin motors in Apicomplexan parasites, particularly in the motile and invasive stages of Plasmodium during sexual and asexual development within the mosquito.
Collapse
Affiliation(s)
- Richard J. Wall
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | | | | | - Edward Rea
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Jessica Stock
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Declan Brady
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| | - Ross F. Waller
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | - Rita Tewari
- School of Life Sciences, Queens Medical CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
8
|
Unusual dynamics of the divergent malaria parasite PfAct1 actin filament. Proc Natl Acad Sci U S A 2019; 116:20418-20427. [PMID: 31548388 DOI: 10.1073/pnas.1906600116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gliding motility and host cell invasion by the apicomplexan parasite Plasmodium falciparum (Pf), the causative agent of malaria, is powered by a macromolecular complex called the glideosome that lies between the parasite plasma membrane and the inner membrane complex. The glideosome core consists of a single-headed class XIV myosin PfMyoA and a divergent actin PfAct1. Here we use total internal reflection fluorescence microscopy to visualize growth of individual unstabilized PfAct1 filaments as a function of time, an approach not previously used with this actin isoform. Although PfAct1 was thought to be incapable of forming long filaments, filaments grew as long as 30 µm. Polymerization occurs via a nucleation-elongation mechanism, but with an ∼4 µM critical concentration, an order-of-magnitude higher than for skeletal actin. Protomers disassembled from both the barbed and pointed ends of the actin filament with similar fast kinetics of 10 to 15 subunits/s. Rapid treadmilling, where the barbed end of the filament grows and the pointed end shrinks while maintaining an approximately constant filament length, was visualized near the critical concentration. Once ATP has been hydrolyzed to ADP, the filament becomes very unstable, resulting in total dissolution in <40 min. Dynamics at the filament ends are suppressed in the presence of inorganic phosphate or more efficiently by BeFX A chimeric PfAct1 with a mammalian actin D-loop forms a more stable filament. These unusual dynamic properties distinguish PfAct1 from more canonical actins, and likely contribute to the difficultly in visualizing PfAct1 filaments in the parasite.
Collapse
|
9
|
Stortz JF, Del Rosario M, Singer M, Wilkes JM, Meissner M, Das S. Formin-2 drives polymerisation of actin filaments enabling segregation of apicoplasts and cytokinesis in Plasmodium falciparum. eLife 2019; 8:e49030. [PMID: 31322501 PMCID: PMC6688858 DOI: 10.7554/elife.49030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
In addition to its role in erythrocyte invasion, Plasmodium falciparum actin is implicated in endocytosis, cytokinesis and inheritance of the chloroplast-like organelle called the apicoplast. Previously, the inability to visualise filamentous actin (F-actin) dynamics had restricted the characterisation of both F-actin and actin regulatory proteins, a limitation we recently overcame for Toxoplasma (Periz et al, 2017). Here, we have expressed and validated actin-binding chromobodies as F-actin-sensors in Plasmodium falciparum and characterised in-vivo actin dynamics. F-actin could be chemically modulated, and genetically disrupted upon conditionally deleting actin-1. In a comparative approach, we demonstrate that Formin-2, a predicted nucleator of F-actin, is responsible for apicoplast inheritance in both Plasmodium and Toxoplasma, and additionally mediates efficient cytokinesis in Plasmodium. Finally, time-averaged local intensity measurements of F-actin in Toxoplasma conditional mutants revealed molecular determinants of spatiotemporally regulated F-actin flow. Together, our data indicate that Formin-2 is the primary F-actin nucleator during apicomplexan intracellular growth, mediating multiple essential functions.
Collapse
Affiliation(s)
- Johannes Felix Stortz
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Mario Del Rosario
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Mirko Singer
- Faculty of Veterinary Medicine, Experimental ParasitologyLudwig Maximilian UniversityMunichGermany
| | - Jonathan M Wilkes
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
| | - Markus Meissner
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
- Faculty of Veterinary Medicine, Experimental ParasitologyLudwig Maximilian UniversityMunichGermany
| | - Sujaan Das
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & InflammationUniversity of GlasgowGlasgowUnited Kingdom
- Faculty of Veterinary Medicine, Experimental ParasitologyLudwig Maximilian UniversityMunichGermany
| |
Collapse
|
10
|
Hoppe CM, Albuquerque-Wendt A, Bandini G, Leon DR, Shcherbakova A, Buettner FFR, Izquierdo L, Costello CE, Bakker H, Routier FH. Apicomplexan C-Mannosyltransferases Modify Thrombospondin Type I-containing Adhesins of the TRAP Family. Glycobiology 2018; 28:333-343. [PMID: 29432542 DOI: 10.1093/glycob/cwy013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/06/2018] [Indexed: 11/13/2022] Open
Abstract
In many metazoan species, an unusual type of protein glycosylation, called C-mannosylation, occurs on adhesive thrombospondin type 1 repeats (TSRs) and type I cytokine receptors. This modification has been shown to be catalyzed by the Caenorhabditis elegans DPY-19 protein and orthologues of the encoding gene were found in the genome of apicomplexan parasites. Lately, the micronemal adhesin thrombospondin-related anonymous protein (TRAP) was shown to be C-hexosylated in Plasmodium falciparum sporozoites. Here, we demonstrate that also the micronemal protein MIC2 secreted by Toxoplasma gondii tachyzoites is C-hexosylated. When expressed in a mammalian cell line deficient in C-mannosylation, P. falciparum and T. gondii Dpy19 homologs were able to modify TSR domains of the micronemal adhesins TRAP/MIC2 family involved in parasite motility and invasion. In vitro, the apicomplexan enzymes can transfer mannose to a WXXWXXC peptide but, in contrast to C. elegans or mammalian C-mannosyltransferases, are inactive on a short WXXW peptide. Since TSR domains are commonly found in apicomplexan surface proteins, C-mannosylation may be a common modification in this phylum.
Collapse
Affiliation(s)
- Carolin M Hoppe
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Andreia Albuquerque-Wendt
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Giulia Bandini
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Deborah R Leon
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | - Aleksandra Shcherbakova
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Falk F R Buettner
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Luis Izquierdo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), University of Barcelona, Carrer Rosselo 149-153, 08036 Barcelona, Spain
| | - Catherine E Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | - Hans Bakker
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Françoise H Routier
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
11
|
Kadirvel P, Anishetty S. Potential role of salt-bridges in the hinge-like movement of apicomplexa specific β-hairpin of Plasmodium and Toxoplasma profilins: A molecular dynamics simulation study. J Cell Biochem 2018; 119:3683-3696. [PMID: 29236299 DOI: 10.1002/jcb.26579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022]
Abstract
Profilin is one of the actin-binding proteins that regulate dynamics of actin polymerization. It plays a key role in cell motility and invasion. It also interacts with several other proteins notably through its poly-L-proline (PLP) binding site. Profilin in apicomplexa is characterized by a unique mini-domain consisting of a large β-hairpin extension and an acidic loop which is relatively longer in Plasmodium species. Profilin is essential for the invasive blood stages of Plasmodium falciparum. In the current study, unbound profilins from Plasmodium falciparum (Pf), Toxoplasma gondii (Tg), and Homo sapiens (Hs) were subjected to molecular dynamics (MD) simulations for a timeframe of 100 ns each to understand the conformational dynamics of these proteins. It was found that the β-hairpin of profilins from Pf and Tg shows a hinge-like movement. This movement in Pf profilin may possibly be driven by the loss of a salt-bridge within profilin. The impact of this conformational change on actin binding was assessed by docking three dimensional (3D) structures of profilin from Pf and Tg with their corresponding actins using ClusPro2.0. The stability of docked Pf profilin-actin complex was assessed through a 50 ns MD simulation. As Hs profilin I does not have the apicomplexa specific mini-domain, MD simulation was performed for this protein and its dynamics was compared to that of profilins from Pf and Tg. Using an immunoinformatics approach, potential epitope regions were predicted for Pf profilin. This has a potential application in the design of vaccines as they mapped to its unique mini-domain.
Collapse
|
12
|
Aguado-Martínez A, Basto AP, Leitão A, Hemphill A. Neospora caninum in non-pregnant and pregnant mouse models: cross-talk between infection and immunity. Int J Parasitol 2017; 47:723-735. [DOI: 10.1016/j.ijpara.2017.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022]
|
13
|
Kumpula EP, Pires I, Lasiwa D, Piirainen H, Bergmann U, Vahokoski J, Kursula I. Apicomplexan actin polymerization depends on nucleation. Sci Rep 2017; 7:12137. [PMID: 28939886 PMCID: PMC5610305 DOI: 10.1038/s41598-017-11330-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/22/2017] [Indexed: 01/21/2023] Open
Abstract
Filamentous actin is critical for apicomplexan motility and host cell invasion. Yet, parasite actin filaments are short and unstable. Their kinetic characterization has been hampered by the lack of robust quantitative methods. Using a modified labeling method, we carried out thorough biochemical characterization of malaria parasite actin. In contrast to the isodesmic polymerization mechanism suggested for Toxoplasma gondii actin, Plasmodium falciparum actin I polymerizes via the classical nucleation-elongation pathway, with kinetics similar to canonical actins. A high fragmentation rate, governed by weak lateral contacts within the filament, is likely the main reason for the short filament length. At steady state, Plasmodium actin is present in equal amounts of short filaments and dimers, with a small proportion of monomers, representing the apparent critical concentration of ~0.1 µM. The dimers polymerize but do not serve as nuclei. Our work enhances understanding of actin evolution and the mechanistic details of parasite motility, serving as a basis for exploring parasite actin and actin nucleators as drug targets against malaria and other apicomplexan parasitic diseases.
Collapse
Affiliation(s)
- Esa-Pekka Kumpula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland
| | - Isa Pires
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland
| | - Devaki Lasiwa
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland
| | - Henni Piirainen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland
| | - Ulrich Bergmann
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland
| | - Juha Vahokoski
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland.,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220, Oulu, Finland. .,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
14
|
Near-atomic structure of jasplakinolide-stabilized malaria parasite F-actin reveals the structural basis of filament instability. Proc Natl Acad Sci U S A 2017; 114:10636-10641. [PMID: 28923924 DOI: 10.1073/pnas.1707506114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During their life cycle, apicomplexan parasites, such as the malaria parasite Plasmodium falciparum, use actomyosin-driven gliding motility to move and invade host cells. For this process, actin filament length and stability are temporally and spatially controlled. In contrast to canonical actin, P. falciparum actin 1 (PfAct1) does not readily polymerize into long, stable filaments. The structural basis of filament instability, which plays a pivotal role in host cell invasion, and thus infectivity, is poorly understood, largely because high-resolution structures of PfAct1 filaments were missing. Here, we report the near-atomic structure of jasplakinolide (JAS)-stabilized PfAct1 filaments determined by electron cryomicroscopy. The general filament architecture is similar to that of mammalian F-actin. The high resolution of the structure allowed us to identify small but important differences at inter- and intrastrand contact sites, explaining the inherent instability of apicomplexan actin filaments. JAS binds at regular intervals inside the filament to three adjacent actin subunits, reinforcing filament stability by hydrophobic interactions. Our study reveals the high-resolution structure of a small molecule bound to F-actin, highlighting the potential of electron cryomicroscopy for structure-based drug design. Furthermore, our work serves as a strong foundation for understanding the structural design and evolution of actin filaments and their function in motility and host cell invasion of apicomplexan parasites.
Collapse
|
15
|
Valigurová A, Vaškovicová N, Diakin A, Paskerova GG, Simdyanov TG, Kováčiková M. Motility in blastogregarines (Apicomplexa): Native and drug-induced organisation of Siedleckia nematoides cytoskeletal elements. PLoS One 2017. [PMID: 28640849 PMCID: PMC5480980 DOI: 10.1371/journal.pone.0179709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies on motility of Apicomplexa concur with the so-called glideosome concept applied for apicomplexan zoites, describing a unique mechanism of substrate-dependent gliding motility facilitated by a conserved form of actomyosin motor and subpellicular microtubules. In contrast, the gregarines and blastogregarines exhibit different modes and mechanisms of motility, correlating with diverse modifications of their cortex. This study focuses on the motility and cytoskeleton of the blastogregarine Siedleckia nematoides Caullery et Mesnil, 1898 parasitising the polychaete Scoloplos cf. armiger (Müller, 1776). The blastogregarine moves independently on a solid substrate without any signs of gliding motility; the motility in a liquid environment (in both the attached and detached forms) rather resembles a sequence of pendular, twisting, undulation, and sometimes spasmodic movements. Despite the presence of key glideosome components such as pellicle consisting of the plasma membrane and the inner membrane complex, actin, myosin, subpellicular microtubules, micronemes and glycocalyx layer, the motility mechanism of S. nematoides differs from the glideosome machinery. Nevertheless, experimental assays using cytoskeletal probes proved that the polymerised forms of actin and tubulin play an essential role in the S. nematoides movement. Similar to Selenidium archigregarines, the subpellicular microtubules organised in several layers seem to be the leading motor structures in blastogregarine motility. The majority of the detected actin was stabilised in a polymerised form and appeared to be located beneath the inner membrane complex. The experimental data suggest the subpellicular microtubules to be associated with filamentous structures (= cross-linking protein complexes), presumably of actin nature.
Collapse
Affiliation(s)
- Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
- * E-mail:
| | - Naděžda Vaškovicová
- Institute of Scientific Instruments of the CAS, v. v. i., Královopolská 147, Brno, Czech Republic
| | - Andrei Diakin
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Gita G. Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, Russian Federation
| | - Timur G. Simdyanov
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory 1–12, Moscow, Russian Federation
| | - Magdaléna Kováčiková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| |
Collapse
|
16
|
Moreau CA, Bhargav SP, Kumar H, Quadt KA, Piirainen H, Strauss L, Kehrer J, Streichfuss M, Spatz JP, Wade RC, Kursula I, Frischknecht F. A unique profilin-actin interface is important for malaria parasite motility. PLoS Pathog 2017; 13:e1006412. [PMID: 28552953 PMCID: PMC5464670 DOI: 10.1371/journal.ppat.1006412] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/08/2017] [Accepted: 05/16/2017] [Indexed: 11/30/2022] Open
Abstract
Profilin is an actin monomer binding protein that provides ATP-actin for incorporation into actin filaments. In contrast to higher eukaryotic cells with their large filamentous actin structures, apicomplexan parasites typically contain only short and highly dynamic microfilaments. In apicomplexans, profilin appears to be the main monomer-sequestering protein. Compared to classical profilins, apicomplexan profilins contain an additional arm-like β-hairpin motif, which we show here to be critically involved in actin binding. Through comparative analysis using two profilin mutants, we reveal this motif to be implicated in gliding motility of Plasmodium berghei sporozoites, the rapidly migrating forms of a rodent malaria parasite transmitted by mosquitoes. Force measurements on migrating sporozoites and molecular dynamics simulations indicate that the interaction between actin and profilin fine-tunes gliding motility. Our data suggest that evolutionary pressure to achieve efficient high-speed gliding has resulted in a unique profilin-actin interface in these parasites. The malaria parasite Plasmodium has two invasive forms that migrate across different tissue barriers, the ookinete and the very rapidly migrating sporozoite. Previous work has shown that the motility of these and related parasites (e.g. Toxoplasma gondii) depends on a highly dynamic actin cytoskeleton and retrograde flow of surface adhesins. These unusual actin dynamics are due to the divergent structure of protozoan actins and the actions of actin-binding proteins, which can have non-canonical functions in these parasites. Profilin is one of the most important and most investigated actin-binding proteins, which binds ADP-actin and catalyzes ADP-ATP exchange to then promote actin polymerization. Parasite profilins bind monomeric actin and contain an additional domain compared to canonical profilins. Here we show that this additional domain of profilin is critical for actin binding and rapid sporozoite motility but has little impact on the slower ookinete. Sporozoites of a parasite line carrying mutations in this domain cannot translate force production and retrograde flow into optimal parasite motility. Using molecular dynamics simulations, we find that differences between mutant parasites in their capacity to migrate can be traced back to a single hydrogen bond at the actin-profilin interface.
Collapse
Affiliation(s)
- Catherine A. Moreau
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Saligram P. Bhargav
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hirdesh Kumar
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Katharina A. Quadt
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Institute for Physical Chemistry, Biophysical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Henni Piirainen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Léanne Strauss
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Martin Streichfuss
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Institute for Physical Chemistry, Biophysical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Joachim P. Spatz
- Institute for Physical Chemistry, Biophysical Chemistry, Heidelberg University, Heidelberg, Germany
- Department of Cellular Biophysics, Max-Planck Institute for Medical Research, Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- * E-mail: (IK); (FF)
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- * E-mail: (IK); (FF)
| |
Collapse
|
17
|
Whitelaw JA, Latorre-Barragan F, Gras S, Pall GS, Leung JM, Heaslip A, Egarter S, Andenmatten N, Nelson SR, Warshaw DM, Ward GE, Meissner M. Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion. BMC Biol 2017; 15:1. [PMID: 28100223 PMCID: PMC5242020 DOI: 10.1186/s12915-016-0343-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/10/2016] [Indexed: 12/17/2022] Open
Abstract
Background Apicomplexan parasites employ a unique form of movement, termed gliding motility, in order to invade the host cell. This movement depends on the parasite’s actomyosin system, which is thought to generate the force during gliding. However, recent evidence questions the exact molecular role of this system, since mutants for core components of the gliding machinery, such as parasite actin or subunits of the MyoA-motor complex (the glideosome), remain motile and invasive, albeit at significantly reduced efficiencies. While compensatory mechanisms and unusual polymerisation kinetics of parasite actin have been evoked to explain these findings, the actomyosin system could also play a role distinct from force production during parasite movement. Results In this study, we compared the phenotypes of different mutants for core components of the actomyosin system in Toxoplasma gondii to decipher their exact role during gliding motility and invasion. We found that, while some phenotypes (apicoplast segregation, host cell egress, dense granule motility) appeared early after induction of the act1 knockout and went to completion, a small percentage of the parasites remained capable of motility and invasion well past the point at which actin levels were undetectable. Those act1 conditional knockout (cKO) and mlc1 cKO that continue to move in 3D do so at speeds similar to wildtype parasites. However, these mutants are virtually unable to attach to a collagen-coated substrate under flow conditions, indicating an important role for the actomyosin system of T. gondii in the formation of attachment sites. Conclusion We demonstrate that parasite actin is essential during the lytic cycle and cannot be compensated by other molecules. Our data suggest a conventional polymerisation mechanism in vivo that depends on a critical concentration of G-actin. Importantly, we demonstrate that the actomyosin system of the parasite functions in attachment to the surface substrate, and not necessarily as force generator. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0343-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jamie A Whitelaw
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Fernanda Latorre-Barragan
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Simon Gras
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Gurman S Pall
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Jacqueline M Leung
- Department of Biology, Indiana University, Bloomington, Myers Hall 240, 915 E 3rd St Bloomington, Bloomington, IN, 47405, USA.,University of Vermont, Department of Microbiology and Molecular Genetics, College of Medicine, Burlington, VT, 05405, USA
| | - Aoife Heaslip
- University of Vermont, Department of Molecular Physiology and Biophysics Burlington, Vermont, 05405, USA
| | - Saskia Egarter
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Nicole Andenmatten
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Shane R Nelson
- University of Vermont, Department of Molecular Physiology and Biophysics Burlington, Vermont, 05405, USA
| | - David M Warshaw
- University of Vermont, Department of Molecular Physiology and Biophysics Burlington, Vermont, 05405, USA
| | - Gary E Ward
- University of Vermont, Department of Microbiology and Molecular Genetics, College of Medicine, Burlington, VT, 05405, USA
| | - Markus Meissner
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
18
|
Bane KS, Lepper S, Kehrer J, Sattler JM, Singer M, Reinig M, Klug D, Heiss K, Baum J, Mueller AK, Frischknecht F. The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites. PLoS Pathog 2016; 12:e1005710. [PMID: 27409081 PMCID: PMC4943629 DOI: 10.1371/journal.ppat.1005710] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/26/2016] [Indexed: 11/21/2022] Open
Abstract
Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics. Parasites causing malaria are transmitted by mosquitoes and need to migrate to cross tissue barriers. The form of the parasite transmitted by the mosquito, the so-called sporozoite, needs motility to enter the salivary glands, to migrate within the skin and to enter into blood capillaries and eventually hepatocytes, where the parasites differentiate into thousands of merozoites that invade red blood cells. Sporozoite motility is based on an actin-myosin motor, as is the case in many other eukaryotic cells. However, most eukaryotic cells move much slower than sporozoites. How these parasites reach their high speed is not clear but current evidence suggests that actin filaments need to be organized by either actin-binding proteins or membrane proteins that link the filaments to an extracellular substrate. The present study explores the role of the actin filament-binding protein coronin in the motility of sporozoites of the rodent model parasite Plasmodium berghei. We found that the deletion of P. berghei coronin leads to defects in parasite motility and thus lower infection of mosquito salivary glands, which translates into less efficient transmission of the parasites. Our experiments suggest that coronin organizes actin filaments to achieve rapid and directional motility. We also identify two signaling pathways that converge to regulate actin filament dynamics and suggest that they play a role in switching the parasite from its motility mode to a cell invasion mode.
Collapse
Affiliation(s)
- Kartik S. Bane
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Simone Lepper
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Julia M. Sattler
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Miriam Reinig
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Kirsten Heiss
- Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- Malva GmbH, Heidelberg, Germany
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ann-Kristin Mueller
- Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- * E-mail:
| |
Collapse
|