1
|
Akçeşme B, Hekimoğlu H, Chirasani VR, İş Ş, Atmaca HN, Waldern JM, Ramos SBV. Identification of deleterious non-synonymous single nucleotide polymorphisms in the mRNA decay activator ZFP36L2. RNA Biol 2025; 22:1-15. [PMID: 39668715 DOI: 10.1080/15476286.2024.2437590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
More than 4,000 single nucleotide polymorphisms (SNP) variants have been identified in the human ZFP36L2 gene, however only a few have been studied in the context of protein function. The tandem zinc finger domain of ZFP36L2, an RNA binding protein, is the functional domain that binds to its target mRNAs. This protein/RNA interaction triggers mRNA degradation, controlling gene expression. We identified 32 non-synonymous SNPs (nsSNPs) in the tandem zinc finger domain of ZFP36L2 that could have possible deleterious impacts in humans. Using different bioinformatic strategies, we prioritized five among these 32 nsSNPs, namely rs375096815, rs1183688047, rs1214015428, rs1215671792 and rs920398592 to be validated. When we experimentally tested the functionality of these protein variants using gel shift assays, all five (Y154H, R160W, R184C, G204D, and C206F) resulted in a dramatic reduction in RNA binding compared to the WT protein. To understand the mechanistic effect of these variants on the protein/RNA interaction, we employed DUET, DynaMut and PyMOL to investigate structural changes in the protein. Additionally, we conducted Molecular Docking and Molecular Dynamics Simulations to fine tune the active behaviour of this biomolecular system at an atomic level. Our results propose atomic explanations for the impact of each of these five genetic variants identified.
Collapse
Affiliation(s)
- Betül Akçeşme
- Program of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Ilidža/Sarajevo, Bosnia and Herzegovina
- Hamidiye School of Medicine, Department of Basic Medical Sciences, Division of Medical Biology, University of Health Sciences, Üsküdar/İstanbul, Turkey
| | - Hilal Hekimoğlu
- Institute of Health Sciences, İstanbul University, Fatih/İstanbul, Turkey
| | - Venkat R Chirasani
- Biochemistry and Biophysics Department, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Biochemistry and Biophysics Department, R. L. Juliano Structural Bioinformatics Core, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Şeyma İş
- Hamidiye School of Medicine, Department of Basic Medical Sciences, Division of Medical Biology, University of Health Sciences, Üsküdar/İstanbul, Turkey
- Department of Molecular Biotechnology, Division of Bioinformatics, Turkish-German University, Beykoz/İstanbul, Turkey
| | - Habibe Nur Atmaca
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayıs University, Atakum/Samsun, Turkey
| | - Justin M Waldern
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Silvia B V Ramos
- Biochemistry and Biophysics Department, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Navapour L, Mogharrab N, Parvin A, Rezaei Arablouydareh S, Movahedpour A, Jebraeily M, Taheri-Anganeh M, Ghasemnejad-Berenji H. Identification of high-risk non-synonymous SNPs (nsSNPs) in DNAH1 and DNAH17 genes associated with male infertility: a bioinformatics analysis. J Appl Genet 2025; 66:333-346. [PMID: 38874855 DOI: 10.1007/s13353-024-00884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Male infertility is a significant reproductive issue affecting a considerable number of couples worldwide. While there are various causes of male infertility, genetic factors play a crucial role in its development. We focused on identifying and analyzing the high-risk nsSNPs in DNAH1 and DNAH17 genes, which encode proteins involved in sperm motility. A total of 20 nsSNPs for DNAH1 and 10 nsSNPs for DNAH17 were analyzed using various bioinformatics tools including SIFT, PolyPhen-2, CADD, PhD-SNPg, VEST-4, and MutPred2. As a result, V1287G, L2071R, R2356W, R3169C, R3229C, E3284K, R4096L, R4133C, and A4174T in DNAH1 gene and C1803Y, C1829Y, R1903C, and L3595P in DNAH17 gene were identified as high-risk nsSNPs. These nsSNPs were predicted to decrease protein stability, and almost all were found in highly conserved amino acid positions. Additionally, 4 nsSNPs were observed to alter post-translational modification status. Furthermore, the interaction network analysis revealed that DNAH1 and DNAH17 interact with DNAH2, DNAH3, DNAH5, DNAH7, DNAH8, DNAI2, DNAL1, CFAP70, DNAI3, DNAI4, ODAD1, and DNAI7, demonstrating the importance of DNAH1 and DNAH17 proteins in the overall functioning of the sperm motility machinery. Taken together, these findings revealed the detrimental effects of identified high-risk nsSNPs on protein structure and function and highlighted their potential relevance to male infertility. Further studies are warranted to validate these findings and to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Leila Navapour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Mogharrab
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sahar Rezaei Arablouydareh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohamad Jebraeily
- Department of Health Information Technology, School of Allied Medical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Liang T, Sun ZY, Ishima R, Xie XQ, Xue Y, Li W, Feng Z. ProstaNet: A Novel Geometric Vector Perceptrons-Graph Neural Network Algorithm for Protein Stability Prediction in Single- and Multiple-Point Mutations with Experimental Validation. RESEARCH (WASHINGTON, D.C.) 2025; 8:0674. [PMID: 40235597 PMCID: PMC11997553 DOI: 10.34133/research.0674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/17/2025]
Abstract
Proteins play a critical role in biology and biopharma due to their specificity and minimal side effects. Predicting the effects of mutations on protein stability is vital but experimentally challenging. Deep learning offers an efficient solution to this problem. In the present work, we introduced ProstaNet, a deep learning framework that predicts stability changes resulting from single- and multiple-point mutations using geometric vector perceptrons-graph neural network for 3-dimensional feature processing. For training ProstaNet, we meticulously crafted ProstaDB, a comprehensive and pristine thermodynamics repository, including 3,784 single-point mutations and 1,642 multiple-point mutations. We also created thermodynamic looping for enlarging the limited data size of multiple-point mutation and applied an innovative clustering method to generate a standard testing set of multiple-point mutation. Besides, we identified residue scoring as the most important encoding method in protein properties prediction. With these innovations, ProstaNet accurately predicts thermostability changes for both single-point and multiple-point mutations without showing any bias. ProstaNet achieves an accuracy of 0.75, outperforming existing methods for single-point mutation prediction, including ThermoMPNN (0.63), PoPMuSiCsym (0.66), MUPRO (0.52), and FoldX (0.71). ProstaNet also achieves a 1.3-fold increase in accuracy compared to FoldX for multiple-point mutation predictions. Validated by experiment, 4 out of 5 single-point mutation predictions (80%) and all multiple-point mutation predictions (100%) for HuJ3 mutants were accurate, demonstrating the potential benefits of ProstaNet for protein engineering and drug development.
Collapse
Affiliation(s)
- Tianjian Liang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics and System Pharmacology PharmacoAnalytics, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research,
University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ze-Yu Sun
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics and System Pharmacology PharmacoAnalytics, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research,
University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rieko Ishima
- Department of Structural Biology, School of Medicine,
University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics and System Pharmacology PharmacoAnalytics, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research,
University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ying Xue
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics and System Pharmacology PharmacoAnalytics, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research,
University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wei Li
- Department of Medicine, Center for Antibody Therapeutics, Division of Infectious Diseases, School of Medicine,
University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics and System Pharmacology PharmacoAnalytics, School of Pharmacy, National Center of Excellence for Computational Drug Abuse Research,
University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Harihar B, Saravanan KM, Gromiha MM, Selvaraj S. Importance of Inter-residue Contacts for Understanding Protein Folding and Unfolding Rates, Remote Homology, and Drug Design. Mol Biotechnol 2025; 67:862-884. [PMID: 38498284 DOI: 10.1007/s12033-024-01119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Inter-residue interactions in protein structures provide valuable insights into protein folding and stability. Understanding these interactions can be helpful in many crucial applications, including rational design of therapeutic small molecules and biologics, locating functional protein sites, and predicting protein-protein and protein-ligand interactions. The process of developing machine learning models incorporating inter-residue interactions has been improved recently. This review highlights the theoretical models incorporating inter-residue interactions in predicting folding and unfolding rates of proteins. Utilizing contact maps to depict inter-residue interactions aids researchers in developing computer models for detecting remote homologs and interface residues within protein-protein complexes which, in turn, enhances our knowledge of the relationship between sequence and structure of proteins. Further, the application of contact maps derived from inter-residue interactions is highlighted in the field of drug discovery. Overall, this review presents an extensive assessment of the significant models that use inter-residue interactions to investigate folding rates, unfolding rates, remote homology, and drug development, providing potential future advancements in constructing efficient computational models in structural biology.
Collapse
Affiliation(s)
- Balasubramanian Harihar
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Konda Mani Saravanan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Michael M Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Samuel Selvaraj
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
5
|
Hossain S, Bin Manjur OH, Shimu MSS, Sultana T, Naim MR, Siddique S, Al Mamun A, Rahman MM, Saleh MA, Hasan MR, Rahman T. In silico evaluation of missense SNPs in cancer-associated Cystatin A protein and their potential to disrupt Cathepsin B interaction. Heliyon 2025; 11:e42478. [PMID: 40007784 PMCID: PMC11850136 DOI: 10.1016/j.heliyon.2025.e42478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Cystatin A (CSTA) functions as a cysteine protease inhibitor by forming tight complexes with the cathepsins. Pathogenic mutations in the CSTA gene can disrupt this interaction, potentially leading to physiological ailments. In this study, eight bioinformatics tools (SIFT, PolyPhen-2, PROVEAN, P-Mut, MutPred2, SNAP2, SNPs & GO, and PHD-SNP) were implemented to analyze non-synonymous SNPs from the dbSNP database. Five mutations (Y43C, Y43N, V48F, Y53H, and E94K) located in the conserved region were found to be highly deleterious and less stabilizing. The protein-protein interaction network found that Cathepsin B (CTSB) interacts highly with CSTA. Mutated CSTAs were created by homology modeling, and their altered binding with CTSB was examined through molecular docking and dynamics simulations. Among these, the Y53H (rs1448459675) and E94K (rs200394711) mutants were recognized as weaker inhibitors because they had 2.5 % and an 8 % lower binding affinity, respectively. Moreover, the E94K-CTSB complex, with a root mean square deviation (RMSD) above 5 Å, was found to be highly unstable during molecular dynamics. The root mean square fluctuation (RMSF) of the E94K mutant showed insufficient flexibility, indicating a reduced capacity to suppress CTSB. These findings suggest that the E94K mutation could affect the protein structure and cathepsin B interaction, potentially leading to pathological consequences as evidenced by colorectal adenocarcinoma patients in the COSMIC (Catalogue of Somatic Mutations in Cancer) database.
Collapse
Affiliation(s)
- Shafaat Hossain
- Department of Biology & Biochemistry, University of Houston, USA
| | - Omar Hamza Bin Manjur
- Department of Biochemistry & Molecular Biology, University of Dhaka, Bangladesh
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Bangladesh
| | | | - Tamanna Sultana
- Department of Biochemistry & Molecular Biology, University of Dhaka, Bangladesh
| | - Mustafizur Rahman Naim
- Biomedical and Toxicological Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Shahariar Siddique
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Department of Biochemistry & Biotechnology, University of Science and Technology, Chittagong, Bangladesh
- Institute of Technology Transfer and Innovation (ITTI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | | | - Md Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Rakibul Hasan
- Institute of Technology Transfer and Innovation (ITTI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Tania Rahman
- Department of Biochemistry & Molecular Biology, University of Dhaka, Bangladesh
| |
Collapse
|
6
|
Zhao C, Borotto NB, Schmidt J, Srivastava K, Lowell A, Hakansson K, Sherman DH, Ruotolo BT. Gas-Phase Unfolding Reveals Stability Shifts Associated with Substrate Binding in Modular Polyketide Synthases. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:241-246. [PMID: 39052932 DOI: 10.1021/jasms.4c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Native mass spectrometry (MS), ion mobility (IM), and collision-induced unfolding (CIU) have all been widely used to study the binding of small molecules to proteins and their complexes. Despite many successes in detecting subtle gas-phase stability differences in smaller systems dominated by single-domain subunits, studies targeting complexes comprised of large, multidomain subunits still face many challenges. For example, polyketide synthases (PKSs) are multiprotein enzymes that use their modular architecture to produce polyketide natural products and form the basis for nearly one-third of pharmaceuticals. Here, we describe the development of CIU methods capable of extracting information from these multiprotein complexes and demonstrate the current limits of quantitative CIU technology by probing the stabilities ∼280 kDa PKS dimer protein complexes. Our approach detects the evidence of the stability shifts associated with substrate binding that accounts for <0.1% of the mass for the intact assembly.
Collapse
Affiliation(s)
- Chunyi Zhao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas B Borotto
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Schmidt
- Life Science Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kinshuk Srivastava
- Life Science Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew Lowell
- Life Science Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristina Hakansson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David H Sherman
- Life Science Institute, Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Goutam RK, Huang G, Medina E, Ding F, Edenfield WJ, Sanabria H. Impact of frequent ARID1A mutations on protein stability provides insights into cancer pathogenesis. Sci Rep 2025; 15:3072. [PMID: 39856215 PMCID: PMC11760938 DOI: 10.1038/s41598-025-87103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1 A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear. We analyzed five frequent missense mutations R1020S, M1022K, K1047Q, G1063V, and A1089T identified in The Cancer Genome Atlas (TCGA) to assess their effects on the stability of the ARID domain using a hybrid experimental and computational approach. By combining computational stability from web server tools, the structural dynamics from replica exchange discrete molecular simulation (rexDMD), and thermal and chemical denaturation experiments, we found that the R1020S mutation severely decreases structural stability, making it the most impactful, while M1022K has minimal effect, and others lie in between. These findings enhance our understanding of the structural-functional relationship of ARID1A missense mutations at the molecular levels and their role in cancer pathogenesis. This research paves the way for identifying and categorizing which ARID1A mutations are most pathogenic, potentially guiding the development of targeted therapies tailored to specific mutation profiles in cancer treatment.
Collapse
Affiliation(s)
- Rajen K Goutam
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Gangtong Huang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Exequiel Medina
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - William J Edenfield
- Institute for Translational Oncology Research, Prisma Health, Greenville, SC, USA
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA.
| |
Collapse
|
8
|
Roy A, Banerjee P, Paul I, Ghosh R, Ray S. Integrating structure-guided and fragment-based inhibitor design to combat bedaquiline resistant Mycobacterium tuberculosis: a molecular dynamics study. J Biomol Struct Dyn 2024:1-39. [PMID: 39714098 DOI: 10.1080/07391102.2024.2441426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/24/2024] [Indexed: 12/24/2024]
Abstract
The first FDA approved, MDR-TB inhibitory drug bedaquiline (BDQ), entraps the c-ring of the proton-translocating F0 region of enzyme ATP synthase of Mycobacterium tuberculosis, thus obstructing successive ATP production. Present-day BDQ-resistance has been associated with cardiotoxicity and mutation(s) in the atpE gene encoding the c subunit of ATP synthase (ATPc) generating five distinct ATPc mutants: Ala63→Pro, Ile66→Met, Asp28→Gly, Asp28→Val and Glu61→Asp. We created three discrete libraries, first by repurposing bedaquiline via scaffold hopping approach, second one having natural plant compounds and the third being experimentally derived analogues of BDQ to identify one drug candidate that can inhibit ATPc activity more efficiently with less toxic properties. For this purpose, we adopted techniques like molecular dynamics simulation, virtual screening, PCA, DCCM, binding affinity analysis to gauge structure-function relationship of the L136-ATPc complexes. L136 was found to induce a distinguishable conformational change in the bound ATPc which captivated the c9 rotor ring. L136 displays a binding free energy of -57.294, -59.027, -57.273, -58.726, -55.889 and -58.651 kcal/mol for ATPc_WT and the five respective mutants. The pIC50 value for the L136 ligand for the same proteins was unveiled to be 6.760, 7.285, 6.898, 7.222, 6.987 and 7.687. Moreover, L136 exhibited a strong ADMET profile. Furthermore, we discovered that the change in the hydrophobic platform in ATPc mutants hinders BDQ binding, which is overcome by L136, ensuring efficient binding and providing an assessment of L136's mechanism of ATPc inhibition. L136 provides a scope for in vivo test for future clinical drug trials.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Prantik Banerjee
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ritam Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
9
|
Goutam RK, Huang G, Medina E, Ding F, Edenfield WJ, Sanabria H. Impact of Frequent ARID1A Mutations on Protein Stability: Insights into Cancer Pathogenesis. RESEARCH SQUARE 2024:rs.3.rs-5225582. [PMID: 39764114 PMCID: PMC11702796 DOI: 10.21203/rs.3.rs-5225582/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear. We analyzed five frequent missense mutations R1020S, M1022K, K1047Q, G1063V, and A1089T identified in The Cancer Genome Atlas (TCGA) to assess their effects on the stability of the ARID domain using a hybrid experimental and computational approach. By combining computational stability from web server tools, the structural dynamics from replica exchange discrete molecular simulation (rexDMD), and thermal and chemical denaturation experiments, we found that the R1020S mutation severely decreases structural stability, making it the most impactful, while M1022K has minimal effect, and others lie in between. These findings enhance our understanding of the structural-functional relationship of ARID1A missense mutations at the molecular levels and their role in cancer pathogenesis. This research paves the way for identifying and categorizing which ARID1A mutations are most pathogenic, potentially guiding the development of targeted therapies tailored to specific mutation profiles in cancer treatment.
Collapse
Affiliation(s)
- Rajen K Goutam
- Department of Physics and Astronomy, Clemson University, Clemson, 29634, SC, USA
| | - Gangtong Huang
- Department of Physics and Astronomy, Clemson University, Clemson, 29634, SC, USA
| | - Exequiel Medina
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, 29634, SC, USA
| | - William J. Edenfield
- Institute for Translational Oncology Research, Prisma Health, Greenville, SC, USA
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, 29634, SC, USA
| |
Collapse
|
10
|
Kafle A, Tenorio JCB, Mahato RK, Dhakal S, Heikal MF, Suttiprapa S. Construction and validation of a novel multi-epitope in silico vaccine design against the paramyosin protein of Opisthorchis viverrini using immunoinformatics analyses. Acta Trop 2024; 260:107389. [PMID: 39251174 DOI: 10.1016/j.actatropica.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Liver fluke infection caused by Opisthorchis viverrini (O. viverrini) remains a significant but neglected health threat across Southeastern Asia. The early infective anabolic growth stage of O. viverrini expresses and exposes proteins integral for the growth and maturation of immature worms to the adult catabolic stage. Among these proteins, paramyosin emerged as a distinct immunogenic protein during opisthorchiasis. The functional region of the paramyosin protein known as myosin tail was selected to design a multi-epitope vaccine (MEV) to elicit T and B cell immune responses in susceptible human hosts utilizing various immunoinformatics and in silico vaccinology tools. The vaccine candidate had several B- and T-cell epitopes that stimulate both humoral and cellular immune responses. Moreover, in silico structural, docking, and dynamic analyses showed that the construct interacted with target immune receptors effectively, which may result in sufficient immunological stimulation. Analysis of simulated coverage efficacy also supports vaccine application in the field. Cloning and expression of the vaccine candidate were determined to be viable based on physicochemical and in silico assessments. These results reveal that the vaccine candidate developed herein is stable and potentially useful in addressing opisthorchiasis. The promising result of this study establishes a strong platform for initiating laboratory and efficacy trials for the vaccine candidate.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jan Clyden B Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Sahara Dhakal
- Master of Nursing Science, Faculty of Nursing, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Muhammad F Heikal
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
11
|
Zhou C, Liu R, Zhao D, Shan K, Ke W, Li C. Ultrasound treatment improved gelling and emulsifying properties of myofibrillar proteins from Antarctic krill (Euphausia superba). ULTRASONICS SONOCHEMISTRY 2024; 111:107123. [PMID: 39490146 PMCID: PMC11549988 DOI: 10.1016/j.ultsonch.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Antarctic krill is a promising source of marine proteins with abundant biomass and excellent nutritional profile, but has poor technological properties. Ultrasonic treatment at power levels of 0, 100, 200, 300, 400 and 500 W was applied to improve the technological properties of Antarctic krill meat, and the changes in physicochemical properties of myofibrillar proteins (MPs) were investigated. The results indicated that proper ultrasonic treatment significantly improved the gelling properties of Antarctic krill meat, in terms of a more uniform and stable gel texture and better water holding capacity, which were related to better cross-linking of MPs. Ultrasonic treatment promoted the conversion of MPs' secondary structures from α-helix and random coil to β-sheet and β-turn, thereby making the molecular structure soft and loose. In addition, at tertiary structure level, ultrasonic treatment exposed the hydrophobic groups and sulfhydryl groups within MPs, thereby improving the emulsifying properties by changing the intermolecular interactions and interface properties. Furthermore, the particle size of MPs decreased and exhibited a more uniform distribution, aligning with the enhanced interactions observed between MPs and oil. These results provide an insight into the efficient development of Antarctic krill by elucidating how the ultrasonic treatment improves the gelling and emulsifying properties based on structure modulation of myofibrillar proteins.
Collapse
Affiliation(s)
- Chang Zhou
- National Key Laboratory of Meat Quality Control and Cultured Meat, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, China
| | - Ruoyan Liu
- National Key Laboratory of Meat Quality Control and Cultured Meat, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, China
| | - Di Zhao
- National Key Laboratory of Meat Quality Control and Cultured Meat, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, China
| | - Kai Shan
- National Key Laboratory of Meat Quality Control and Cultured Meat, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, China
| | - Weixin Ke
- National Key Laboratory of Meat Quality Control and Cultured Meat, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, China
| | - Chunbao Li
- National Key Laboratory of Meat Quality Control and Cultured Meat, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, China
| |
Collapse
|
12
|
Banks D, Kempf JG, Du Y, Reichert P, Narasimhan C, Fang R, Kwon S, Ling J, Lay-Fortenbery A, Zhang Y, Ni QZ, Cote A, Su Y. Investigation of Protein Therapeutics in Frozen Conditions Using DNP MAS NMR: A Study on Pembrolizumab. Mol Pharm 2024. [PMID: 39555969 DOI: 10.1021/acs.molpharmaceut.4c00929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The success of modern biopharmaceutical products depends on enhancing the stability of protein therapeutics. Freezing and thawing, which are common thermal stresses encountered throughout the lifecycle of drug substances, spanning protein production, formulation design, manufacturing, storage, and shipping, can impact this stability. Understanding the physicochemical and molecular behaviors of components in biological drug products at temperatures relevant to manufacturing and shipping is essential for assessing stability risks and determining appropriate storage conditions. This study focuses on the stability of high-concentration monoclonal antibody (mAb) pembrolizumab, the drug substance of Keytruda (Merck & Co., Inc., Rahway, NJ, United States), and its excipients in a frozen solution. By leveraging dynamic nuclear polarization (DNP), we achieve more than 100-fold signal enhancements in solid-state NMR (ssNMR), enabling efficient low-temperature (LT) analysis of pembrolizumab without isotopic enrichment. Through both ex situ and in situ ssNMR experiments conducted across a temperature range of 297 to 77 K, we provide insights into the stability of crystalline pembrolizumab under frozen conditions. Importantly, utilizing LT magic-angle spinning (MAS) probes allows us to study molecular dynamics in pembrolizumab from room temperature down to liquid nitrogen temperatures (<100 K). Our results demonstrate that valuable insights into protein conformation and dynamics, crystallinity, and the phase transformations of excipients during the freezing of the formulation matrix can be readily obtained for biological drug products. This study underscores the potential of LT-MAS ssNMR and DNP techniques for analyzing protein therapeutics and vaccines in frozen solutions.
Collapse
Affiliation(s)
- Daniel Banks
- Bruker Biospin Corporation, Billerica, Massachusetts 01821, United States
| | - James G Kempf
- Bruker Biospin Corporation, Billerica, Massachusetts 01821, United States
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Paul Reichert
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Chakravarthy Narasimhan
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rui Fang
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Soonbum Kwon
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jing Ling
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ashley Lay-Fortenbery
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yongqian Zhang
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qing Zhe Ni
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Aaron Cote
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
13
|
Roy A, Sharma S, Paul I, Ray S. Molecular hybridization assisted multi-technique approach for designing USP21 inhibitors to halt catalytic triad-mediated nucleophilic attack and suppress pancreatic ductal adenocarcinoma progression: A molecular dynamics study. Comput Biol Med 2024; 182:109096. [PMID: 39270458 DOI: 10.1016/j.compbiomed.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
AIMS Pancreatic cancer, the 12th-most common cancer, globally, is highly challenging to treat due to its complex epigenetic, metabolic, and genomic characteristics. In pancreatic ductal adenocarcinoma, USP21 acts as an oncogene by stabilizing the long isoform of Transcription Factor 7, thereby activating the Wnt signaling pathway. This study aims to inhibit activation of this pathway through computer-aided drug discovery. Accordingly, four libraries of compounds were designed to target the USP21's catalytic domain (Cys221, His518, Asp534), responsible for its deubiquitinating activity. MAIN METHODS Utilizing an array of computer-aided drug design methodologies, such as molecular docking, virtual screening, principal component analysis, molecular dynamics simulation, and dynamic cross-correlation matrix, the structural and functional characteristics of the USP21-inhibitor complex were examined. Following the evaluation of the binding affinities, 20 potential ligands were selected, and the best ligand was subjected to additional molecular dynamics simulation study. KEY FINDINGS The results indicated that the ligand-bound USP21 exhibited reduced structural fluctuations compared to the unbound form, as evident from RMSD, RMSF, Rg, and SASA graphs. ADMET analysis of the top ligand showed promising pharmacokinetic and pharmacodynamic profiles, good bioavailability, and low toxicity. The stable conformations of the proposed drug when bound to their target cavities indicate a robust binding affinity of -9.3 kcal/mol. The drug exhibits an elevated pKi value of 6.82, a noteworthy pIC50 value of 5.972, and a pKd value of 6.023 proving its high affinity and inhibitory potential towards the target. SIGNIFICANCE In-vitro testing of the top compound (MOLHYB-0436) could lead to its use as a potential treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sayan Sharma
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
14
|
Saha S, Kanaujia SP. Decoding Substrate Selectivity of an Archaeal RlmCD-like Methyltransferase Through Its Salient Traits. Biochemistry 2024; 63:2477-2492. [PMID: 39350642 DOI: 10.1021/acs.biochem.4c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
5-Methyluridine (m5U) rRNA modifications frequently occur at U747 and U1939 (Escherichia coli numbering) in domains II and IV of the 23S rRNA in Gram-negative bacteria, with the help of S-adenosyl-l-methionine (SAM)-dependent rRNA methyltransferases (MTases), RlmC and RlmD, respectively. In contrast, Gram-positive bacteria utilize a single SAM-dependent rRNA MTase, RlmCD, to modify both corresponding sites. Notably, certain archaea, specifically within the Thermococcales group, have been found to possess two genes encoding SAM-dependent archaeal (tRNA and rRNA) m5U (Arm5U) MTases. Among these, a tRNA-specific Arm5U MTase (PabTrmU54) has already been characterized. This study focused on the structural and functional characterization of the rRNA-specific Arm5U MTase from the hyperthermophilic archaeon Pyrococcus horikoshii (PhRlmCD). An in-depth structural examination revealed a dynamic hinge movement induced by the replacement of the iron-sulfur cluster with disulfide bonds, obstructing the substrate-binding site. It revealed distinctive characteristics of PhRlmCD, including elongated positively charged loops in the central domain and rotational variations in the TRAM domain, which influence substrate selectivity. Additionally, the results suggested that two potential mini-rRNA fragments interact in a similar manner with PhRlmCD at a positively charged cleft at the interface of domains and facilitate dual MTase activities akin to the protein RlmCD. Altogether, these observations showed that Arm5U MTases originated from horizontal gene transfer events, most likely from Gram-positive bacteria.
Collapse
Affiliation(s)
- Sayan Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
15
|
Uddin MM, Hossain MT, Hossain MA, Ahsan A, Shamim KH, Hossen MA, Rahman MS, Rahman MH, Ahmed K, Bui FM, Al-Zahrani FA. Unraveling the potential effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on the Protein structure and function of the human SLC30A8 gene on type 2 diabetes and colorectal cancer: An In silico approach. Heliyon 2024; 10:e37280. [PMID: 39296124 PMCID: PMC11408818 DOI: 10.1016/j.heliyon.2024.e37280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Background and aims The single nucleotide polymorphisms (SNPs) in SLC30A8 gene have been recognized as contributing to type 2 diabetes (T2D) susceptibility and colorectal cancer. This study aims to predict the structural stability, and functional impacts on variations in non-synonymous SNPs (nsSNPs) in the human SLC30A8 gene using various computational techniques. Materials and methods Several in silico tools, including SIFT, Predict-SNP, SNPs&GO, MAPP, SNAP2, PhD-SNP, PANTHER, PolyPhen-1,PolyPhen-2, I-Mutant 2.0, and MUpro, have been used in our study. Results After data analysis, out of 336 missenses, the eight nsSNPs, namely R138Q, I141N, W136G, I349N, L303R, E140A, W306C, and L308Q, were discovered by ConSurf to be in highly conserved regions, which could affect the stability of their proteins. Project HOPE determines any significant molecular effects on the structure and function of eight mutated proteins and the three-dimensional (3D) structures of these proteins. The two pharmacologically significant compounds, Luzonoid B and Roseoside demonstrate strong binding affinity to the mutant proteins, and they are more efficient in inhibiting them than the typical SLC30A8 protein using Autodock Vina and Chimera. Increased binding affinity to mutant SLC30A8 proteins has been determined not to influence drug resistance. Ultimately, the Kaplan-Meier plotter study revealed that alterations in SLC30A8 gene expression notably affect the survival rates of patients with various cancer types. Conclusion Finally, the study found eight highly deleterious missense nsSNPs in the SLC30A8 gene that can be helpful for further proteomic and genomic studies for T2D and colorectal cancer diagnosis. These findings also pave the way for personalized treatments using biomarkers and more effective healthcare strategies.
Collapse
Affiliation(s)
- Md Moin Uddin
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Tanvir Hossain
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Banani, Dhaka 1213, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Asif Ahsan
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Kamrul Hasan Shamim
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Md Arif Hossen
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Md Shahinur Rahman
- Department of Diabetes and Endocrinology, Pabna Diabetic Association Hospital, Pabna 6600, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Kawsar Ahmed
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
- Group of Biophotomatiχ, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
- Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City (DSC), Birulia, Savar, Dhaka-1216, Bangladesh
| | - Francis M Bui
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | | |
Collapse
|
16
|
Schofield LC, Dialpuri JS, Murshudov GN, Agirre J. Post-translational modifications in the Protein Data Bank. Acta Crystallogr D Struct Biol 2024; 80:647-660. [PMID: 39207896 PMCID: PMC11394121 DOI: 10.1107/s2059798324007794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Proteins frequently undergo covalent modification at the post-translational level, which involves the covalent attachment of chemical groups onto amino acids. This can entail the singular or multiple addition of small groups, such as phosphorylation; long-chain modifications, such as glycosylation; small proteins, such as ubiquitination; as well as the interconversion of chemical groups, such as the formation of pyroglutamic acid. These post-translational modifications (PTMs) are essential for the normal functioning of cells, as they can alter the physicochemical properties of amino acids and therefore influence enzymatic activity, protein localization, protein-protein interactions and protein stability. Despite their inherent importance, accurately depicting PTMs in experimental studies of protein structures often poses a challenge. This review highlights the role of PTMs in protein structures, as well as the prevalence of PTMs in the Protein Data Bank, directing the reader to accurately built examples suitable for use as a modelling reference.
Collapse
Affiliation(s)
- Lucy C Schofield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Jordan S Dialpuri
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Garib N Murshudov
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| |
Collapse
|
17
|
Roy A, Paul I, Paul T, Hazarika K, Dihidar A, Ray S. An in-silico receptor-pharmacophore based multistep molecular docking and simulation study to evaluate the inhibitory potentials against NS1 of DENV-2. J Biomol Struct Dyn 2024; 42:6136-6164. [PMID: 37517062 DOI: 10.1080/07391102.2023.2239925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/25/2023] [Indexed: 08/01/2023]
Abstract
DENV-2 strain is the most fatal and infectious of the five dengue virus serotypes. The non-structural protein NS1 encoded by its genome is the most significant protein required for viral pathogenesis and replication inside the host body. Thus, targeting the NS1 protein and designing an inhibitor to limit its stability and secretion is a propitious attempt in our fight against dengue. Four novel inhibitors are designed to target the conserved cysteine residues (C55, C313, C316, and C329) and glycosylation sites (N130 and N207) of the NS1 protein in an attempt to halt the spread of the dengue infection in the host body altogether. Numerous computer-aided drug designing techniques including molecular docking, molecular dynamics simulation, virtual screening, principal component analysis, and dynamic cross-correlation matrix were employed to determine the structural and functional activity of the NS1-inhibitor complexes. From our analysis, it was evident that the extent of structural and atomic level fluctuations of the ligand-bound protein exhibited a declining trend in contrast to unbound protein which was prominently noticeable through the RMSD, RMSF, Rg, and SASA graphs. The ADMET analysis of the four ligands revealed a promising pharmacokinetics and pharmacodynamic profile, along with good bioavailability and toxicity properties. The proposed drugs when bound to the targeted cavities resulted in stable conformations in comparison to their unbound state, implying they have good affinity promising effective drug action. Thus, they can be tested in vitro and used as potential anti-dengue drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Tanwi Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | | | - Aritrika Dihidar
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
18
|
Buzzatto M, Benegas Guerrero F, Álvarez P, Zizzias M, Polo L, Tomes C. Expression, purification and application of a recombinant, membrane permeating version of the light chain of botulinum toxin B. Biosci Rep 2024; 44:BSR20240117. [PMID: 39011584 PMCID: PMC11292472 DOI: 10.1042/bsr20240117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024] Open
Abstract
Botulinum neurotoxins (BoNTs) are valuable tools to unveil molecular mechanisms of exocytosis in neuronal and non-neuronal cells due to their peptidase activity on exocytic isoforms of SNARE proteins. They are produced by Clostridia as single-chain polypeptides that are proteolytically cleaved into light, catalytic domains covalently linked via disulfide bonds to heavy, targeting domains. This format of two subunits linked by disulfide bonds is required for the full neurotoxicity of BoNTs. We have generated a recombinant version of BoNT/B that consists of the light chain of the toxin fused to the protein transduction domain of the human immunodeficiency virus-1 (TAT peptide) and a hexahistidine tag. His6-TAT-BoNT/B-LC, expressed in Escherichia coli and purified by affinity chromatography, penetrated membranes and exhibited strong enzymatic activity, as evidenced by cleavage of the SNARE synaptobrevin from rat brain synaptosomes and human sperm cells. Proteolytic attack of synaptobrevin hindered exocytosis triggered by a calcium ionophore in the latter. The novel tool reported herein disrupts the function of a SNARE protein within minutes in cells that may or may not express the receptors for the BoNT/B heavy chain, and without the need for transient transfection or permeabilization.
Collapse
Affiliation(s)
- Micaela Vanina Buzzatto
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Argentina
| | | | - Pablo Ariel Álvarez
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Argentina
| | - María Paz Zizzias
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Argentina
| | - Luis Mariano Polo
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Argentina
| | - Claudia Nora Tomes
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina
| |
Collapse
|
19
|
Kim MJ, Ibrahim MM, Jablonski MM. Deepening insights into cholinergic agents for intraocular pressure reduction: systems genetics, molecular modeling, and in vivo perspectives. Front Mol Biosci 2024; 11:1423351. [PMID: 39130374 PMCID: PMC11310038 DOI: 10.3389/fmolb.2024.1423351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Parasympathetic activation in the anterior eye segment regulates various physiological functions. This process, mediated by muscarinic acetylcholine receptors, also impacts intraocular pressure (IOP) through the trabecular meshwork. While FDA-approved M3 muscarinic receptor (M3R) agonists exist for IOP reduction, their systemic cholinergic adverse effects pose limitations in clinical use. Therefore, advancing our understanding of the cholinergic system in the anterior segment of the eye is crucial for developing additional IOP-reducing agents with improved safety profiles. Systems genetics analyses were utilized to explore correlations between IOP and the five major muscarinic receptor subtypes. Molecular docking and dynamics simulations were applied to human M3R homology model using a comprehensive set of human M3R ligands and 1,667 FDA-approved or investigational drugs. Lead compounds from the modeling studies were then tested for their IOP-lowering abilities in mice. Systems genetics analyses unveiled positive correlations in mRNA expressions among the five major muscarinic receptor subtypes, with a negative correlation observed only in M3R with IOP. Through modeling studies, rivastigmine and edrophonium emerged as the most optimally suited cholinergic drugs for reducing IOP via a potentially distinct mechanism from pilocarpine or physostigmine. Subsequent animal studies confirmed comparable IOP reductions among rivastigmine, edrophonium, and pilocarpine, with longer durations of action for rivastigmine and edrophonium. Mild cholinergic adverse effects were observed with pilocarpine and rivastigmine but absent with edrophonium. These findings advance ocular therapeutics, suggesting a more nuanced role of the parasympathetic system in the anterior eye segment for reducing IOP than previously thought.
Collapse
Affiliation(s)
- Minjae J. Kim
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mohamed M. Ibrahim
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Monica M. Jablonski
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
20
|
Manav N, Jit BP, Kataria B, Sharma A. Cellular and epigenetic perspective of protein stability and its implications in the biological system. Epigenomics 2024; 16:879-900. [PMID: 38884355 PMCID: PMC11370918 DOI: 10.1080/17501911.2024.2351788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/30/2024] [Indexed: 06/18/2024] Open
Abstract
Protein stability is a fundamental prerequisite in both experimental and therapeutic applications. Current advancements in high throughput experimental techniques and functional ontology approaches have elucidated that impairment in the structure and stability of proteins is intricately associated with the cause and cure of several diseases. Therefore, it is paramount to deeply understand the physical and molecular confounding factors governing the stability of proteins. In this review article, we comprehensively investigated the evolution of protein stability, examining its emergence over time, its relationship with organizational aspects and the experimental methods used to understand it. Furthermore, we have also emphasized the role of Epigenetics and its interplay with post-translational modifications (PTMs) in regulating the stability of proteins.
Collapse
Affiliation(s)
- Nisha Manav
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
| | - Babita Kataria
- Department of Medical Oncology, National Cancer Institute, All India Institute of Medical Sciences, Jhajjar, 124105, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
- Department of Biochemistry, National Cancer Institute, All India Institute of Medical Sciences, Jhajjar, 124105, India
| |
Collapse
|
21
|
González-Castro TB, Rodríguez-Fuentes I, Tovilla-Zárate CA, Juárez-Rojop IE, Hernández-Díaz Y, López-Narváez ML, Uresti-Rivera EE, Hernández-Vicencio JL. The role of SKA2 on affective disorder, post-traumatic stress disorder and suicide behavior: systematic review and in silico analysis. Metab Brain Dis 2024; 39:1005-1014. [PMID: 38722562 DOI: 10.1007/s11011-024-01346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Genes involved in the hypothalamic-pituitary-adrenal axis may be a robust biomarker of psychiatric disorders. Genetic polymorphisms of the SKA2 gene are associated with several behavioral disorders. In this study, we embarked on a systematic search of all possible reports of genetic association with SKA2 and affective disorder, post-traumatic stress disorder, and suicide behavior; the functional consequences of nsSNPs were explored through computational tools with an in silico analysis. Eight eligible articles were included. Our study identified that SKA2 did not show association with risk of Major Depression Disorder. Epigenetic variation at SKA2 mediates vulnerability to Post-Traumatic Stress Disorder. Studies provide strong preliminary evidence that alterations at the SKA2 gene covary with types of suicide behavior, including suicidal ideation, attempts, and completions. Results from in silico analysis predicted that I22S, I22G, I78T, A15L, D18R, R25L, N42I, Y21S, K14I, K14L, and L60R were the most structurally and functionally significant nsSNPs in SKA2. Amino acid conservation analysis revealed that the amino acids were highly conserved and some dissimilarities of mutant type amino acids from wild-type amino acids such as charge, size, and hydrophobicity were observed. In the future, SKA2 gene have the potential to be evaluated as prognostic biomarkers for diagnosis and research.
Collapse
Affiliation(s)
- Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México
| | - Itzel Rodríguez-Fuentes
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México
| | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco, Tabasco, México
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Yazmín Hernández-Díaz
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, México.
| | | | - Edith Elena Uresti-Rivera
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | | |
Collapse
|
22
|
Chauhan R, Nate Z, Ike B, Kwabena Adu D, Alake J, Gill AAS, Miya L, Bachheti Thapliyal N, Karpoormath R. One pot fabrication of diamino naphthalene -AuNPs decorated graphene nanoplatform for the MRSA detection in the biological sample. Bioelectrochemistry 2024; 157:108674. [PMID: 38460467 DOI: 10.1016/j.bioelechem.2024.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/11/2024]
Abstract
Early monitoring of MRSA can effectively mitigate the disease risk by using Penicillin-binding protein 2a (PbP2a) biomarker. Diamino naphthalene-AuNPs decorated graphene (AuNPsGO-DN) nanocomposite was synthesized for a rapid and sensitive immunosensor detecting PbP2a. The synthesized AuNPsGO-DN nanocomposites were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and X-ray diffraction spectroscopy (XRD). Electrochemical characterization done with cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrical impedance spectroscopy (EIS) techniques. Anti-PbP2a monoclonal antibodies immobilized at AuNPsGO-DN/GCE via covalent bonding. AuNPs enhanced the electrode surface area and the antibodies' loading. Mercaptopropionic acid (MPA) was a linker between the AuNPs and antibodies, orientated the antibodies as opposite to the PbP2a antigen, and improved the sensitivity and specificity. The antiPbP2a/MPA/AuNPsGO-DN/GCE electrode displayed sensitive and selective detection towards the PbP2a antigen in phosphate buffer saline (PBS pH 7.4). The broad linear range from 0.01 to 8000 pg/mL was obtained with LOD of 0.154 pg/mL and 0.0239 pg/mL, respectively. A label-free, simple, and sensitive immunosensor was developed with a 98-106 % recovery rate in spiked biological samples. It shows the potential applicability of the developed immunoelectrode.
Collapse
Affiliation(s)
- Ruchika Chauhan
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Zondi Nate
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Blessing Ike
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Darko Kwabena Adu
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - John Alake
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Atal A S Gill
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Lungelo Miya
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Neeta Bachheti Thapliyal
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| |
Collapse
|
23
|
Chang YC, Cao Z, Chen WT, Huang WC. Effects of stand-alone polar residue on membrane protein stability and structure. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184325. [PMID: 38653423 DOI: 10.1016/j.bbamem.2024.184325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Helical membrane proteins generally have a hydrophobic nature, with apolar side chains comprising the majority of the transmembrane (TM) helices. However, whenever polar side chains are present in the TM domain, they often exert a crucial role in structural interactions with other polar residues, such as TM helix associations and oligomerization. Moreover, polar residues in the TM region also often participate in protein functions, such as the Schiff base bonding between Lys residues and retinal in rhodopsin-like membrane proteins. Although many studies have focused on these functional polar residues, our understanding of stand-alone polar residues that are energetically unfavored in TM helixes is limited. Here, we adopted bacteriorhodopsin (bR) as a model system and systematically mutated 17 of its apolar Leu or Phe residues to polar Asn. Stability measurements of the resulting mutants revealed that all of these polar substitutions reduced bR stability to various extents, and the extent of destabilization of each mutant bR is also correlated to different structural factors, such as the relative accessible surface area and membrane depth of the mutation site. Structural analyses of these Asn residues revealed that they form sidechain-to-backbone hydrogen bonds that alleviate the unfavorable energetics in hydrophobic and apolar surroundings. Our results indicate that membrane proteins are able to accommodate certain stand-alone polar residues in the TM region without disrupting overall structures.
Collapse
Affiliation(s)
- Yu-Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Zheng Cao
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA 90095, United States of America
| | - Wai-Ting Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
24
|
Roy AS, Feroz T, Islam MK, Munim MA, Supti DA, Antora NJ, Al Reza H, Gosh S, Bahadur NM, Alam MR, Hossain MS. A computational approach for structural and functional analyses of disease-associated mutations in the human CYLD gene. Genomics Inform 2024; 22:4. [PMID: 38907316 PMCID: PMC11184958 DOI: 10.1186/s44342-024-00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/26/2023] [Indexed: 06/23/2024] Open
Abstract
Tumor suppressor cylindromatosis protein (CYLD) regulates NF-κB and JNK signaling pathways by cleaving K63-linked poly-ubiquitin chain from its substrate molecules and thus preventing the progression of tumorigenesis and metastasis of the cancer cells. Mutations in CYLD can cause aberrant structure and abnormal functionality leading to tumor formation. In this study, we utilized several computational tools such as PANTHER, PROVEAN, PredictSNP, PolyPhen-2, PhD-SNP, PON-P2, and SIFT to find out deleterious nsSNPs. We also highlighted the damaging impact of those deleterious nsSNPs on the structure and function of the CYLD utilizing ConSurf, I-Mutant, SDM, Phyre2, HOPE, Swiss-PdbViewer, and Mutation 3D. We shortlisted 18 high-risk nsSNPs from a total of 446 nsSNPs recorded in the NCBI database. Based on the conservation profile, stability status, and structural impact analysis, we finalized 13 nsSNPs. Molecular docking analysis and molecular dynamic simulation concluded the study with the findings of two significant nsSNPs (R830K, H827R) which have a remarkable impact on binding affinity, RMSD, RMSF, radius of gyration, and hydrogen bond formation during CYLD-ubiquitin interaction. The principal component analysis compared native and two mutants R830K and H827R of CYLD that signify structural and energy profile fluctuations during molecular dynamic (MD) simulation. Finally, the protein-protein interaction network showed CYLD interacts with 20 proteins involved in several biological pathways that mutations can impair. Considering all these in silico analyses, our study recommended conducting large-scale association studies of nsSNPs of CYLD with cancer as well as designing precise medications against diseases associated with these polymorphisms.
Collapse
Affiliation(s)
- Arpita Singha Roy
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Tasmiah Feroz
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Kobirul Islam
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Adnan Munim
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Dilara Akhter Supti
- Department of Food Technology & Nutrition Sciences, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Nusrat Jahan Antora
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Supriya Gosh
- Department of Food Technology & Nutrition Sciences, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Rahanur Alam
- Department of Food Technology & Nutrition Sciences, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
25
|
Kuga T, Sunagawa N, Igarashi K. Effect of Free Cysteine Residues to Serine Mutation on Cellodextrin Phosphorylase. J Appl Glycosci (1999) 2024; 71:37-46. [PMID: 38863949 PMCID: PMC11163329 DOI: 10.5458/jag.jag.jag-2023_0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/19/2024] [Indexed: 06/13/2024] Open
Abstract
Cellodextrin phosphorylase (CDP) plays a key role in energy-efficient cellulose metabolism of anaerobic bacteria by catalyzing phosphorolysis of cellodextrin to produce cellobiose and glucose 1-phosphate, which can be utilized for glycolysis without consumption of additional ATP. As the enzymatic phosphorolysis reaction is reversible, CDP is also employed to produce cellulosic materials in vitro. However, the enzyme is rapidly inactivated by oxidation, which hinders in vitro utilization in aerobic environments. It has been suggested that the cysteine residues of CDP, which do not form disulfide bonds, are responsible for the loss of activity, and the aim of the present work was to test this idea. For this purpose, we replaced all 11 free cysteine residues of CDP from Acetivibrio thermocellus (formerly known as Clostridium thermocellum) with serine, which structurally resembles cysteine in our previous work. Herein, we show that the resulting CDP variant, named CDP-CS, has comparable activity to the wild-type enzyme, but shows increased stability to oxidation during long-term storage. X-Ray crystallography indicated that the mutations did not markedly alter the overall structure of the enzyme. Ensemble refinement of the crystal structures of CDP and CDP-CS indicated that the C372S and C625S mutations reduce structural fluctuations in the protein main chain, which may contribute to the increased stability of CDP-CS to oxidation.
Collapse
Affiliation(s)
- Tomohiro Kuga
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
26
|
Vijayanathan M, Vadakkepat AK, Mahendran KR, Sharaf A, Frandsen KEH, Bandyopadhyay D, Pillai MR, Soniya EV. Structural and mechanistic insights into Quinolone Synthase to address its functional promiscuity. Commun Biol 2024; 7:566. [PMID: 38745065 PMCID: PMC11093982 DOI: 10.1038/s42003-024-06152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
Quinolone synthase from Aegle marmelos (AmQNS) is a type III polyketide synthase that yields therapeutically effective quinolone and acridone compounds. Addressing the structural and molecular underpinnings of AmQNS and its substrate interaction in terms of its high selectivity and specificity can aid in the development of numerous novel compounds. This paper presents a high-resolution AmQNS crystal structure and explains its mechanistic role in synthetic selectivity. Additionally, we provide a model framework to comprehend structural constraints on ketide insertion and postulate that AmQNS's steric and electrostatic selectivity plays a role in its ability to bind to various core substrates, resulting in its synthetic diversity. AmQNS prefers quinolone synthesis and can accommodate large substrates because of its wide active site entrance. However, our research suggests that acridone is exclusively synthesized in the presence of high malonyl-CoA concentrations. Potential implications of functionally relevant residue mutations were also investigated, which will assist in harnessing the benefits of mutations for targeted polyketide production. The pharmaceutical industry stands to gain from these findings as they expand the pool of potential drug candidates, and these methodologies can also be applied to additional promising enzymes.
Collapse
Affiliation(s)
- Mallika Vijayanathan
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
- Department of Plant and Environment Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Abhinav Koyamangalath Vadakkepat
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE17HB, UK
| | - Kozhinjampara R Mahendran
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Abdoallah Sharaf
- SequAna Core Facility, Department of Biology, University of Konstanz, Konstanz, Germany
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Kristian E H Frandsen
- Department of Plant and Environment Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Debashree Bandyopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad, India
| | - M Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | - Eppurath Vasudevan Soniya
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India.
| |
Collapse
|
27
|
Hoda A, Bixheku X, Lika Çekani M. Computational analysis of non-synonymous single nucleotide polymorphism in the bovine PKLR geneComputational analysis of bovine PKLR gene. J Biomol Struct Dyn 2024; 42:4155-4168. [PMID: 37278385 DOI: 10.1080/07391102.2023.2219315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Pyruvate kinase (PKLR) is a potential candidate gene for milk production traits in cows. The main aim of this work is to investigate the potentially deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) in the PKLR gene by using several computational tools. In silico tools including SIFT, Polyphen-2, SNAP2 and Panther indicated only 18 nsSNPs out of 170 were considered deleterious. The analysis of proteins' stability change due to amino acid substitution performed by the use of the I-mutant, MUpro, CUPSTAT, SDM and Dynamut confirmed that 9 nsSNPs decreased protein stability. ConSurf analysis predicted that all 18 nsSNPs were evolutionary moderately or highly conserved. Two different domains of PKLR protein were revealed by the InterPro tool with 12 nsSNPs positioned in the Pyruvate Kinase barrel domain and 6 nsSNP present in the Pyruvate Kinase C Terminal. The PKLR 3D model was predicted by MODELLER software and validated via Ramachandran plot and Prosa which indicated a good quality model. The analysis of energy minimizations for the native and mutated structures was performed by SWISS PDB viewer with GROMOS 96 program and showed that 3 structural and 4 functional residues had total energy higher than the native model. These findings indicate that these mutant structures (rs441424814, rs449326723, rs476805413, rs472263384, rs474320860, rs475521477, rs441633284) were less stable than the native model. Molecular Dynamics simulations were performed to confirm the impact of nsSNPs on the protein structure and function. The present study provides useful information about functional SNPs that have an impact on PKLR protein in cattle.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anila Hoda
- Agricultural University of Tirana, Tirana, Albania
| | | | | |
Collapse
|
28
|
Siva Sankari G, James R, Payva F, Sivaramakrishnan V, Vineeth Kumar TV, Kanchi S, Santhy KS. Computational analysis of sodium-dependent phosphate transporter SLC20A1/PiT1 gene identifies missense variations C573F, and T58A as high-risk deleterious SNPs. J Biomol Struct Dyn 2024; 42:4072-4086. [PMID: 37286379 DOI: 10.1080/07391102.2023.2218939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
SLC20A1/PiT1 is a sodium-dependent inorganic phosphate transporter, initially recognized as the retroviral receptor for Gibbon Ape Leukemia Virus in humans. SNPs in SLC20A1 is associated with Combined Pituitary Hormone Deficiency and Sodium Lithium Counter transport. Using in silico techniques, we have screened the nsSNPs for their deleterious effect on the structure and function of SLC20A1. Screening with sequence and structure-based tools on 430 nsSNPs, filtered 17 nsSNPs which are deleterious. To evaluate the role of these SNPs, protein modeling and MD simulations were performed. A comparative analysis of model generated with SWISS-MODEL and AlphaFold shows that many residues are in the disallowed region of Ramachandran plot. Since SWISS-MODEL structure has a 25-residue deletion, the AlphaFold structure was used to perform MD simulation for equilibration and structure refinement. Further, to understand perturbation of energetics, we performed in silico mutagenesis and ΔΔG calculation using FoldX on MD refined structures, which yielded SNPs that are neutral (3), destabilizing (12) and stabilizing (2) on protein structure. Furthermore, to elucidate the impact of SNPs on structure, we performed MD simulations to discern the changes in RMSD, Rg, RMSF and LigPlot of interacting residues. RMSF profiles of representative SNPs revealed that A114V (neutral) and T58A (positive) were more flexible & C573F (negative) was more rigid compared to wild type, which is also reflected in the changes in number of local interacting residues in LigPlot and ΔΔG. Taken together, our results show that SNPs can lead to structural perturbations and impact the function of SLC20A1 with potential implications for disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Siva Sankari
- Centre for Wildlife Studies, Kerala Veterinary and Animal Sciences University, Wayanad, Kerala, India
| | - Remya James
- St. Joseph's College for Women, Alappuzha, Kerala, India
- Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Febby Payva
- St. Joseph's College for Women, Alappuzha, Kerala, India
- Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, India
| | | | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh, India
| | - K S Santhy
- Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| |
Collapse
|
29
|
Ayodele AO, Udosen B, Oluwagbemi OO, Oladipo EK, Omotuyi I, Isewon I, Nash O, Soremekun O, Fatumo S. An in-silico analysis of OGT gene association with diabetes mellitus. BMC Res Notes 2024; 17:89. [PMID: 38539217 PMCID: PMC10976716 DOI: 10.1186/s13104-024-06744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
O-GlcNAcylation is a nutrient-sensing post-translational modification process. This cycling process involves two primary proteins: the O-linked N-acetylglucosamine transferase (OGT) catalysing the addition, and the glycoside hydrolase OGA (O-GlcNAcase) catalysing the removal of the O-GlCNAc moiety on nucleocytoplasmic proteins. This process is necessary for various critical cellular functions. The O-linked N-acetylglucosamine transferase (OGT) gene produces the OGT protein. Several studies have shown the overexpression of this protein to have biological implications in metabolic diseases like cancer and diabetes mellitus (DM). This study retrieved 159 SNPs with clinical significance from the SNPs database. We probed the functional effects, stability profile, and evolutionary conservation of these to determine their fit for this research. We then identified 7 SNPs (G103R, N196K, Y228H, R250C, G341V, L367F, and C845S) with predicted deleterious effects across the four tools used (PhD-SNPs, SNPs&Go, PROVEAN, and PolyPhen2). Proceeding with this, we used ROBETTA, a homology modelling tool, to model the proteins with these point mutations and carried out a structural bioinformatics method- molecular docking- using the Glide model of the Schrodinger Maestro suite. We used a previously reported inhibitor of OGT, OSMI-1, as the ligand for these mutated protein models. As a result, very good binding affinities and interactions were observed between this ligand and the active site residues within 4Å of OGT. We conclude that these mutation points may be used for further downstream analysis as drug targets for treating diabetes mellitus.
Collapse
Affiliation(s)
- Abigail O Ayodele
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Brenda Udosen
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
| | - Olugbenga O Oluwagbemi
- Department of Computer Science and Information Technology, Faculty of Natural and Applied Sciences, Sol Plaatje University, 8301, Kimberley, South Africa
- Department of Mathematical Sciences, Stellenbosch University, 7602, Stellenbosch, South Africa
| | - Elijah K Oladipo
- Laboratory of Molecular Biology, Immunology and Bioinformatics, Department of Microbiology, Adeleke University, 232104, Ede, Nigeria
- Genomics Unit, Helix Biogen Institute, 210214, Ogbomoso, Nigeria
| | - Idowu Omotuyi
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado Ekiti, Nigeria
- Molecular Biology and Molecular Simulation Center (Mols&Sims), Ado Ekiti, Nigeria
| | - Itunuoluwa Isewon
- Computer and Information Sciences Department, Covenant University, Ota, Ogun State, Nigeria
| | - Oyekanmi Nash
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Opeyemi Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda
- MRC/UVRI and London School of Hygiene and Tropical Medicine London (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Segun Fatumo
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria.
- The African Computational Genomics (TACG) Research Group, MRC/UVRI, and LSHTM, Entebbe, Uganda.
- MRC/UVRI and London School of Hygiene and Tropical Medicine London (LSHTM) Uganda Research Unit, Entebbe, Uganda.
| |
Collapse
|
30
|
Osterne VJ, Pinto-Junior VR, Oliveira MV, Nascimento KS, Van Damme EJ, Cavada BS. Computational insights into the circular permutation roles on ConA binding and structural stability. Curr Res Struct Biol 2024; 7:100140. [PMID: 38559841 PMCID: PMC10979261 DOI: 10.1016/j.crstbi.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
The mechanisms behind Concanavalin A (ConA) circular permutation have been under investigation since 1985. Although a vast amount of information is available about this lectin and its applications, the exact purpose of its processing remains unclear. To shed light on this, this study employed computer simulations to compare the unprocessed ProConA with the mature ConA. This approach aimed to reveal the importance of the post-translational modifications, especially how they affect the lectin stability and carbohydrate-binding properties. To achieve these goals, we conducted 200 ns molecular dynamics simulations and trajectory analyses on the monomeric forms of ProConA and ConA (both unbound and in complex with D-mannose and the GlcNAc2Man9 N-glycan), as well as on their oligomeric forms. Our findings reveal significant stability differences between ProConA and ConA at both the monomeric and tetrameric levels, with ProConA exhibiting consistently lower stability parameters compared to ConA. In terms of carbohydrate binding properties, however, both lectins showed remarkable similarities in their interaction profiles, contact numbers, and binding free energies with D-mannose and the high-mannose N-glycan. Overall, our results suggest that the processing of ProConA significantly enhances the stability of the mature lectin, especially in maintaining the tetrameric oligomer, without substantially affecting its carbohydrate-binding properties.
Collapse
Affiliation(s)
- Vinicius J.S. Osterne
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Vanir R. Pinto-Junior
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60.440-970, Fortaleza, CE, Brazil
- Department of Physics, Federal University of Ceara, 60.440-970, Fortaleza, CE, Brazil
| | - Messias V. Oliveira
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60.440-970, Fortaleza, CE, Brazil
| | - Kyria S. Nascimento
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60.440-970, Fortaleza, CE, Brazil
| | - Els J.M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Benildo S. Cavada
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60.440-970, Fortaleza, CE, Brazil
| |
Collapse
|
31
|
Veríssimo NVP, Mussagy CU, Bento HBS, Pereira JFB, Santos-Ebinuma VDC. Ionic liquids and deep eutectic solvents for the stabilization of biopharmaceuticals: A review. Biotechnol Adv 2024; 71:108316. [PMID: 38199490 DOI: 10.1016/j.biotechadv.2024.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Biopharmaceuticals have allowed the control of previously untreatable diseases. However, their low solubility and stability still hinder their application, transport, and storage. Hence, researchers have applied different compounds to preserve and enhance the delivery of biopharmaceuticals, such as ionic liquids (ILs) and deep eutectic solvents (DESs). Although the biopharmaceutical industry can employ various substances for enhancing formulations, their effect will change depending on the properties of the target biomolecule and environmental conditions. Hence, this review organized the current state-of-the-art on the application of ILs and DESs to stabilize biopharmaceuticals, considering the properties of the biomolecules, ILs, and DESs classes, concentration range, types of stability, and effect. We also provided a critical discussion regarding the potential utilization of ILs and DESs in pharmaceutical formulations, considering the restrictions in this field, as well as the advantages and drawbacks of these substances for medical applications. Overall, the most applied IL and DES classes for stabilizing biopharmaceuticals were cholinium-, imidazolium-, and ammonium-based, with cholinium ILs also employed to improve their delivery. Interestingly, dilute and concentrated ILs and DESs solutions presented similar results regarding the stabilization of biopharmaceuticals. With additional investigation, ILs and DESs have the potential to overcome current challenges in biopharmaceutical formulation.
Collapse
Affiliation(s)
- Nathalia Vieira Porphirio Veríssimo
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil; Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, São Paulo University, CEP: 14040-020 Ribeirão Preto, SP, Brazil.
| | - Cassamo Usemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Heitor Buzetti Simões Bento
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| | | | - Valéria de Carvalho Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, CEP: 14801-902 Araraquara, SP, Brazil.
| |
Collapse
|
32
|
Simões R, Ribeiro AC, Dias R, Freitas V, Soares S, Pérez-Gregorio R. Unveiling the Immunomodulatory Potential of Phenolic Compounds in Food Allergies. Nutrients 2024; 16:551. [PMID: 38398875 PMCID: PMC10891931 DOI: 10.3390/nu16040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Food allergies are becoming ever more prevalent around the world. This pathology is characterized by the breakdown of oral tolerance to ingested food allergens, resulting in allergic reactions in subsequent exposures. Due to the possible severity of the symptoms associated with this pathology, new approaches to prevent it and reduce associated symptoms are of utmost importance. In this framework, dietary phenolic compounds appear as a tool with a not fully explored potential. Some phenolic compounds have been pointed to with the ability to modulate food allergies and possibly reduce their symptoms. These compounds can modulate food allergies through many different mechanisms, such as altering the bioaccessibility and bioavailability of potentially immunogenic peptides, by modulating the human immune system and by modulating the composition of the human microbiome that resides in the oral cavity and the gastrointestinal tract. This review deepens the state-of-the-art of the modulation of these mechanisms by phenolic compounds. While this review shows clear evidence that dietary supplementation with foods rich in phenolic compounds might constitute a new approach to the management of food allergies, it also highlights the need for further research to delve into the mechanisms of action of these compounds and decipher systematic structure/activity relationships.
Collapse
Affiliation(s)
- Rodolfo Simões
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| | - Ana Catarina Ribeiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Ricardo Dias
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Victor Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Susana Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
| | - Rosa Pérez-Gregorio
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, s/n, 4169-007 Porto, Portugal
- Food and Health Omics Group, Food and Agroecology Institute, University of Vigo, Campus As Lagoas, s/n, 32004 Ourense, Spain
- Food and Health Omics Group, Department of Chemistry and Biochemistry, Galicia Sur Health Research Institute (IISGS), SERGAS-UVIGO, 32002 Ourense, Spain
| |
Collapse
|
33
|
Das D, Sen V, Chakraborty G, Pillai V, Tambade R, Jonnalagadda PN, Rao AVSSN, Chittela RK. Quinaldine Red as a fluorescent probe for determining the melting temperature ( Tm) of proteins: a simple, rapid and high-throughput assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:950-956. [PMID: 38291911 DOI: 10.1039/d3ay01941a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Proteins play an important role in biological systems and several proteins are used in diagnosis, therapy, food industry etc. Thus, knowledge about the physical properties of the proteins is of utmost importance, which will aid in understanding their function and subsequent applications. The melting temperature (Tm) of a protein is one of the essential parameters which gives information about the stability of a protein under different conditions. In the present study, we have demonstrated a method for determining the Tm of proteins using the supramolecular interaction between Quinaldine Red (QR) and proteins. Using this method, we have determined the Tm of 5 proteins and compared our results with established protocols. Our results showed good agreement with the other methods and published values. The method developed in this study is inexpensive, quick, and devoid of complex instruments and pre/post-treatment of the samples. In addition, this method can be adopted for high throughput in multi-plate mode. Thus, this study projects a new methodology for Tm determination of various proteins with user friendly operation.
Collapse
Affiliation(s)
- Dhruv Das
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Vikram Sen
- UM-DAE Centre for Excellence in Basic Sciences, Vidyanagari, Mumbai-400098, India
| | - Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai-400085, India
| | - Vinayaki Pillai
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Rahul Tambade
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Padma Nilaya Jonnalagadda
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai-400085, India
| | | | - Rajani Kant Chittela
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
34
|
Wilson JN, Mendez DA, Dhoro F, Shevchenko N, Mascal M, Lund K, Fitzgerald R, DiPatrizio NV, Ortiz RM. Pseudocannabinoid H4CBD improves glucose response during advanced metabolic syndrome in OLETF rats independent of increase in insulin signaling proteins. Am J Physiol Regul Integr Comp Physiol 2024; 326:R100-R109. [PMID: 37899754 PMCID: PMC11283894 DOI: 10.1152/ajpregu.00125.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
Cannabidiol (CBD) use has grown exponentially more popular in the last two decades, particularly among older adults (>55 yr), though very little is known about the effects of CBD use during age-associated metabolic dysfunction. In addition, synthetic analogues of CBD have generated great interest because they can offer a chemically pure product, which is free of plant-associated contaminants. To assess the effects of a synthetic analogue of CBD (H4CBD) on advanced metabolic dysfunction, a cohort of 41-wk-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats were administered 200 mg H4CBD/kg by oral gavage for 4 wk. Animals were fed ad libitum and monitored alongside vehicle-treated OLETF and Long-Evans Tokushima Otsuka (LETO) rats, the lean-strain controls. An oral glucose-tolerance test (oGTT) was performed after 4 wk of treatment. When compared with vehicle-treated, OLETF rats, H4CBD decreased body mass (BM) by 15%, which was attributed to a significant loss in abdominal fat. H4CBD reduced glucose response (AUCglucose) by 29% (P < 0.001) and insulin resistance index (IRI) by 25% (P < 0.05) compared with OLETF rats. However, H4CBD did not statically reduce fasting blood glucose or plasma insulin, despite compensatory increases in skeletal muscle native insulin receptor (IR) protein expression (54%; P < 0.05). H4CBD reduced circulating adiponectin (40%; P < 0.05) and leptin (47%; P < 0.05) and increased ghrelin (75%; P < 0.01) compared with OLETF. Taken together, a chronic, high dose of H4CBD may improve glucose response, independent of static changes in insulin signaling, and these effects are likely a benefit of the profound loss of visceral adiposity.NEW & NOTEWORTHY Cannabis product use has grown in the last two decades despite the lack of research on Cannabidiol (CBD)-mediated effects on metabolism. Here, we provide seminal data on CBD effects during age-associated metabolic dysfunction. We gave 41-wk-old OLETF rats 200 mg H4CBD/kg by mouth for 4 wk and noted a high dose of H4CBD may improve glucose response, independent of static changes in insulin signaling, and these effects are likely a benefit of loss of visceral adiposity.
Collapse
Affiliation(s)
- Jessica N Wilson
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, United States
| | - Dora A Mendez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, United States
| | - Francis Dhoro
- Department of Chemistry, University of California, Davis, California, United States
| | - Nikolay Shevchenko
- Department of Chemistry, University of California, Davis, California, United States
| | - Mark Mascal
- Department of Chemistry, University of California, Davis, California, United States
| | - Kyle Lund
- Department of Pathology, University of California, San Diego, California, United States
| | - Robert Fitzgerald
- Department of Pathology, University of California, San Diego, California, United States
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, United States
| | - Rudy M Ortiz
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, United States
| |
Collapse
|
35
|
Kotian NP, Prabhu A, Tender T, Raghu Chandrashekar H. Methylglyoxal Induced Modifications to Stabilize Therapeutic Proteins: A Review. Protein J 2024; 43:39-47. [PMID: 38017314 DOI: 10.1007/s10930-023-10166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
Therapeutic proteins are potent, fast-acting drugs that are highly effective in treating various conditions. Medicinal protein usage has increased in the past 10 years, and it will evolve further as we better understand disease molecular pathways. However, it is associated with high processing costs, limited stability, difficulty in being administered as an oral medication, and the inability of large proteins to penetrate tissue and reach their target locations. Many methods have been developed to overcome the problems with the stability and chaperone activity of therapeutic proteins, viz., the addition of external agents (changing the properties of the surrounding solvent by using stabilizing excipients, e.g., amino acids, sugars, polyols) and internal agents (chemical modifications that influence its structural properties, e.g., mutations, glycosylation). However, these methods must completely clear protein instability and chaperone issues. There is still much work to be done on finetuning chaperone proteins to increase their biological efficacy and stability. Methylglyoxal (MGO), a potent dicarbonyl compound, reacts with proteins and forms covalent cross-links. Much research on MGO scavengers has been conducted since they are known to alter protein structure, which may result in alterations in biological activity and stability. MGO is naturally produced within our body, however, its impact on chaperones and protein stability needs to be better understood and seems to vary based on concentration. This review highlights the efforts of several research groups on the effect of MGO on various proteins. It also addresses the impact of MGO on a client protein, α-crystallin, to understand the potential solutions to the protein's chaperone and stability problems.
Collapse
Affiliation(s)
- Nainika Prashant Kotian
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anusha Prabhu
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Tenzin Tender
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Hariharapura Raghu Chandrashekar
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
36
|
Joy A, Biswas R. Significance of the Disulfide Bridge in the Structure and Stability of Metalloprotein Azurin. J Phys Chem B 2024; 128:973-984. [PMID: 38236012 DOI: 10.1021/acs.jpcb.3c07089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Metalloproteins make up a class of proteins that incorporate metal ions into their structures, enabling them to perform essential functions in biological systems, such as catalysis and electron transport. Azurin is one such metalloprotein with copper cofactor, having a β-barrel structure with exceptional thermal stability. The copper metal ion is coordinated at one end of the β-barrel structure, and there is a disulfide bond at the opposite end. In this study, we explore the effect of this disulfide bond in the high thermal stability of azurin by analyzing both the native S-S bonded and S-S nonbonded (S-S open) forms using temperature replica exchange molecular dynamics (REMD). Similar to experimental observations, we find a 35 K decrease in denaturation temperature for S-S open azurin compared to that of the native holo form (420 K). As observed in the case of native holo azurin, the unfolding process of the S-S open form also started with disruptions of the α-helix. The free energy surfaces of the unfolding process revealed that the denaturation event of the S-S open form progresses through different sets of conformational ensembles. Subsequently, we compared the stabilities of individual β-sheet strands of both the S-S bonded and the S-S nonbonded forms of azurin. Further, we examined the contacts between individual residues for the central structures from the free energy surfaces of the S-S nonbonded form. The microscopic origin of the lowering in the denaturation temperature is further supplemented by thermodynamic analysis.
Collapse
Affiliation(s)
- Albin Joy
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu, Tirupati, Andhra Pradesh, India 517619
| | - Rajib Biswas
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu, Tirupati, Andhra Pradesh, India 517619
| |
Collapse
|
37
|
Xu B, Liang L, Jiang Y, Zhao Z. Investigating the ibrutinib resistance mechanism of L528W mutation on Bruton's tyrosine kinase via molecular dynamics simulations. J Mol Graph Model 2024; 126:108623. [PMID: 37716293 DOI: 10.1016/j.jmgm.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Drug resistance to Bruton's Tyrosine Kinase (BTK) inhibitors presents a challenge in treating B-cell malignancies, and the mechanism behind drug resistance remains unclear. In this study, we focused on the BTK L528W mutation and investigated the underlying mechanisms of resistance to ibrutinib (including prototype and its active metabolite from, PCI-45227) using a combination of bioinformatics analysis, and molecular dynamics (MD) simulations. Protein stability of wild type (WT) BTK and L528W mutant was predicted using DUET, PoPMuSiC, and I-Mutant2.0. We performed MD simulations of six systems, apo-WT, metabolite-WT, prototype-WT and their mutants, to analyze the significant conformational and BTK-inhibitor binding affinity changes induced by the L528W mutation. Results show that the L528W mutation reduces the conformational stability of BTK compared to the WT. Principal component analysis (PCA) based free energy landscape (FEL) analysis shows that the L528W mutant ensemble tends to form more conformation clusters and exhibit higher levels of local minima than the WT counterpart. The interaction analysis reveal that the L528W mutation disrupts the strong hydrogen bond between Cys481 and inhibitors and reduces the number of hydrogen bonds between inhibitors and BTK in the L528W mutant complex structures compared to the WT. Porcupine plot analysis in association with cross-correlation analysis show the high-intensity flexible motion exhibited by the P-loop region. MM/GBSA calculations show that the L528W mutation in metabolite-BTK and prototype-BTK complexes increases binding free energy compared to the WT, with a reduction in binding affinity confirmed by per-residue energy decomposition. Specifically, the binding free energy increases from -57.86 kcal/mol to -48.26 kcal/mol for the metabolite-BTK complex and from -62.04 kcal/mol to -50.55 kcal/mol for the prototype-BTK complex. Overall, our study finds that the L528W mutation reduces BTK stability, decreases binding affinity, and leads to drug resistance and potential disease recurrence.
Collapse
Affiliation(s)
- Biyu Xu
- Department of Hematology, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan City, 523050, Guangdong Province, China; Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Affiliated Dongguan Hospital, Southern Medical University, Dongguan City, 523050, Guangdong Province, China
| | - Luguang Liang
- Department of Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan City, 523710, Guangdong Province, China
| | - Yirong Jiang
- Department of Hematology, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan City, 523050, Guangdong Province, China; Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Affiliated Dongguan Hospital, Southern Medical University, Dongguan City, 523050, Guangdong Province, China.
| | - Zuguo Zhao
- Department of Microbiology and Immunology of Basical Medicine of Guangdong Medical University, Dongguan City, 523808, Guangdong Province, China; Department of Intensive Care Unit, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan City, 523710, Guangdong Province, China.
| |
Collapse
|
38
|
Galano-Frutos JJ, Nerín-Fonz F, Sancho J. Calculation of Protein Folding Thermodynamics Using Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:7791-7806. [PMID: 37955428 PMCID: PMC10751793 DOI: 10.1021/acs.jcim.3c01107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023]
Abstract
Despite advances in artificial intelligence methods, protein folding remains in many ways an enigma to be solved. Accurate computation of protein folding energetics could help drive fields such as protein and drug design and genetic interpretation. However, the challenge of calculating the state functions governing protein folding from first-principles remains unaddressed. We present here a simple approach that allows us to accurately calculate the energetics of protein folding. It is based on computing the energy of the folded and unfolded states at different temperatures using molecular dynamics simulations. From this, two essential quantities (ΔH and ΔCp) are obtained and used to calculate the conformational stability of the protein (ΔG). With this approach, we have successfully calculated the energetics of two- and three-state proteins, representatives of the major structural classes, as well as small stability differences (ΔΔG) due to changes in solution conditions or variations in an amino acid residue.
Collapse
Affiliation(s)
- Juan J. Galano-Frutos
- Department
of Biochemistry, Molecular and Cell Biology, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Biocomputation
and Complex Systems Physics Institute (BIFI), Joint Unit GBs-CSIC, University of Zaragoza, 50018 Zaragoza, Spain
| | - Francho Nerín-Fonz
- Department
of Biochemistry, Molecular and Cell Biology, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
| | - Javier Sancho
- Department
of Biochemistry, Molecular and Cell Biology, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Biocomputation
and Complex Systems Physics Institute (BIFI), Joint Unit GBs-CSIC, University of Zaragoza, 50018 Zaragoza, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
39
|
Muellers SN, Allen KN, Whitty A. MEnTaT: A machine-learning approach for the identification of mutations to increase protein stability. Proc Natl Acad Sci U S A 2023; 120:e2309884120. [PMID: 38039271 PMCID: PMC10710055 DOI: 10.1073/pnas.2309884120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/16/2023] [Indexed: 12/03/2023] Open
Abstract
Enhancing protein thermal stability is important for biomedical and industrial applications as well as in the research laboratory. Here, we describe a simple machine-learning method which identifies amino acid substitutions that contribute to thermal stability based on comparison of the amino acid sequences of homologous proteins derived from bacteria that grow at different temperatures. A key feature of the method is that it compares the sequences based not simply on the amino acid identity, but rather on the structural and physicochemical properties of the side chain. The method accurately identified stabilizing substitutions in three well-studied systems and was validated prospectively by experimentally testing predicted stabilizing substitutions in a polyamine oxidase. In each case, the method outperformed the widely used bioinformatic consensus approach. The method can also provide insight into fundamental aspects of protein structure, for example, by identifying how many sequence positions in a given protein are relevant to temperature adaptation.
Collapse
Affiliation(s)
| | - Karen N. Allen
- Department of Chemistry, Boston University, Boston, MA02215
| | - Adrian Whitty
- Department of Chemistry, Boston University, Boston, MA02215
| |
Collapse
|
40
|
Behairy MY, Eid RA, Otifi HM, Mohammed HM, Alshehri MA, Asiri A, Aldehri M, Zaki MSA, Darwish KM, Elhady SS, El-Shaer NH, Eldeen MA. Unraveling Extremely Damaging IRAK4 Variants and Their Potential Implications for IRAK4 Inhibitor Efficacy. J Pers Med 2023; 13:1648. [PMID: 38138875 PMCID: PMC10744719 DOI: 10.3390/jpm13121648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin-1-receptor-associated kinase 4 (IRAK4) possesses a crucial function in the toll-like receptor (TLR) signaling pathway, and the dysfunction of this molecule could lead to various infectious and immune-related diseases in addition to cancers. IRAK4 genetic variants have been linked to various types of diseases. Therefore, we conducted a comprehensive analysis to recognize the missense variants with the most damaging impacts on IRAK4 with the employment of diverse bioinformatics tools to study single-nucleotide polymorphisms' effects on function, stability, secondary structures, and 3D structure. The residues' location on the protein domain and their conservation status were investigated as well. Moreover, docking tools along with structural biology were engaged in analyzing the SNPs' effects on one of the developed IRAK4 inhibitors. By analyzing IRAK4 gene SNPs, the analysis distinguished ten variants as the most detrimental missense variants. All variants were situated in highly conserved positions on an important protein domain. L318S and L318F mutations were linked to changes in IRAK4 secondary structures. Eight SNPs were revealed to have a decreasing effect on the stability of IRAK4 via both I-Mutant 2.0 and Mu-Pro tools, while Mu-Pro tool identified a decreasing effect for the G198E SNP. In addition, detrimental effects on the 3D structure of IRAK4 were also discovered for the selected variants. Molecular modeling studies highlighted the detrimental impact of these identified SNP mutant residues on the druggability of the IRAK4 ATP-binding site towards the known target inhibitor, HG-12-6, as compared to the native protein. The loss of important ligand residue-wise contacts, altered protein global flexibility, increased steric clashes, and even electronic penalties at the ligand-binding site interfaces were all suggested to be associated with SNP models for hampering the HG-12-6 affinity towards IRAK4 target protein. This given model lays the foundation for the better prediction of various disorders relevant to IRAK4 malfunction and sheds light on the impact of deleterious IRAK4 variants on IRAK4 inhibitor efficacy.
Collapse
Affiliation(s)
- Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (R.A.E.); (H.M.O.)
| | - Hassan M. Otifi
- Department of Pathology, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (R.A.E.); (H.M.O.)
| | - Heitham M. Mohammed
- Department of Anatomy, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (H.M.M.); (M.A.); (M.S.A.Z.)
| | - Mohammed A. Alshehri
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (M.A.A.)
| | - Ashwag Asiri
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (M.A.A.)
| | - Majed Aldehri
- Department of Anatomy, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (H.M.M.); (M.A.); (M.S.A.Z.)
| | - Mohamed Samir A. Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (H.M.M.); (M.A.); (M.S.A.Z.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nahla H. El-Shaer
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt;
| | - Muhammad Alaa Eldeen
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
41
|
Al-nakhle HH, Yagoub HS, Anbarkhan SH, Alamri GA, Alsubaie NM. In Silico Evaluation of Coding and Non-Coding nsSNPs in the Thrombopoietin Receptor ( MPL) Proto-Oncogene: Assessing Their Influence on Protein Stability, Structure, and Function. Curr Issues Mol Biol 2023; 45:9390-9412. [PMID: 38132435 PMCID: PMC10742084 DOI: 10.3390/cimb45120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The thrombopoietin receptor (MPL) gene is a critical regulator of hematopoiesis, and any alterations in its structure or function can result in a range of hematological disorders. Non-synonymous single nucleotide polymorphisms (nsSNPs) in MPL have the potential to disrupt normal protein function, prompting our investigation into the most deleterious MPL SNPs and the associated structural changes affecting protein-protein interactions. We employed a comprehensive suite of bioinformatics tools, including PredictSNP, InterPro, ConSurf, I-Mutant2.0, MUpro, Musitedeep, Project HOPE, STRING, RegulomeDB, Mutpred2, CScape, and CScape Somatic, to analyze 635 nsSNPs within the MPL gene. Among the analyzed nsSNPs, PredictSNP identified 28 as significantly pathogenic, revealing three critical functional domains within MPL. Ten of these nsSNPs exhibited high conservation scores, indicating potential effects on protein structure and function, while 14 were found to compromise MPL protein stability. Although the most harmful nsSNPs did not directly impact post-translational modification sites, 13 had the capacity to substantially alter the protein's physicochemical properties. Some mutations posed a risk to vital protein-protein interactions crucial for hematological functions, and three non-coding region nsSNPs displayed significant regulatory potential with potential implications for hematopoiesis. Furthermore, 13 out of 21 nsSNPs evaluated were classified as high-risk pathogenic variants by Mutpred2. Notably, amino acid alterations such as C291S, T293N, D295G, and W435C, while impactful on protein stability and function, were deemed non-oncogenic "passenger" mutations. Our study underscores the substantial impact of missense nsSNPs on MPL protein structure and function. Given MPL's central role in hematopoiesis, these mutations can significantly disrupt hematological processes, potentially leading to a variety of disorders. The identified high-risk pathogenic nsSNPs may hold promise as potential biomarkers or therapeutic targets for hematological diseases. This research lays the foundation for future investigations into the MPL gene's role in the realm of hematological health and diseases.
Collapse
Affiliation(s)
- Hakeemah H. Al-nakhle
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah 42353, Saudi Arabia; (H.S.Y.); (S.H.A.); (N.M.A.)
| | - Hind S. Yagoub
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah 42353, Saudi Arabia; (H.S.Y.); (S.H.A.); (N.M.A.)
- Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman 14415, Sudan
| | - Sadin H. Anbarkhan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah 42353, Saudi Arabia; (H.S.Y.); (S.H.A.); (N.M.A.)
| | - Ghadah A. Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah 42353, Saudi Arabia; (H.S.Y.); (S.H.A.); (N.M.A.)
| | - Norah M. Alsubaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah 42353, Saudi Arabia; (H.S.Y.); (S.H.A.); (N.M.A.)
| |
Collapse
|
42
|
Mahran R, Vello N, Komulainen A, Malakoutikhah M, Härmä H, Kopra K. Isothermal chemical denaturation assay for monitoring protein stability and inhibitor interactions. Sci Rep 2023; 13:20066. [PMID: 37973851 PMCID: PMC10654576 DOI: 10.1038/s41598-023-46720-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Thermal shift assay (TSA) with altered temperature has been the most widely used method for monitoring protein stability for drug research. However, there is a pressing need for isothermal techniques as alternatives. This urgent demand arises from the limitations of TSA, which can sometimes provide misleading ranking of protein stability and fail to accurately reflect protein stability under physiological conditions. Although differential scanning fluorimetry has significantly improved throughput in comparison to differential scanning calorimetry and differential static light scattering throughput, all these methods exhibit moderate sensitivity. In contrast, current isothermal chemical denaturation (ICD) techniques may not offer the same throughput capabilities as TSA, but it provides more precise information about protein stability and interactions. Unfortunately, ICD also suffers from limited sensitivity, typically in micromolar range. We have developed a novel method to overcome these challenges, namely throughput and sensitivity. The novel Förster Resonance Energy Transfer (FRET)-Probe as an external probe is highly applicable to isothermal protein stability monitoring but also to conventional TSA. We have investigated ICD for multiple proteins with focus on KRASG12C with covalent inhibitors and three chemical denaturants performed at nanomolar protein concentration. Data showed corresponding inhibitor-induced stabilization of KRASG12C to those reported by nucleotide exchange assay.
Collapse
Affiliation(s)
- Randa Mahran
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland.
| | - Niklas Vello
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Anita Komulainen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | | | - Harri Härmä
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| |
Collapse
|
43
|
Lee YT, Sickmier EA, Grigoriu S, Castro J, Boriack-Sjodin PA. Crystal structures of the DExH-box RNA helicase DHX9. Acta Crystallogr D Struct Biol 2023; 79:980-991. [PMID: 37860960 PMCID: PMC10619421 DOI: 10.1107/s2059798323007611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023] Open
Abstract
DHX9 is a DExH-box RNA helicase with versatile functions in transcription, translation, RNA processing and regulation of DNA replication. DHX9 has recently emerged as a promising target for oncology, but to date no mammalian structures have been published. Here, crystal structures of human, dog and cat DHX9 bound to ADP are reported. The three mammalian DHX9 structures share identical structural folds. Additionally, the overall architecture and the individual domain structures of DHX9 are highly conserved with those of MLE, the Drosophila orthologue of DHX9 previously solved in complex with RNA and a transition-state analogue of ATP. Due to differences in the bound substrates and global domain orientations, the localized loop conformations and occupancy of dsRNA-binding domain 2 (dsRBD2) differ between the mammalian DHX9 and MLE structures. The combined effects of the structural changes considerably alter the RNA-binding channel, providing an opportunity to compare active and inactive states of the helicase. Finally, the mammalian DHX9 structures provide a potential tool for structure-based drug-design efforts.
Collapse
Affiliation(s)
- Young-Tae Lee
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | | | - Simina Grigoriu
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | - Jennifer Castro
- Accent Therapeutics, 1050 Waltham Street, Lexington, MA 02421, USA
| | | |
Collapse
|
44
|
Hagströmer CJ, Hyld Steffen J, Kreida S, Al-Jubair T, Frick A, Gourdon P, Törnroth-Horsefield S. Structural and functional analysis of aquaporin-2 mutants involved in nephrogenic diabetes insipidus. Sci Rep 2023; 13:14674. [PMID: 37674034 PMCID: PMC10482962 DOI: 10.1038/s41598-023-41616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
Aquaporins are water channels found in the cell membrane, where they allow the passage of water molecules in and out of the cells. In the kidney collecting duct, arginine vasopressin-dependent trafficking of aquaporin-2 (AQP2) fine-tunes reabsorption of water from pre-urine, allowing precise regulation of the final urine volume. Point mutations in the gene for AQP2 may disturb this process and lead to nephrogenic diabetes insipidus (NDI), whereby patients void large volumes of highly hypo-osmotic urine. In recessive NDI, mutants of AQP2 are retained in the endoplasmic reticulum due to misfolding. Here we describe the structural and functional characterization of three AQP2 mutations associated with recessive NDI: T125M and T126M, situated close to a glycosylation site and A147T in the transmembrane region. Using a proteoliposome assay, we show that all three mutants permit the transport of water. The crystal structures of T125M and T126M together with biophysical characterization of all three mutants support that they retain the native structure, but that there is a significant destabilization of A147T. Our work provides unique molecular insights into the mechanisms behind recessive NDI as well as deepens our understanding of how misfolded proteins are recognized by the ER quality control system.
Collapse
Affiliation(s)
| | - Jonas Hyld Steffen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Kreida
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Tamim Al-Jubair
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Anna Frick
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
45
|
Chapa-Villarreal FA, Miller M, Rodriguez-Cruz JJ, Pérez-Carlos D, Peppas NA. Self-assembled block copolymer biomaterials for oral delivery of protein therapeutics. Biomaterials 2023; 300:122191. [PMID: 37295223 DOI: 10.1016/j.biomaterials.2023.122191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Protein therapeutics have guided a transformation in disease treatment for various clinical conditions. They have been successful in numerous applications, but administration of protein therapeutics has been limited to parenteral routes which can decrease patient compliance as they are invasive and painful. In recent years, the synergistic relationship of novel biomaterials with modern protein therapeutics has been crucial in the treatment of diseases that were once thought of as incurable. This has guided the development of a variety of alternative administration routes, but the oral delivery of therapeutics remains one of the most desirable due to its ease of administration. This review addresses important aspects of micellar structures prepared by self-assembled processes with applications for oral delivery. These two characteristics have not been placed together in previous literature within the field. Therefore, we describe the barriers for delivery of protein therapeutics, and we concentrate in the oral/transmucosal pathway where drug carriers must overcome several chemical, physical, and biological barriers to achieve a successful therapeutic effect. We critically discuss recent research on biomaterials systems for delivering such therapeutics with an emphasis on self-assembled synthetic block copolymers. Polymerization methods and nanoparticle preparation techniques are similarly analyzed as well as relevant work in this area. Based on our own and others' research, we analyze the use of block copolymers as therapeutic carriers and their promise in treating a variety of diseases, with emphasis on self-assembled micelles for the next generation of oral protein therapeutic systems.
Collapse
Affiliation(s)
- Fabiola A Chapa-Villarreal
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Matthew Miller
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - J Jesus Rodriguez-Cruz
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Diego Pérez-Carlos
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Nicholas A Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
46
|
Hasan MM, Nabi AN, Yasmin T. Comprehensive analysis predicting effects of deleterious SNPs of human progesterone receptor gene on its structure and functions: a computational approach. J Biomol Struct Dyn 2023; 41:8002-8017. [PMID: 36166622 DOI: 10.1080/07391102.2022.2127908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
Abstract
Progesterone receptor plays a crucial role in the development of the mammary gland and breast cancer. Single nucleotide polymorphisms (SNPs) within its gene, PGR, are associated with the risk of miscarriages and preterm birth as well as many cancers across different populations. The main aim of this work is to investigate the most deleterious SNPs in the PGR gene to identify potential biomarkers for various disease susceptibility and treatments. Both sequence and structure-based computational approaches were adopted and in total 11 nsSNPs have been filtered out of 674 nsSNPs along with seven non-coding SNPs. R740Q, I744T and D746E belonged to a mutation cluster. R740Q, D746E along with S865L altered H-bond interactions within the receptor. The same mutations have been found to be associated with several cancers including uterine and breast cancer among others. It is, therefore, possible that the high-risk SNPs associated with cancers may exert their effect by causing changes in the protein structure, particularly in its bonding patterns, and thus affecting its function. In addition, seven non-coding SNPs that were located in the UTR region created a new miRNA site while three SNPs disrupted a conserved miRNA site. These high-risk SNPs can play an instrumental role in generating a dataset of the PGR gene's SNPs. Thus, the present study may pave the way to design and develop novel therapeutics for overcoming the challenges associated with certain cancers and pregnancy that result from a change in the protein structure and function due to the SNP mutations in the PGR gene.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M Mahbub Hasan
- Population Genetics Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Ahm Nurun Nabi
- Population Genetics Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Tahirah Yasmin
- Population Genetics Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
47
|
Chou Y, Hsieh C, Chen Y, Wang T, Wu W, Hwang C. Characterization of the pH-dependent protein stability of 3α-hydroxysteroid dehydrogenase/carbonyl reductase by differential scanning fluorimetry. Protein Sci 2023; 32:e4710. [PMID: 37354013 PMCID: PMC10357940 DOI: 10.1002/pro.4710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
The characterization of protein stability is essential for understanding the functions of proteins. Hydroxysteroid dehydrogenase is involved in the biosynthesis of steroid hormones and the detoxification of xenobiotic carbonyl compounds. However, the stability of hydroxysteroid dehydrogenases has not yet been characterized in detail. Here, we determined the changes in Gibbs free energy, enthalpy, entropy, and heat capacity of unfolding for 3α-hydroxysteroid dehydrogenase/carbonyl reductase (3α-HSD/CR) by varying the pH and urea concentration through differential scanning fluorimetry and presented pH-dependent protein stability as a function of temperature. 3α-HSD/CR shows the maximum stability of 30.79 kJ mol-1 at 26.4°C, pH 7.6 and decreases to 7.74 kJ mol-1 at 25.7°C, pH 4.5. The change of heat capacity of 30.25 ± 1.38 kJ mol-1 K-1 is obtained from the enthalpy of denaturation as a function of melting temperature at varied pH. Two proton uptakes are linked to protein unfolding from residues with differential pKa of 4.0 and 6.5 in the native and denatured states, respectively. The large positive heat capacity change indicated that hydrophobic interactions played an important role in the folding of 3α-HSD/CR. These studies reveal the mechanism of protein unfolding in HSD and provide a convenient method to extract thermodynamic parameters for characterizing protein stability using differential scanning fluorimetry.
Collapse
Affiliation(s)
- Yun‐Hao Chou
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Chia‐Lin Hsieh
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Yan‐Liang Chen
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Tzu‐Pin Wang
- Department of Medicinal and Applied ChemistryKaohsiung Medical UniversityKaohsiungTaiwan
| | - Wen‐Jeng Wu
- Department of Urology, Chung‐Ho Memorial HospitalKaohsiung Medical UniversityKaohsiungTaiwan
| | - Chi‐Ching Hwang
- Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Biochemistry, Faculty of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiungTaiwan
| |
Collapse
|
48
|
Barik S, Mahapatra A, Preeyanka N, Sarkar M. Assessing the impact of choline chloride and benzyltrimethylammonium chloride-based deep eutectic solvents on the structure and conformational dynamics of bovine serum albumin: a combined steady-state, time-resolved fluorescence and fluorescence correlation spectroscopic study. Phys Chem Chem Phys 2023; 25:20093-20108. [PMID: 37462948 DOI: 10.1039/d3cp01380d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Although deep eutectic solvents (DESs) are regarded as useful substitutes for both ionic liquids and common organic solvents for storage and applications of biomolecules, it is still unclear whether all DESs or only specific types of DESs will be suitable for the said purpose. In view of this, the current study aims to report on the structure and conformational dynamics of BSA in the presence of two DESs, namely ethaline (choline chloride:ethylene glycol) and BMEG (benzyltrimethyl ammonium chloride:ethylene glycol), having the same hydrogen bond donor but with a distinct hydrogen bond acceptor, so that how small changes in one constituent of a DES alter the protein-DES interaction at the molecular level can be understood. The protein-DES interaction is investigated by exploiting both ensemble-averaged measurements like steady-state and time-resolved fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and single-molecule sensitive techniques based on fluorescence correlation spectroscopy (FCS). Interestingly, the results obtained from these studies have demonstrated that while a very small quantity of BMEG completely unfolds the native structure of the protein, it remains in a partially unfolded state even at very high ethaline content. More interestingly, it has been found that at very high concentrations of BMEG, the unfolded protein undergoes enhanced protein-protein interaction resulting in the aggregation of BSA. All of the results obtained from these investigations have essentially suggested that both protein-DES interaction and interspecies interaction among the constituent of DESs play a crucial role in governing the overall stability and conformational dynamics of the protein in DESs.
Collapse
Affiliation(s)
- Sahadev Barik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
- Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Amita Mahapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
- Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Naupada Preeyanka
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
- Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| | - Moloy Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
- Centre of Interdisciplinary Science (CIS), NISER, Bhubaneswar, Jatni, Khurda, 752050, Odisha, India
| |
Collapse
|
49
|
Zhang R, Akhtar N, Wani AK, Raza K, Kaushik V. Discovering Deleterious Single Nucleotide Polymorphisms of Human AKT1 Oncogene: An In Silico Study. Life (Basel) 2023; 13:1532. [PMID: 37511907 PMCID: PMC10381612 DOI: 10.3390/life13071532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND AKT1 is a serine/threonine kinase necessary for the mediation of apoptosis, angiogenesis, metabolism, and cell proliferation in both normal and cancerous cells. The mutations in the AKT1 gene have been associated with different types of cancer. Further, the AKT1 gene mutations are also reported to be associated with other diseases such as Proteus syndrome and Cowden syndromes. Hence, this study aims to identify the deleterious AKT1 missense SNPs and predict their effect on the function and structure of the AKT1 protein using various computational tools. METHODS Extensive in silico approaches were applied to identify deleterious SNPs of the human AKT1 gene and assessment of their impact on the function and structure of the AKT1 protein. The association of these highly deleterious missense SNPs with different forms of cancers was also analyzed. The in silico approach can help in reducing the cost and time required to identify SNPs associated with diseases. RESULTS In this study, 12 highly deleterious SNPs were identified which could affect the structure and function of the AKT1 protein. Out of the 12, four SNPs-namely, G157R, G159V, G336D, and H265Y-were predicted to be located at highly conserved residues. G157R could affect the ligand binding to the AKT1 protein. Another highly deleterious SNP, R273Q, was predicted to be associated with liver cancer. CONCLUSIONS This study can be useful for pharmacogenomics, molecular diagnosis of diseases, and developing inhibitors of the AKT1 oncogene.
Collapse
Affiliation(s)
- Ruojun Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Vikas Kaushik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| |
Collapse
|
50
|
Al-Nakhle HH, Khateb AM. Comprehensive In Silico Characterization of the Coding and Non-Coding SNPs in Human Dectin-1 Gene with the Potential of High-Risk Pathogenicity Associated with Fungal Infections. Diagnostics (Basel) 2023; 13:diagnostics13101785. [PMID: 37238269 DOI: 10.3390/diagnostics13101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The human C-type lectin domain family 7 member A (CLEC7A) gene encodes a Dectin-1 protein that recognizes beta-1,3-linked and beta-1,6-linked glucans, which form the cell walls of pathogenic bacteria and fungi. It plays a role in immunity against fungal infections through pathogen recognition and immune signaling. This study aimed to explore the impact of nsSNPs in the human CLEC7A gene through computational tools (MAPP, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT, SNAP, and PredictSNP) to identify the most deleterious and damaging nsSNPs. Further, their effect on protein stability was checked along with conservation and solvent accessibility analysis by I-Mutant 2.0, ConSurf, and Project HOPE and post-translational modification analysis using MusiteDEEP. Out of the 28 nsSNPs that were found to be deleterious, 25 nsSNPs affected protein stability. Some SNPs were finalized for structural analysis with Missense 3D. Seven nsSNPs affected protein stability. Results from this study predicted that C54R, L64P, C120G, C120S, S135C, W141R, W141S, C148G, L155P, L155V, I158M, I158T, D159G, D159R, I167T, W180R, L183F, W192R, G197E, G197V, C220S, C233Y, I240T, E242G, and Y3D were the most structurally and functionally significant nsSNPs in the human CLEC7A gene. No nsSNPs were found in the predicted sites for post-translational modifications. In the 5' untranslated region, two SNPs, rs536465890 and rs527258220, showed possible miRNA target sites and DNA binding sites. The present study identified structurally and functionally significant nsSNPs in the CLEC7A gene. These nsSNPs may potentially be used for further evaluation as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Hakeemah H Al-Nakhle
- Department of Medical Laboratory Technology, Collage of Applied Medical Science, Taibah University, Medina 42353, Saudi Arabia
| | - Aiah M Khateb
- Department of Medical Laboratory Technology, Collage of Applied Medical Science, Taibah University, Medina 42353, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|