1
|
Szalai T, Bajusz D, Börzsei R, Zsidó BZ, Ilaš J, Ferenczy GG, Hetényi C, Keserű GM. Effect of Water Networks On Ligand Binding: Computational Predictions vs Experiments. J Chem Inf Model 2024; 64:8980-8998. [PMID: 39576659 PMCID: PMC11632780 DOI: 10.1021/acs.jcim.4c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/10/2024]
Abstract
Rational drug design focuses on the explanation and prediction of complex formation between therapeutic targets and small-molecule ligands. As a third and often overlooked interacting partner, water molecules play a critical role in the thermodynamics of protein-ligand binding, impacting both the entropy and enthalpy components of the binding free energy and by extension, on-target affinity and bioactivity. The community has realized the importance of binding site waters, as evidenced by the number of computational tools to predict the structure and thermodynamics of their networks. However, quantitative experimental characterization of relevant protein-ligand-water systems, and consequently the validation of these modeling methods, remains challenging. Here, we investigated the impact of solvent exchange from light (H2O) to heavy water (D2O) to provide complete thermodynamic profiling of these ternary systems. Utilizing the solvent isotope effects, we gain a deeper understanding of the energetic contributions of various components. Specifically, we conducted isothermal titration calorimetry experiments on trypsin with a series of p-substituted benzamidines, as well as carbonic anhydrase II (CAII) with a series of aromatic sulfonamides. Significant differences in binding enthalpies found between light vs heavy water indicate a substantial role of the binding site water network in protein-ligand binding. Next, we challenged two conceptually distinct modeling methods, the grid-based WaterFLAP and the molecular dynamics-based MobyWat, by predicting and scoring relevant water networks. The predicted water positions accurately reproduce those in available high-resolution X-ray and neutron diffraction structures of the relevant protein-ligand complexes. Estimated energetic contributions of the identified water networks were corroborated by the experimental thermodynamics data. Besides providing a direct validation for the predictive power of these methods, our findings confirmed the importance of considering binding site water networks in computational ligand design.
Collapse
Affiliation(s)
- Tibor
Viktor Szalai
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Department
of Inorganic and Analytical Chemistry, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - Dávid Bajusz
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - Rita Börzsei
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Pharmacoinformatics
Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary
| | - Balázs Zoltán Zsidó
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Pharmacoinformatics
Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary
| | - Janez Ilaš
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - György G. Ferenczy
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - Csaba Hetényi
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Pharmacoinformatics
Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary
| | - György M. Keserű
- Medicinal
Chemistry Research Group, Drug Innovation Centre, HUN-REN Research
Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
- National
Drug Research and Development Laboratory, Magyar tudósok krt. 2, Budapest 1117, Hungary
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| |
Collapse
|
2
|
Thompson AJ, Sanchez-Weatherby J, Williams LJ, Mikolajek H, Sandy J, Worrall JAR, Hough MA. Efficient in situ screening of and data collection from microcrystals in crystallization plates. Acta Crystallogr D Struct Biol 2024; 80:279-288. [PMID: 38488731 PMCID: PMC10994175 DOI: 10.1107/s2059798324001955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
A considerable bottleneck in serial crystallography at XFEL and synchrotron sources is the efficient production of large quantities of homogenous, well diffracting microcrystals. Efficient high-throughput screening of batch-grown microcrystals and the determination of ground-state structures from different conditions is thus of considerable value in the early stages of a project. Here, a highly sample-efficient methodology to measure serial crystallography data from microcrystals by raster scanning within standard in situ 96-well crystallization plates is described. Structures were determined from very small quantities of microcrystal suspension and the results were compared with those from other sample-delivery methods. The analysis of a two-dimensional batch crystallization screen using this method is also described as a useful guide for further optimization and the selection of appropriate conditions for scaling up microcrystallization.
Collapse
Affiliation(s)
- Amy J. Thompson
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Juan Sanchez-Weatherby
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Lewis J. Williams
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Halina Mikolajek
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James Sandy
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Michael A. Hough
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
3
|
Thompson MC. Combining temperature perturbations with X-ray crystallography to study dynamic macromolecules: A thorough discussion of experimental methods. Methods Enzymol 2023; 688:255-305. [PMID: 37748829 DOI: 10.1016/bs.mie.2023.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Temperature is an important state variable that governs the behavior of microscopic systems, yet crystallographers rarely exploit temperature changes to study the structure and dynamics of biological macromolecules. In fact, approximately 90% of crystal structures in the Protein Data Bank were determined under cryogenic conditions, because sample cryocooling makes crystals robust to X-ray radiation damage and facilitates data collection. On the other hand, cryocooling can introduce artifacts into macromolecular structures, and can suppress conformational dynamics that are critical for function. Fortunately, recent advances in X-ray detector technology, X-ray sources, and computational data processing algorithms make non-cryogenic X-ray crystallography easier and more broadly applicable than ever before. Without the reliance on cryocooling, high-resolution crystallography can be combined with various temperature perturbations to gain deep insight into the conformational landscapes of macromolecules. This Chapter reviews the historical reasons for the prevalence of cryocooling in macromolecular crystallography, and discusses its potential drawbacks. Next, the Chapter summarizes technological developments and methodologies that facilitate non-cryogenic crystallography experiments. Finally, the chapter discusses the theoretical underpinnings and practical aspects of multi-temperature and temperature-jump crystallography experiments, which are powerful tools for understanding the relationship between the structure, dynamics, and function of proteins and other biological macromolecules.
Collapse
Affiliation(s)
- Michael C Thompson
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, United States.
| |
Collapse
|
4
|
Steiner RA. Introduction to the virtual thematic issue on room-temperature biological crystallography. IUCRJ 2023; 10:248-250. [PMID: 37000491 PMCID: PMC10161770 DOI: 10.1107/s2052252523002968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Room-temperature biological crystallography has seen a resergence in recent years and a collection of articles recently published in IUCrJ, Acta Cryst. D Structural Biology and Acta Cryst. F Structural Biology Communications, have been collected together to produce a virtual special issue at https://journals.iucr.org/special_issues/2022/RT/.
Collapse
Affiliation(s)
- Roberto A. Steiner
- King’s College London, New Hunt’s House - Guy’s Campus, London SE1 1UL, United Kingdom
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova, 35131, Italy
| |
Collapse
|
5
|
Steiner RA. Introduction to the virtual thematic issue on room-temperature biological crystallography. Acta Crystallogr F Struct Biol Commun 2023; 79:79-81. [PMID: 37013862 PMCID: PMC10071831 DOI: 10.1107/s2053230x23002935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Room-temperature biological crystallography has seen a resergence in recent years and a collection of articles recently published in IUCrJ, Acta Cryst. D Structural Biology and Acta Cryst. F Structural Biology Communications, have been collected together to produce a virtual special issue at https://journals.iucr.org/special_issues/2022/RT/.
Collapse
Affiliation(s)
- Roberto A. Steiner
- King’s College London, New Hunt’s House - Guy’s Campus, London SE1 1UL, United Kingdom
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, Padova, 35131, Italy
| |
Collapse
|
6
|
Hough MA, Prischi F, Worrall JAR. Perspective: Structure determination of protein-ligand complexes at room temperature using X-ray diffraction approaches. Front Mol Biosci 2023; 10:1113762. [PMID: 36756363 PMCID: PMC9899996 DOI: 10.3389/fmolb.2023.1113762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
The interaction between macromolecular proteins and small molecule ligands is an essential component of cellular function. Such ligands may include enzyme substrates, molecules involved in cellular signalling or pharmaceutical drugs. Together with biophysical techniques used to assess the thermodynamic and kinetic properties of ligand binding to proteins, methodology to determine high-resolution structures that enable atomic level interactions between protein and ligand(s) to be directly visualised is required. Whilst such structural approaches are well established with high throughput X-ray crystallography routinely used in the pharmaceutical sector, they provide only a static view of the complex. Recent advances in X-ray structural biology methods offer several new possibilities that can examine protein-ligand complexes at ambient temperature rather than under cryogenic conditions, enable transient binding sites and interactions to be characterised using time-resolved approaches and combine spectroscopic measurements from the same crystal that the structures themselves are determined. This Perspective reviews several recent developments in these areas and discusses new possibilities for applications of these advanced methodologies to transform our understanding of protein-ligand interactions.
Collapse
Affiliation(s)
- Michael A. Hough
- School of Life Sciences, University of Essex, Colchester, United Kingdom
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Filippo Prischi
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | | |
Collapse
|