Chen L, Lu Y, Xu J, Zhou B. Prediction of drug's anatomical therapeutic chemical (ATC) code by constructing biological profiles of ATC codes.
BMC Bioinformatics 2025;
26:86. [PMID:
40119265 PMCID:
PMC11927162 DOI:
10.1186/s12859-025-06102-7]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/04/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND
The Anatomical Therapeutic Chemical (ATC) classification system, proposed and maintained by the World Health Organization, is among the most widely used drug classification schemes. Recently, it has become a key research focus in drug repositioning. Computational models often pair drugs with ATC codes to explore drug-ATC code associations. However, the limited information available for ATC codes constrains these models, leaving significant room for improvement.
RESULTS
This study presents an inference method to identify highly related target proteins, structural features, and side effects for each ATC code, constructing comprehensive biological profiles. Association networks for target proteins, structural features, and side effects are established, and a random walk with restart algorithm is applied to these networks to extract raw associations. A permutation test is then conducted to exclude false positives, yielding robust biological profiles for ATC codes. These profiles are used to construct new ATC code kernels, which are integrated with ATC code kernels from the existing model PDATC-NCPMKL. The recommendation matrix is subsequently generated using the procedures of PDATC-NCPMKL. Cross-validation results demonstrate that the new model achieves AUROC and AUPR values exceeding 0.96.
CONCLUSION
The proposed model outperforms PDATC-NCPMKL and other previous models. Analysis of the contributions of the newly added ATC code kernels confirms the value of biological profiles in enhancing the prediction of drug-ATC code associations.
Collapse