1
|
|
2
|
Saha PK, Strand R, Borgefors G. Digital Topology and Geometry in Medical Imaging: A Survey. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1940-1964. [PMID: 25879908 DOI: 10.1109/tmi.2015.2417112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Digital topology and geometry refers to the use of topologic and geometric properties and features for images defined in digital grids. Such methods have been widely used in many medical imaging applications, including image segmentation, visualization, manipulation, interpolation, registration, surface-tracking, object representation, correction, quantitative morphometry etc. Digital topology and geometry play important roles in medical imaging research by enriching the scope of target outcomes and by adding strong theoretical foundations with enhanced stability, fidelity, and efficiency. This paper presents a comprehensive yet compact survey on results, principles, and insights of methods related to digital topology and geometry with strong emphasis on understanding their roles in various medical imaging applications. Specifically, this paper reviews methods related to distance analysis and path propagation, connectivity, surface-tracking, image segmentation, boundary and centerline detection, topology preservation and local topological properties, skeletonization, and object representation, correction, and quantitative morphometry. A common thread among the topics reviewed in this paper is that their theory and algorithms use the principle of digital path connectivity, path propagation, and neighborhood analysis.
Collapse
|
3
|
Zhao F, Xie X, Roach M. Computer Vision Techniques for Transcatheter Intervention. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2015; 3:1900331. [PMID: 27170893 PMCID: PMC4848047 DOI: 10.1109/jtehm.2015.2446988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/10/2015] [Accepted: 06/09/2015] [Indexed: 12/02/2022]
Abstract
Minimally invasive transcatheter technologies have demonstrated substantial promise for the diagnosis and the treatment of cardiovascular diseases. For example, transcatheter aortic valve implantation is an alternative to aortic valve replacement for the treatment of severe aortic stenosis, and transcatheter atrial fibrillation ablation is widely used for the treatment and the cure of atrial fibrillation. In addition, catheter-based intravascular ultrasound and optical coherence tomography imaging of coronary arteries provides important information about the coronary lumen, wall, and plaque characteristics. Qualitative and quantitative analysis of these cross-sectional image data will be beneficial to the evaluation and the treatment of coronary artery diseases such as atherosclerosis. In all the phases (preoperative, intraoperative, and postoperative) during the transcatheter intervention procedure, computer vision techniques (e.g., image segmentation and motion tracking) have been largely applied in the field to accomplish tasks like annulus measurement, valve selection, catheter placement control, and vessel centerline extraction. This provides beneficial guidance for the clinicians in surgical planning, disease diagnosis, and treatment assessment. In this paper, we present a systematical review on these state-of-the-art methods. We aim to give a comprehensive overview for researchers in the area of computer vision on the subject of transcatheter intervention. Research in medical computing is multi-disciplinary due to its nature, and hence, it is important to understand the application domain, clinical background, and imaging modality, so that methods and quantitative measurements derived from analyzing the imaging data are appropriate and meaningful. We thus provide an overview on the background information of the transcatheter intervention procedures, as well as a review of the computer vision techniques and methodologies applied in this area.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Computer ScienceSwansea UniversitySwanseaSA2 8PPU.K.
| | - Xianghua Xie
- Department of Computer ScienceSwansea UniversitySwanseaSA2 8PPU.K.
| | - Matthew Roach
- Department of Computer ScienceSwansea UniversitySwanseaSA2 8PPU.K.
| |
Collapse
|
4
|
Jin D, Iyer KS, Chen C, Hoffman EA, Saha PK. A Robust and Efficient Curve Skeletonization Algorithm for Tree-Like Objects Using Minimum Cost Paths. Pattern Recognit Lett 2015; 76:32-40. [PMID: 27175043 DOI: 10.1016/j.patrec.2015.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Conventional curve skeletonization algorithms using the principle of Blum's transform, often, produce unwanted spurious branches due to boundary irregularities, digital effects, and other artifacts. This paper presents a new robust and efficient curve skeletonization algorithm for three-dimensional (3-D) elongated fuzzy objects using a minimum cost path approach, which avoids spurious branches without requiring post-pruning. Starting from a root voxel, the method iteratively expands the skeleton by adding new branches in each iteration that connects the farthest quench voxel to the current skeleton using a minimum cost path. The path-cost function is formulated using a novel measure of local significance factor defined by the fuzzy distance transform field, which forces the path to stick to the centerline of an object. The algorithm terminates when dilated skeletal branches fill the entire object volume or the current farthest quench voxel fails to generate a meaningful skeletal branch. Accuracy of the algorithm has been evaluated using computer-generated phantoms with known skeletons. Performance of the method in terms of false and missing skeletal branches, as defined by human experts, has been examined using in vivo CT imaging of human intrathoracic airways. Results from both experiments have established the superiority of the new method as compared to the existing methods in terms of accuracy as well as robustness in detecting true and false skeletal branches. The new algorithm makes a significant reduction in computation complexity by enabling detection of multiple new skeletal branches in one iteration. Specifically, this algorithm reduces the number of iterations from the number of terminal tree branches to the worst case performance of tree depth. In fact, experimental results suggest that, on an average, the order of computation complexity is reduced to the logarithm of the number of terminal branches of a tree-like object.
Collapse
Affiliation(s)
- Dakai Jin
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Krishna S Iyer
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | - Cheng Chen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | - Punam K Saha
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA; Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Jin D, Iyer KS, Hoffman EA, Saha PK. A New Approach of Arc Skeletonization for Tree-Like Objects Using Minimum Cost Path. PROCEEDINGS OF THE ... IAPR INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION. INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION 2014; 2014:942-947. [PMID: 25621320 DOI: 10.1109/icpr.2014.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traditional arc skeletonization algorithms using the principle of Blum's transform, often, produce unwanted spurious branches due to boundary irregularities and digital effects on objects and other artifacts. This paper presents a new robust approach of extracting arc skeletons for three-dimensional (3-D) elongated fuzzy objects, which avoids spurious branches without requiring post-pruning. Starting from a root voxel, the method iteratively expands the skeleton by adding a new branch in each iteration that connects the farthest voxel to the current skeleton using a minimum-cost geodesic path. The path-cost function is formulated using a novel measure of local significance factor defined by fuzzy distance transform field, which forces the path to stick to the centerline of the object. The algorithm terminates when dilated skeletal branches fill the entire object volume or the current farthest voxel fails to generate a meaningful branch. Accuracy of the algorithm has been evaluated using computer-generated blurred and noisy phantoms with known skeletons. Performance of the method in terms of false and missing skeletal branches, as defined by human expert, has been examined using in vivo CT imaging of human intrathoracic airways. Experimental results from both experiments have established the superiority of the new method as compared to a widely used conventional method in terms of accuracy of medialness as well as robustness of true and false skeletal branches.
Collapse
Affiliation(s)
- Dakai Jin
- Department of Electrical and Computer Engineering , University of Iowa, Iowa City, USA
| | - Krishna S Iyer
- Department of Radiology , University of Iowa Iowa City, USA
| | | | | |
Collapse
|
6
|
Lee PC, Chuang CC, Chiang AS, Ching YT. High-throughput computer method for 3D neuronal structure reconstruction from the image stack of the Drosophila brain and its applications. PLoS Comput Biol 2012; 8:e1002658. [PMID: 23028271 PMCID: PMC3441491 DOI: 10.1371/journal.pcbi.1002658] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 07/12/2012] [Indexed: 11/19/2022] Open
Abstract
Drosophila melanogaster is a well-studied model organism, especially in the field of neurophysiology and neural circuits. The brain of the Drosophila is small but complex, and the image of a single neuron in the brain can be acquired using confocal microscopy. Analyzing the Drosophila brain is an ideal start to understanding the neural structure. The most fundamental task in studying the neural network of Drosophila is to reconstruct neuronal structures from image stacks. Although the fruit fly brain is small, it contains approximately 100 000 neurons. It is impossible to trace all the neurons manually. This study presents a high-throughput algorithm for reconstructing the neuronal structures from 3D image stacks collected by a laser scanning confocal microscope. The proposed method reconstructs the neuronal structure by applying the shortest path graph algorithm. The vertices in the graph are certain points on the 2D skeletons of the neuron in the slices. These points are close to the 3D centerlines of the neuron branches. The accuracy of the algorithm was verified using the DIADEM data set. This method has been adopted as part of the protocol of the FlyCircuit Database, and was successfully applied to process more than 16 000 neurons. This study also shows that further analysis based on the reconstruction results can be performed to gather more information on the neural network. It is now possible to image a single neuron in the fruit fly brain. However, manually reconstructing neuronal structures is tremendously time consuming. The proposed method avoids user interventions by first automatically identifying the end points and detecting the appropriate representative point of the soma, and then, by finding the shortest paths from the soma to the end points in an image stack. In the proposed algorithm, a tailor-made weighting function allows the resulting reconstruction to represent the neuron appropriately. Accuracy analysis and a robustness test demonstrated that the proposed method is accurate and robust to handle the noisy image data. Tract discovery is one of the most frequently mentioned potentials of reconstructed results. In addition to a method for neuronal structure reconstruction, this study presents a method for tract discovery and explores the tract-connecting olfactory neuropils using the reconstructed results. The discovered tracts are in agreement with the results of previous studies in the literature. Software for reconstructing the neuronal structures and the reconstruction results can be downloaded from the Web site http://www.flycircuit.tw. More details on acquiring the software and the reconstruction results are provided in Text S1.
Collapse
Affiliation(s)
- Ping-Chang Lee
- Department of Computer Science, National Chiao Tung University, HsinChu, Taiwan
| | - Chao-Chun Chuang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu, Taiwan
- National Center for High-Performance Computing, HsinChu, Taiwan
| | - Ann-Shyn Chiang
- Institute of Biotechnology, National Tsing Hua University, HsinChu, Taiwan
- Brain Research Center, National Tsing Hua University, HsinChu, Taiwan
| | - Yu-Tai Ching
- Department of Computer Science, National Chiao Tung University, HsinChu, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Delibasis KK, Kechriniotis AI, Tsonos C, Assimakis N. Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2010; 100:108-22. [PMID: 20363522 DOI: 10.1016/j.cmpb.2010.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 03/01/2010] [Indexed: 05/16/2023]
Abstract
An automatic algorithm capable of segmenting the whole vessel tree and calculate vessel diameter and orientation in a digital ophthalmologic image is presented in this work. The algorithm is based on a parametric model of a vessel that can assume arbitrarily complex shape and a simple measure of match that quantifies how well the vessel model matches a given angiographic image. An automatic vessel tracing algorithm is described that exploits the geometric model and actively seeks vessel bifurcation, without user intervention. The proposed algorithm uses the geometric vessel model to determine the vessel diameter at each detected central axis pixel. For this reason, the algorithm is fine tuned using a subset of ophthalmologic images of the publically available DRIVE database, by maximizing vessel segmentation accuracy. The proposed algorithm is then applied to the remaining ophthalmological images of the DRIVE database. The segmentation results of the proposed algorithm compare favorably in terms of accuracy with six other well established vessel detection techniques, outperforming three of them in the majority of the available ophthalmologic images. The proposed algorithm achieves subpixel root mean square central axis positioning error that outperforms the non-expert based vessel segmentation, whereas the accuracy of vessel diameter estimation is comparable to that of the non-expert based vessel segmentation.
Collapse
Affiliation(s)
- Konstantinos K Delibasis
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
8
|
Maddah M, Soltanian-Zadeh H, Afzali-Kusha A, Shahrokni A, Zhang ZG. Three-dimensional analysis of complex branching vessels in confocal microscopy images. Comput Med Imaging Graph 2005; 29:487-98. [PMID: 15996853 DOI: 10.1016/j.compmedimag.2005.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 03/12/2005] [Accepted: 03/12/2005] [Indexed: 10/25/2022]
Abstract
The characteristic of confocal microscopy (CM) vascular data is that it contains many tiny vessels with branching and complex structure. In this work, an automated method for quantitative analysis and reconstruction of cerebral vessels from CM images is presented in which the extracted centerline of the vessels plays the key role. To assess the efficiency and accuracy of different centerline extraction methods, a comparison among three fully automated approaches is given. The centerline extraction methods studied in this work are a snake model, a path planning approach, and a distance transform-based method. To evaluate the accuracy of the quantitative parameters of vessels such as length and diameter, we apply the method to synthetic data. These results indicate that the snake model and the path planning method are more accurate in extracting the quantitative parameters. The efficiency of the approach in clinical applications is then confirmed by applying the method to real CM images. All three methods investigated in this work are accurate enough to correctly distinguish between normal and stroke brain data, while the snake model is the fastest for clinical applications. In addition, three-dimensional visualization, reconstruction, and characterization of CM vascular images of rat brains are presented.
Collapse
Affiliation(s)
- Mahnaz Maddah
- Control and Intelligent Processing Center of Excellence, Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | | | | | | | | |
Collapse
|
9
|
Soltanian-Zadeh H, Shahrokni A, Khalighi MM, Zhang ZG, Zoroofi RA, Maddah M, Chopp M. 3-D quantification and visualization of vascular structures from confocal microscopic images using skeletonization and voxel-coding. Comput Biol Med 2005; 35:791-813. [PMID: 16278109 DOI: 10.1016/j.compbiomed.2004.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 06/28/2004] [Accepted: 06/28/2004] [Indexed: 11/16/2022]
Abstract
This paper presents an image processing approach for information extraction from three-dimensional (3-D) images of vasculature. It extracts quantitative information such as skeleton, length, diameter, and vessel-to-tissue ratio for different vessels as well as their branches. Furthermore, it generates 3-D visualization of vessels based on desired anatomical characteristics such as vessel diameter or 3-D connectivity. Steps of the proposed approach are: (1) pre-processing, (2) distance mappings, (3) branch labeling, (4) quantification, and (5) visualization. We have tested and evaluated the proposed algorithms using simulated images of multi-branch vessels and real confocal microscopic images of the vessels in rat brains. Experimental results illustrate performance of the methods and usefulness of the results for medical image analysis applications.
Collapse
Affiliation(s)
- Hamid Soltanian-Zadeh
- Image Analysis Laboratory, Department of Radiology, Henry Ford Health System, Detroit, MI 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Ramaswamy SD, Vigmostad SC, Wahle A, Lai YG, Olszewski ME, Braddy KC, Brennan TMH, Rossen JD, Sonka M, Chandran KB. Fluid Dynamic Analysis in a Human Left Anterior Descending Coronary Artery with Arterial Motion. Ann Biomed Eng 2004; 32:1628-41. [PMID: 15675676 DOI: 10.1007/s10439-004-7816-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A computational fluid dynamic (CFD) analysis is pre sented to describe local flow dynamics in both 3-D spatial and 4-D spatial and temporal domains from reconstructions of intravascular ultrasound (IVUS) and bi-plane angiographic fusion images. A left anterior descending (LAD) coronary artery segment geometry was accurately reconstructed and subsequently its motion was incorporated into the CFD model. The results indicate that the incorporation of motion had appreciable effects on blood flow patterns. The velocity profiles in the region of a stenosis and the circumferential distribution of the axial wall shear stress (WSS) patterns in the vessel are altered with the wall motion introduced in the simulation. The time-averaged axial WSS between simulations of steady flow and unsteady flow without arterial motion were comparable (-0.3 to 13.7 Pa in unsteady flow versus -0.2 to 10.1 Pa in steady flow) while the magnitudes decreased when motion was introduced (0.3-4.5 Pa). The arterial wall motion affects the time-mean WSS and the oscillatory shear index in the coronary vessel fluid dynamics and may provide more realistic predictions on the progression of atherosclerotic disease.
Collapse
Affiliation(s)
- S D Ramaswamy
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mahadevan V, Narasimha-Iyer H, Roysam B, Tanenbaum HL. Robust Model-Based Vasculature Detection in Noisy Biomedical Images. ACTA ACUST UNITED AC 2004; 8:360-76. [PMID: 15484442 DOI: 10.1109/titb.2004.834410] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper presents a set of algorithms for robust detection of vasculature in noisy retinal video images. Three methods are studied for effective handling of outliers. The first method is based on Huber's censored likelihood ratio test. The second is based on the use of a alpha-trimmed test statistic. The third is based on robust model selection algorithms. All of these algorithms rely on a mathematical model for the vasculature that accounts for the expected variations in intensity/texture profile, width, orientation, scale, and imaging noise. These unknown parameters are estimated implicitly within a robust detection and estimation framework. The proposed algorithms are also useful as nonlinear vessel enhancement filters. The proposed algorithms were evaluated over carefully constructed phantom images, where the ground truth is known a priori, as well as clinically recorded images for which the ground truth was manually compiled. A comparative evaluation of the proposed approaches is presented. Collectively, these methods outperformed prior approaches based on Chaudhuri et al. (1989) matched filtering, as well as the verification methods used by prior exploratory tracing algorithms, such as the work of Can et aL (1999). The Huber censored likelihood test yielded the best overall improvement, with a 145.7% improvement over the exploratory tracing algorithm, and a 43.7% improvement in detection rates over the matched filter.
Collapse
|
12
|
Al-Kofahi KA, Can A, Lasek S, Szarowski DH, Dowell-Mesfin N, Shain W, Turner JN, Roysam B. Median-based robust algorithms for tracing neurons from noisy confocal microscope images. ACTA ACUST UNITED AC 2004; 7:302-17. [PMID: 15000357 DOI: 10.1109/titb.2003.816564] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper presents a method to exploit rank statistics to improve fully automatic tracing of neurons from noisy digital confocal microscope images. Previously proposed exploratory tracing (vectorization) algorithms work by recursively following the neuronal topology, guided by responses of multiple directional correlation kernels. These algorithms were found to fail when the data was of lower quality (noisier, less contrast, weak signal, or more discontinuous structures). This type of data is commonly encountered in the study of neuronal growth on microfabricated surfaces. We show that by partitioning the correlation kernels in the tracing algorithm into multiple subkernels, and using the median of their responses as the guiding criterion improves the tracing precision from 41% to 89% for low-quality data, with a 5% improvement in recall. Improved handling was observed for artifacts such as discontinuities and/or hollowness of structures. The new algorithms require slightly higher amounts of computation, but are still acceptably fast, typically consuming less than 2 seconds on a personal computer (Pentium III, 500 MHz, 128 MB). They produce labeling for all somas present in the field, and a graph-theoretic representation of all dendritic/axonal structures that can be edited. Topological and size measurements such as area, length, and tortuosity are derived readily. The efficiency, accuracy, and fully-automated nature of the proposed method makes it attractive for large-scale applications such as high-throughput assays in the pharmaceutical industry, and study of neuron growth on nano/micro-fabricated structures. A careful quantitative validation of the proposed algorithms is provided against manually derived tracing, using a performance measure that combines the precision and recall metrics.
Collapse
Affiliation(s)
- Khalid A Al-Kofahi
- ECSE Department Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
In this paper, we propose a valley-course-based image segmentation technique for tree-like object delineation, as an alternative to the traditional centerline-based methods. This technique consists of valley-course extraction, skeleton pruning and deskeletonization. Valley courses, constructed from valley points that are obtained by star-pattern scanning over an image, offer a natural manner of identifying tree skeletons. Unattached segments are removed using morphological operations. A structured tree is then constructed from the skeletons by using a tree pruning/spanning algorithm. A fleshy tree-like object is obtained by a deskeletonization procedure, which consists of extracting tree boundary in vicinity of the skeletons in the original image. The tree boundary is determined by identifying paired edge points at a valley point. A derivative-free edge identification approach is proposed, which defines an edge point at a side-slope by a relative intensity drop with respect to the local background. An empirical formula using a logarithmic function of local intensity contrast offers desirable characteristics of adaptability and stability. The adaptability of edge points to the local background is attributed to the compression behavior of logarithmic function. Furthermore, stability to noise is resulted because derivative operations are not used. The segmentation technique was validated using coronary angiographic images.
Collapse
Affiliation(s)
- Zikuan Chen
- Department of Radiological Sciences I, University of California, Medical Sciences 1, B-140, Irvine, CA 92697, USA
| | | |
Collapse
|
14
|
Al-Kofahi KA, Lasek S, Szarowski DH, Pace CJ, Nagy G, Turner JN, Roysam B. Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE : A PUBLICATION OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY 2002; 6:171-87. [PMID: 12075671 DOI: 10.1109/titb.2002.1006304] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Algorithms are presented for fully automatic three-dimensional (3-D) tracing of neurons that are imaged by fluorescence confocal microscopy. Unlike previous voxel-based skeletonization methods, the present approach works by recursively following the neuronal topology, using a set of 4 x N2 directional kernels (e.g., N = 32), guided by a generalized 3-D cylinder model. This method extends our prior work on exploratory tracing of retinal vasculature to 3-D space. Since the centerlines are of primary interest, the 3-D extension can be accomplished by four rather than six sets of kernels. Additional modifications, such as dynamic adaptation of the correlation kernels, and adaptive step size estimation, were introduced for achieving robustness to photon noise, varying contrast, and apparent discontinuity and/or hollowness of structures. The end product is a labeling of all somas present, graph-theoretic representations of all dendritic/axonal structures, and image statistics such as soma volume and centroid, soma interconnectivity, the longest branch, and lengths of all graph branches originating from a soma. This method is able to work directly with unprocessed confocal images, without expensive deconvolution or other preprocessing. It is much faster that skeletonization, typically consuming less than a minute to trace a 70-MB image on a 500-MHz computer. These properties make it attractive for large-scale automated tissue studies that require rapid on-line image analysis, such as high-throughput neurobiology/angiogenesis assays, and initiatives such as the Human Brain Project.
Collapse
Affiliation(s)
- Khalid A Al-Kofahi
- Electrical, Computer, and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Greenspan H, Laifenfeld M, Einav S, Barnea O. Evaluation of center-line extraction algorithms in quantitative coronary angiography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2001; 20:928-52. [PMID: 11585209 DOI: 10.1109/42.952730] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Objective testing of centerline extraction accuracy in quantitative coronary angiography (QCA) algorithms is a very difficult task. Standard tools for this task are not yet available. We present a simulation tool that generates synthetic angiographic images of a single coronary artery with predetermined centerline and diameter function. This simulation tool was used creating a library of images for the objective comparison and evaluation of QCA algorithms. This technique also provides the means for understanding the relationship between the algorithms' performance and limitations and the vessel's geometrical parameters. In this paper, two algorithms are evaluated and the results are presented.
Collapse
Affiliation(s)
- H Greenspan
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Israel.
| | | | | | | |
Collapse
|
16
|
Ding Z, Friedman MH. Quantification of 3-D coronary arterial motion using clinical biplane cineangiograms. INTERNATIONAL JOURNAL OF CARDIAC IMAGING 2000; 16:331-46. [PMID: 11215918 DOI: 10.1023/a:1026590417177] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Speculation that the motion of the coronary arteries might be involved in the pathogenesis of coronary atherosclerosis has generated growing interest in the study of this motion. Accordingly, a system has been developed to quantify 3-D coronary arterial motion using clinical biplane cineangiograms. Exploiting the temporal continuity of sequential angiographic images, a template matching technique is designed to track the non-uniform frame-to-frame motion of coronary arteries without assuming that the vessels experience uniform axial strain. The implementation of the system is automated by a coarse-to-fine matching process, thus improving the efficiency and objectivity of motion analysis. The system has been validated and employed to characterize the in vivo motion dynamics of human coronary arteries; illustrative results show that this system is a promising tool for routine clinical and laboratory analysis of coronary arterial motion.
Collapse
Affiliation(s)
- Z Ding
- Biomedical Engineering Center, The Ohio State University, Columbus 43210-1002, USA
| | | |
Collapse
|
17
|
Can A, Shen H, Turner JN, Tanenbaum HL, Roysam B. Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE : A PUBLICATION OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY 1999; 3:125-38. [PMID: 10719494 DOI: 10.1109/4233.767088] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Algorithms are presented for rapid, automatic, robust, adaptive, and accurate tracing of retinal vasculature and analysis of intersections and crossovers. This method improves upon prior work in several ways: 1) automatic adaptation from frame to frame without manual initialization/adjustment, with few tunable parameters; 2) robust operation on image sequences exhibiting natural variability, poor and varying imaging conditions, including over/under-exposure, low contrast, and artifacts such as glare; 3) does not require the vasculature to be connected, so it can handle partial views; and 4) operation is efficient enough for use on unspecialized hardware, and amenable to deadline-driven computing, being able to produce a rapidly and monotonically improving sequence of usable partial results. Increased computation can be traded for superior tracing performance. Its efficiency comes from direct processing on gray-level data without any preprocessing, and from processing only a minimally necessary fraction of pixels in an exploratory manner, avoiding low-level image-wide operations such as thresholding, edge detection, and morphological processing. These properties make the algorithm suited to real-time, on-line (live) processing and is being applied to computer-assisted laser retinal surgery.
Collapse
Affiliation(s)
- A Can
- Electrical and Computer Science Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | | | | | | | | |
Collapse
|