1
|
Wang K, Lin F, Liao Z, Wang Y, Zhang T, Wang R. Development of a Dual-Plane MRI-Based Deep Learning Model to Assess the 1-Year Postoperative Outcomes in Lumbar Disc Herniation After Tubular Microdiscectomy. J Magn Reson Imaging 2025; 61:2294-2307. [PMID: 39501646 DOI: 10.1002/jmri.29639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Tubular microdiscectomy (TMD) is a treatment for lumbar disc herniation (LDH). Although the combination of MRI and deep learning (DL) has shown promise, its application in evaluating postoperative outcomes in TMD has not been fully explored. PURPOSE/HYPOTHESIS To evaluate whether integrating preoperative dual-plane MRI-based DL features with clinical features can assess 1-year outcomes in TMD for LDH. STUDY TYPE Retrospective. POPULATION/SUBJECTS The study involved 548 patients who underwent TMD between January 2016 and January 2021. Training set (N = 305, mean age 51.85 ± 13.84 years, 56.4% male). Internal validation set (N = 131, mean age 51.85 ± 13.84 years, 54.2% male). External validation set (N = 112, mean age 51.54 ± 14.43 years, 50.9% male). FIELD STRENGTH/SEQUENCE 3 T MRI with sagittal and transverse T2-weighted sequences (Fast Spin Echo). ASSESSMENT Ground truth labels were based on improvement rate in 1-year Japanese Orthopaedic Association (JOA) scores. Information on 42 preoperative clinical features was collected. The largest protrusions were identified from T2 MRI by three clinicians and were used to train deep learning models (ResNet50, ResNet101, and ResNet152) to extract DL features. After feature selection, three models were built, namely, clinical, DL, and combined models. STATISTICAL TESTS Chi-square or Fisher's exact tests was used for group comparisons. Quantitative differences were analyzed using the t-test or Mann-Whitney U test. P-values <0.05 were considered significant. Models were validated on internal and external datasets using metrics such as the area under the curve (AUC). RESULTS The AUCs of the clinical models achieved 0.806 (internal) and 0.779 (external). ResNet152 performed best in three DL models, with AUCs of 0.858 (internal) and 0.834 (external). The combined model achieved AUCs of 0.889 (internal) and 0.857 (external). DATA CONCLUSION A model combining preoperative dual-plane MRI DL features and clinical features can assess 1-year outcomes of TMD for LDH. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kaifeng Wang
- Fujian Medical University, Fuzhou, Fujian, China
| | - Fabin Lin
- Fujian Medical University, Fuzhou, Fujian, China
- Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zulin Liao
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | | | - Tingxin Zhang
- Ordos Central Hospital, Ordos, Inner Mongolia, China
| | - Rui Wang
- Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Salih AM, Galazzo IB, Gkontra P, Rauseo E, Lee AM, Lekadir K, Radeva P, Petersen SE, Menegaz G. A review of evaluation approaches for explainable AI with applications in cardiology. Artif Intell Rev 2024; 57:240. [PMID: 39132011 PMCID: PMC11315784 DOI: 10.1007/s10462-024-10852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/13/2024]
Abstract
Explainable artificial intelligence (XAI) elucidates the decision-making process of complex AI models and is important in building trust in model predictions. XAI explanations themselves require evaluation as to accuracy and reasonableness and in the context of use of the underlying AI model. This review details the evaluation of XAI in cardiac AI applications and has found that, of the studies examined, 37% evaluated XAI quality using literature results, 11% used clinicians as domain-experts, 11% used proxies or statistical analysis, with the remaining 43% not assessing the XAI used at all. We aim to inspire additional studies within healthcare, urging researchers not only to apply XAI methods but to systematically assess the resulting explanations, as a step towards developing trustworthy and safe models. Supplementary Information The online version contains supplementary material available at 10.1007/s10462-024-10852-w.
Collapse
Affiliation(s)
- Ahmed M. Salih
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
- Department of Population Health Sciences, University of Leicester, University Rd, Leicester, LE1 7RH UK
- Department of Computer Science, University of Zakho, Duhok road, Zakho, Kurdistan Iraq
| | - Ilaria Boscolo Galazzo
- Department of Engineering for Innovative Medicine, University of Verona, S. Francesco, 22, 37129 Verona, Italy
| | - Polyxeni Gkontra
- Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
| | - Elisa Rauseo
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Aaron Mark Lee
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Karim Lekadir
- Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain
| | - Petia Radeva
- Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
| | - Steffen E. Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London, UK
- Health Data Research, London, UK
- Alan Turing Institute, London, UK
| | - Gloria Menegaz
- Department of Engineering for Innovative Medicine, University of Verona, S. Francesco, 22, 37129 Verona, Italy
| |
Collapse
|
3
|
Shin S, Choi S, Kim C, Mousavi AS, Hahn JO, Jeong S, Jeong H. BCG Signal Quality Assessment Based on Time-Series Imaging Methods. SENSORS (BASEL, SWITZERLAND) 2023; 23:9382. [PMID: 38067755 PMCID: PMC10708708 DOI: 10.3390/s23239382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
This paper describes a signal quality classification method for arm ballistocardiogram (BCG), which has the potential for non-invasive and continuous blood pressure measurement. An advantage of the BCG signal for wearable devices is that it can easily be measured using accelerometers. However, the BCG signal is also susceptible to noise caused by motion artifacts. This distortion leads to errors in blood pressure estimation, thereby lowering the performance of blood pressure measurement based on BCG. In this study, to prevent such performance degradation, a binary classification model was created to distinguish between high-quality versus low-quality BCG signals. To estimate the most accurate model, four time-series imaging methods (recurrence plot, the Gramain angular summation field, the Gramain angular difference field, and the Markov transition field) were studied to convert the temporal BCG signal associated with each heartbeat into a 448 × 448 pixel image, and the image was classified using CNN models such as ResNet, SqueezeNet, DenseNet, and LeNet. A total of 9626 BCG beats were used for training, validation, and testing. The experimental results showed that the ResNet and SqueezeNet models with the Gramain angular difference field method achieved a binary classification accuracy of up to 87.5%.
Collapse
Affiliation(s)
- Sungtae Shin
- Department of Mechanical Engineering, Dong-A University, Busan 49315, Republic of Korea; (S.S.); (S.C.)
| | - Soonyoung Choi
- Department of Mechanical Engineering, Dong-A University, Busan 49315, Republic of Korea; (S.S.); (S.C.)
| | - Chaeyoung Kim
- Institute for Digital Antiaging and Healthcare, Inje University, Gimhae 50834, Republic of Korea;
| | - Azin Sadat Mousavi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; (A.S.M.); (J.-O.H.)
| | - Jin-Oh Hahn
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; (A.S.M.); (J.-O.H.)
| | - Sehoon Jeong
- Institute for Digital Antiaging and Healthcare, Inje University, Gimhae 50834, Republic of Korea;
- Department of Healthcare Information Technology, Inje University, Gimhae 50834, Republic of Korea
- Paik Institute for Clinical Research, Inje University, Busan 50834, Republic of Korea
| | - Hyundoo Jeong
- Department of Mechatronics Engineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
4
|
Loh HW, Ooi CP, Seoni S, Barua PD, Molinari F, Acharya UR. Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011-2022). COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107161. [PMID: 36228495 DOI: 10.1016/j.cmpb.2022.107161] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVES Artificial intelligence (AI) has branched out to various applications in healthcare, such as health services management, predictive medicine, clinical decision-making, and patient data and diagnostics. Although AI models have achieved human-like performance, their use is still limited because they are seen as a black box. This lack of trust remains the main reason for their low use in practice, especially in healthcare. Hence, explainable artificial intelligence (XAI) has been introduced as a technique that can provide confidence in the model's prediction by explaining how the prediction is derived, thereby encouraging the use of AI systems in healthcare. The primary goal of this review is to provide areas of healthcare that require more attention from the XAI research community. METHODS Multiple journal databases were thoroughly searched using PRISMA guidelines 2020. Studies that do not appear in Q1 journals, which are highly credible, were excluded. RESULTS In this review, we surveyed 99 Q1 articles covering the following XAI techniques: SHAP, LIME, GradCAM, LRP, Fuzzy classifier, EBM, CBR, rule-based systems, and others. CONCLUSION We discovered that detecting abnormalities in 1D biosignals and identifying key text in clinical notes are areas that require more attention from the XAI research community. We hope this is review will encourage the development of a holistic cloud system for a smart city.
Collapse
Affiliation(s)
- Hui Wen Loh
- School of Science and Technology, Singapore University of Social Sciences, Singapore
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore
| | - Silvia Seoni
- Department of Electronics and Telecommunications, Biolab, Politecnico di Torino, Torino 10129, Italy
| | - Prabal Datta Barua
- Faculty of Engineering and Information Technology, University of Technology Sydney, Australia; School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Australia
| | - Filippo Molinari
- Department of Electronics and Telecommunications, Biolab, Politecnico di Torino, Torino 10129, Italy
| | - U Rajendra Acharya
- School of Science and Technology, Singapore University of Social Sciences, Singapore; School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Australia; School of Engineering, Ngee Ann Polytechnic, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan; Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
5
|
Di Martino F, Delmastro F. Explainable AI for clinical and remote health applications: a survey on tabular and time series data. Artif Intell Rev 2022; 56:5261-5315. [PMID: 36320613 PMCID: PMC9607788 DOI: 10.1007/s10462-022-10304-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractNowadays Artificial Intelligence (AI) has become a fundamental component of healthcare applications, both clinical and remote, but the best performing AI systems are often too complex to be self-explaining. Explainable AI (XAI) techniques are defined to unveil the reasoning behind the system’s predictions and decisions, and they become even more critical when dealing with sensitive and personal health data. It is worth noting that XAI has not gathered the same attention across different research areas and data types, especially in healthcare. In particular, many clinical and remote health applications are based on tabular and time series data, respectively, and XAI is not commonly analysed on these data types, while computer vision and Natural Language Processing (NLP) are the reference applications. To provide an overview of XAI methods that are most suitable for tabular and time series data in the healthcare domain, this paper provides a review of the literature in the last 5 years, illustrating the type of generated explanations and the efforts provided to evaluate their relevance and quality. Specifically, we identify clinical validation, consistency assessment, objective and standardised quality evaluation, and human-centered quality assessment as key features to ensure effective explanations for the end users. Finally, we highlight the main research challenges in the field as well as the limitations of existing XAI methods.
Collapse
|
6
|
Williamson S, Daniel-Watanabe L, Finnemann J, Powell C, Teed A, Allen M, Paulus M, Khalsa SS, Fletcher PC. The Hybrid Excess and Decay (HED) model: an automated approach to characterising changes in the photoplethysmography pulse waveform. Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.17855.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photoplethysmography offers a widely used, convenient and non-invasive approach to monitoring basic indices of cardiovascular function, such as heart rate and blood oxygenation. Systematic analysis of the shape of the waveform generated by photoplethysmography might be useful to extract estimates of several physiological and psychological factors influencing the waveform. Here, we developed a robust and automated method for such a systematic analysis across individuals and across different physiological and psychological contexts. We describe a psychophysiologically-relevant model, the Hybrid Excess and Decay (HED) model, which characterises pulse wave morphology in terms of three underlying pressure waves and a decay function. We present the theoretical and practical basis for the model and demonstrate its performance when applied to a pharmacological dataset of 105 participants receiving intravenous administrations of the sympathomimetic drug isoproterenol (isoprenaline). We show that these parameters capture photoplethysmography data with a high degree of precision and, moreover, are sensitive to experimentally-induced changes in interoceptive arousal within individuals. We conclude by discussing the possible value in using the HED model as a complement to standard measures of photoplethysmography signals.
Collapse
|
7
|
Banerjee T, Gavas RD, Bs M, Karmakar S, Ramakrishnan RK, Pal A. Design of a Realtime Photoplethysmogram Signal Quality Checker for Wearables and Edge Computing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1323-1326. [PMID: 36086651 DOI: 10.1109/embc48229.2022.9871741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photoplethysmogram (PPG) signal is extensively used for deducing health parameters of patients in order to infer about physiological conditions of heart, blood pressure, respiratory patterns, and so on. Such analysis and estimations can be done accurately only on high quality PPG signals with very minimal artifacts. PPG signals collected from fitness grade and smart phone scenarios are prone to muscle artifacts and hence there is a need to assess the signal quality before using the signal. Although there are approaches available in the realm of machine learning and deep learning, they are computationally expensive and may not be suitable for a wearable or edge computing scenario. In this paper, we propose the design of a quality checker to check the quality of the signal that can be directly implemented on edge devices like smartwatch. The algorithm is tested on PPG data collected from wearable, ICU and medical grade devices. In the wearable scenario where the noise levels are very high, our algorithm has performed significantly better with a Fscore of over 0.92. Further we show that by applying the proposed quality checker, the accuracy of the computed heart rate from a smart phone PPG-application significantly improves.
Collapse
|
8
|
Chatterjee T, Ghosh A, Sarkar S. Signal Quality Assessment of Photoplethysmogram Signals using Quantum Pattern Recognition Technique and lightweight CNN Module. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3382-3386. [PMID: 36086165 DOI: 10.1109/embc48229.2022.9871494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photoplethysmography (PPG) signal comprises physiological information related to cardiorespiratory health. High-quality PPG signals are necessary to extract cardiores-piratory information accurately. Motion artifacts can easily corrupt PPG signals due to human locomotion, leading to noise enriched, poor quality signals. Several rule-based and Machine-Learning (ML) - based approaches for PPG signal quality estimation are available, but those algorithms' efficacy is questionable. So, the authors propose a lightweight CNN architecture for signal quality assessment by employing a novel Quantum Pattern Recognition (QPR) technique. The proposed algorithm is validated on manually annotated data obtained from the University of Queensland database. A total of 28366, 5s signal segments are preprocessed and transformed into image files of 20 x 500 pixels for input to the 2D CNN architecture. The developed model classifies the PPG signal as 'good' and 'bad' with an accuracy of 98.3% with 99.3% sensitivity, 94.5% specificity and 98.9% F1-score. The experimental analysis concludes that slim module based architecture and novel Spatio-temporal pattern recognition technique improve the system's performance. The proposed approach is suitable for a resource-constrained wearable implementation.
Collapse
|
9
|
Guo Z, Ding C, Hu X, Rudin C. A supervised machine learning semantic segmentation approach for detecting artifacts in plethysmography signals from wearables. Physiol Meas 2021; 42. [PMID: 34794126 DOI: 10.1088/1361-6579/ac3b3d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
Objective. Wearable devices equipped with plethysmography (PPG) sensors provided a low-cost, long-term solution to early diagnosis and continuous screening of heart conditions. However PPG signals collected from such devices often suffer from corruption caused by artifacts. The objective of this study is to develop an effective supervised algorithm to locate the regions of artifacts within PPG signals.Approach. We treat artifact detection as a 1D segmentation problem. We solve it via a novel combination of an active-contour-based loss and an adapted U-Net architecture. The proposed algorithm was trained on the PPG DaLiA training set, and further evaluated on the PPG DaLiA testing set, WESAD dataset and TROIKA dataset.Main results. We evaluated with the DICE score, a well-established metric for segmentation accuracy evaluation in the field of computer vision. The proposed method outperforms baseline methods on all three datasets by a large margin (≈7 percentage points above the next best method). On the PPG DaLiA testing set, WESAD dataset and TROIKA dataset, the proposed method achieved 0.8734 ± 0.0018, 0.9114 ± 0.0033 and 0.8050 ± 0.0116 respectively. The next best method only achieved 0.8068 ± 0.0014, 0.8446 ± 0.0013 and 0.7247 ± 0.0050.Significance. The proposed method is able to pinpoint exact locations of artifacts with high precision; in the past, we had only a binary classification of whether a PPG signal has good or poor quality. This more nuanced information will be critical to further inform the design of algorithms to detect cardiac arrhythmia.
Collapse
Affiliation(s)
- Zhicheng Guo
- Department of Computer Science, Duke University, United States of America
| | - Cheng Ding
- Department of Electrical and Computer Engineering, Duke University, United States of America
| | - Xiao Hu
- Department of Electrical and Computer Engineering, Duke University, United States of America.,Division of Health Analytics, School of Nursing, Biomedical Engineering, Pratt School of Engineering, Departments of Neurology, Biostatistics & Bioinformatics, Surgery, School of Medicine, Duke University, United States of America
| | - Cynthia Rudin
- Department of Computer Science, Duke University, United States of America.,Department of Electrical and Computer Engineering, Duke University, United States of America
| |
Collapse
|