1
|
Xu S, Hammernik K, Lingg A, Kübler J, Krumm P, Rueckert D, Gatidis S, Küstner T. Attention incorporated network for sharing low-rank, image and k-space information during MR image reconstruction to achieve single breath-hold cardiac Cine imaging. Comput Med Imaging Graph 2025; 120:102475. [PMID: 39808868 DOI: 10.1016/j.compmedimag.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/02/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
Cardiac Cine Magnetic Resonance Imaging (MRI) provides an accurate assessment of heart morphology and function in clinical practice. However, MRI requires long acquisition times, with recent deep learning-based methods showing great promise to accelerate imaging and enhance reconstruction quality. Existing networks exhibit some common limitations that constrain further acceleration possibilities, including single-domain learning, reliance on a single regularization term, and equal feature contribution. To address these limitations, we propose to embed information from multiple domains, including low-rank, image, and k-space, in a novel deep learning network for MRI reconstruction, which we denote as A-LIKNet. A-LIKNet adopts a parallel-branch structure, enabling independent learning in the k-space and image domain. Coupled information sharing layers realize the information exchange between domains. Furthermore, we introduce attention mechanisms into the network to assign greater weights to more critical coils or important temporal frames. Training and testing were conducted on an in-house dataset, including 91 cardiovascular patients and 38 healthy subjects scanned with 2D cardiac Cine using retrospective undersampling. Additionally, we evaluated A-LIKNet on the real-time prospectively undersampled data from the OCMR dataset. The results demonstrate that our proposed A-LIKNet outperforms existing methods and provides high-quality reconstructions. The network can effectively reconstruct highly retrospectively undersampled dynamic MR images up to 24× accelerations, indicating its potential for single breath-hold imaging.
Collapse
Affiliation(s)
- Siying Xu
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany.
| | - Kerstin Hammernik
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Andreas Lingg
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
| | - Jens Kübler
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
| | - Patrick Krumm
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
| | - Daniel Rueckert
- School of Computation, Information and Technology, Technical University of Munich, Munich, Germany; Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Department of Computing, Imperial College London, London, United Kingdom
| | - Sergios Gatidis
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany; Department of Radiology, Stanford University, Stanford, CA, USA
| | - Thomas Küstner
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
2
|
Wang W, Shen H, Chen J, Xing F. MHAN: Multi-Stage Hybrid Attention Network for MRI reconstruction and super-resolution. Comput Biol Med 2023; 163:107181. [PMID: 37352637 DOI: 10.1016/j.compbiomed.2023.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
High-quality magnetic resonance imaging (MRI) affords clear body tissue structure for reliable diagnosing. However, there is a principal problem of the trade-off between acquisition speed and image quality. Image reconstruction and super-resolution are crucial techniques to solve these problems. In the main field of MR image restoration, most researchers mainly focus on only one of these aspects, namely reconstruction or super-resolution. In this paper, we propose an efficient model called Multi-Stage Hybrid Attention Network (MHAN) that performs the multi-task of recovering high-resolution (HR) MR images from low-resolution (LR) under-sampled measurements. Our model is highlighted by three major modules: (i) an Amplified Spatial Attention Block (ASAB) capable of enhancing the differences in spatial information, (ii) a Self-Attention Block with a Data-Consistency Layer (DC-SAB), which can improve the accuracy of the extracted feature information, (iii) an Adaptive Local Residual Attention Block (ALRAB) that focuses on both spatial and channel information. MHAN employs an encoder-decoder architecture to deeply extract contextual information and a pipeline to provide spatial accuracy. Compared with the recent multi-task model T2Net, our MHAN improves by 2.759 dB in PSNR and 0.026 in SSIM with scaling factor ×2 and acceleration factor 4× on T2 modality.
Collapse
Affiliation(s)
- Wanliang Wang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Haoxin Shen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Jiacheng Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Fangsen Xing
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, China.
| |
Collapse
|
3
|
Singh D, Monga A, de Moura HL, Zhang X, Zibetti MVW, Regatte RR. Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review. Bioengineering (Basel) 2023; 10:1012. [PMID: 37760114 PMCID: PMC10525988 DOI: 10.3390/bioengineering10091012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) is an essential medical imaging modality that provides excellent soft-tissue contrast and high-resolution images of the human body, allowing us to understand detailed information on morphology, structural integrity, and physiologic processes. However, MRI exams usually require lengthy acquisition times. Methods such as parallel MRI and Compressive Sensing (CS) have significantly reduced the MRI acquisition time by acquiring less data through undersampling k-space. The state-of-the-art of fast MRI has recently been redefined by integrating Deep Learning (DL) models with these undersampled approaches. This Systematic Literature Review (SLR) comprehensively analyzes deep MRI reconstruction models, emphasizing the key elements of recently proposed methods and highlighting their strengths and weaknesses. This SLR involves searching and selecting relevant studies from various databases, including Web of Science and Scopus, followed by a rigorous screening and data extraction process using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. It focuses on various techniques, such as residual learning, image representation using encoders and decoders, data-consistency layers, unrolled networks, learned activations, attention modules, plug-and-play priors, diffusion models, and Bayesian methods. This SLR also discusses the use of loss functions and training with adversarial networks to enhance deep MRI reconstruction methods. Moreover, we explore various MRI reconstruction applications, including non-Cartesian reconstruction, super-resolution, dynamic MRI, joint learning of reconstruction with coil sensitivity and sampling, quantitative mapping, and MR fingerprinting. This paper also addresses research questions, provides insights for future directions, and emphasizes robust generalization and artifact handling. Therefore, this SLR serves as a valuable resource for advancing fast MRI, guiding research and development efforts of MRI reconstruction for better image quality and faster data acquisition.
Collapse
Affiliation(s)
- Dilbag Singh
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (A.M.); (H.L.d.M.); (X.Z.); (M.V.W.Z.)
| | | | | | | | | | - Ravinder R. Regatte
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (A.M.); (H.L.d.M.); (X.Z.); (M.V.W.Z.)
| |
Collapse
|
4
|
Ueki W, Nishii T, Umehara K, Ota J, Higuchi S, Ohta Y, Nagai Y, Murakawa K, Ishida T, Fukuda T. Generative adversarial network-based post-processed image super-resolution technology for accelerating brain MRI: comparison with compressed sensing. Acta Radiol 2022; 64:336-345. [PMID: 35118883 DOI: 10.1177/02841851221076330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND It is unclear whether deep-learning-based super-resolution technology (SR) or compressed sensing technology (CS) can accelerate magnetic resonance imaging (MRI) . PURPOSE To compare SR accelerated images with CS images regarding the image similarity to reference 2D- and 3D gradient-echo sequence (GRE) brain MRI. MATERIAL AND METHODS We prospectively acquired 1.3× and 2.0× faster 2D and 3D GRE images of 20 volunteers from the reference time by reducing the matrix size or increasing the CS factor. For SR, we trained the generative adversarial network (GAN), upscaling the low-resolution images to the reference images with twofold cross-validation. We compared the structural similarity (SSIM) index of accelerated images to the reference image. The rate of incorrect answers of a radiologist discriminating faster and reference image was used as a subjective image similarity (ISM) index. RESULTS The SR demonstrated significantly higher SSIM than the CS (SSIM=0.9993-0.999 vs. 0.9947-0.9986; P < 0.001). In 2D GRE, it was challenging to discriminate the SR image from the reference image, compared to the CS (ISM index 40% vs. 17.5% in 1.3×; P = 0.039 and 17.5% vs. 2.5% in 2.0×; P = 0.034). In 3D GRE, the CS revealed a significantly higher ISM index than the SR (22.5% vs. 2.5%; P = 0.011) in 2.0 × faster images. However, the ISM index was identical for the 2.0× CS and 1.3× SR (22.5% vs. 27.5%; P = 0.62) with comparable time costs. CONCLUSION The GAN-based SR outperformed CS in image similarity with 2D GRE for MRI acceleration. In addition, CS was more advantageous in 3D GRE than SR.
Collapse
Affiliation(s)
- Wataru Ueki
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Tatsuya Nishii
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kensuke Umehara
- Medical Informatics Section, QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Junko Ota
- Medical Informatics Section, QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Satoshi Higuchi
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yasutoshi Ohta
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yasuhiro Nagai
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Keizo Murakawa
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takayuki Ishida
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tetsuya Fukuda
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
5
|
Huang J, Ding W, Lv J, Yang J, Dong H, Del Ser J, Xia J, Ren T, Wong ST, Yang G. Edge-enhanced dual discriminator generative adversarial network for fast MRI with parallel imaging using multi-view information. APPL INTELL 2022; 52:14693-14710. [PMID: 36199853 PMCID: PMC9526695 DOI: 10.1007/s10489-021-03092-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
In clinical medicine, magnetic resonance imaging (MRI) is one of the most important tools for diagnosis, triage, prognosis, and treatment planning. However, MRI suffers from an inherent slow data acquisition process because data is collected sequentially in k-space. In recent years, most MRI reconstruction methods proposed in the literature focus on holistic image reconstruction rather than enhancing the edge information. This work steps aside this general trend by elaborating on the enhancement of edge information. Specifically, we introduce a novel parallel imaging coupled dual discriminator generative adversarial network (PIDD-GAN) for fast multi-channel MRI reconstruction by incorporating multi-view information. The dual discriminator design aims to improve the edge information in MRI reconstruction. One discriminator is used for holistic image reconstruction, whereas the other one is responsible for enhancing edge information. An improved U-Net with local and global residual learning is proposed for the generator. Frequency channel attention blocks (FCA Blocks) are embedded in the generator for incorporating attention mechanisms. Content loss is introduced to train the generator for better reconstruction quality. We performed comprehensive experiments on Calgary-Campinas public brain MR dataset and compared our method with state-of-the-art MRI reconstruction methods. Ablation studies of residual learning were conducted on the MICCAI13 dataset to validate the proposed modules. Results show that our PIDD-GAN provides high-quality reconstructed MR images, with well-preserved edge information. The time of single-image reconstruction is below 5ms, which meets the demand of faster processing.
Collapse
Affiliation(s)
- Jiahao Huang
- College of Information Science and Technology, Zhejiang Shuren University, 310015 Hangzhou, China
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Weiping Ding
- School of Information Science and Technology, Nantong University, 226019 Nantong, China
| | - Jun Lv
- School of Computer and Control Engineering, Yantai University, 264005 Yantai, China
| | - Jingwen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Dong
- Center on Frontiers of Computing Studies, Peking University, Beijing, China
| | - Javier Del Ser
- TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
| | - Jun Xia
- Department of Radiology, Shenzhen Second People’s Hospital, The First Afliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Tiaojuan Ren
- College of Information Science and Technology, Zhejiang Shuren University, 310015 Hangzhou, China
| | - Stephen T. Wong
- Systems Medicine and Bioengineering Department, Departments of Radiology and Pathology, Houston Methodist Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, 77030 Houston, TX USA
| | - Guang Yang
- National Heart and Lung Institute, Imperial College London, London, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, UK
| |
Collapse
|
6
|
Wu X, Li C, Zeng X, Wei H, Deng HW, Zhang J, Xu M. CryoETGAN: Cryo-Electron Tomography Image Synthesis via Unpaired Image Translation. Front Physiol 2022; 13:760404. [PMID: 35370760 PMCID: PMC8970048 DOI: 10.3389/fphys.2022.760404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Cryo-electron tomography (Cryo-ET) has been regarded as a revolution in structural biology and can reveal molecular sociology. Its unprecedented quality enables it to visualize cellular organelles and macromolecular complexes at nanometer resolution with native conformations. Motivated by developments in nanotechnology and machine learning, establishing machine learning approaches such as classification, detection and averaging for Cryo-ET image analysis has inspired broad interest. Yet, deep learning-based methods for biomedical imaging typically require large labeled datasets for good results, which can be a great challenge due to the expense of obtaining and labeling training data. To deal with this problem, we propose a generative model to simulate Cryo-ET images efficiently and reliably: CryoETGAN. This cycle-consistent and Wasserstein generative adversarial network (GAN) is able to generate images with an appearance similar to the original experimental data. Quantitative and visual grading results on generated images are provided to show that the results of our proposed method achieve better performance compared to the previous state-of-the-art simulation methods. Moreover, CryoETGAN is stable to train and capable of generating plausibly diverse image samples.
Collapse
Affiliation(s)
- Xindi Wu
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Chengkun Li
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xiangrui Zeng
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Haocheng Wei
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Hong-Wen Deng
- Center for Biomedical Informatics & Genomics, Tulane University, New Orleans, LA, United States
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Min Xu
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
7
|
An Effective Multi-Task Two-Stage Network with the Cross-Scale Training Strategy for Multi-Scale Image Super Resolution. ELECTRONICS 2021. [DOI: 10.3390/electronics10192434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Convolutional neural networks and the per-pixel loss function have shown their potential to be the best combination for super-resolving severely degraded images. However, there are still challenges, such as the massive number of parameters requiring prohibitive memory and vast computing and storage resources as well as time-consuming training and testing. What is more, the per-pixel loss measured by L2 and the Peak Signal-to-Noise Ratio do not correlate well with human perception of image quality, since L2 simply does not capture the intricate characteristics of human visual systems. To address these issues, we propose an effective two-stage hourglass network with multi-task co-optimization, which enables the entire network to focus on training and testing time and inherent image patterns such as local luminance, contrast, structure and data distribution. Moreover, to avoid overwhelming memory overheads, our model is capable of performing real-time single image multi-scale super-resolution, so it is memory-friendly, meaning that memory space is utilized efficiently. In addition, in order to best use the underlying structure and perception of image quality and the intermediate estimates during the inference process, we introduce a cross-scale training strategy with 2×, 3× and 4× image super-resolution. This effective multi-task two-stage network with the cross-scale strategy for multi-scale image super-resolution is named EMTCM. Quantitative and qualitative experiment results show that the proposed EMTCM network outperforms state-of-the-art methods in recovering high-quality images.
Collapse
|