1
|
Cassarà AM, Newton TH, Zhuang K, Regel SJ, Achermann P, Pascual‐Leone A, Kuster N, Neufeld E. Recommendations for the Safe Application of Temporal Interference Stimulation in the Human Brain Part II: Biophysics, Dosimetry, and Safety Recommendations. Bioelectromagnetics 2025; 46:e22536. [PMID: 39810626 PMCID: PMC11733664 DOI: 10.1002/bem.22536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, noninvasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and nonclinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. To inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations. To this end, we undertook a two-part effort to determine frequency-dependent thresholds for applied currents below which TIS is unlikely to pose risk to humans in terms of heating or unwanted stimulation. In Part II of this effort, described here, we draw on a previously compiled list (see Part I) of adverse effects (AEs) reported for transcranial direct/alternating current stimulation (tDCS/ACS), deep brain stimulation (DBS), and TIS to determine biophysics-informed exposure metrics for assessing safety. Using an in silico approach, we conduct multiphysics simulations of various tACS, DBS, and TIS exposure scenarios in an anatomically detailed head and brain model. By matching the stimulation in terms of the identified exposure metrics, we infer frequency-dependent TIS parameters that produce exposure conditions equivalent to those known to be safe for tACS and DBS. Based on the results of our simulations and existing knowledge regarding tES and DBS safety, we propose frequency-dependent thresholds below which TIS voltages and currents are unlikely to pose a risk to humans. Safety-related data from ongoing and future human studies are required to verify and refine the thresholds proposed here.
Collapse
Affiliation(s)
- Antonino M. Cassarà
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | - Taylor H. Newton
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | - Katie Zhuang
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | | | - Peter Achermann
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | - Alvaro Pascual‐Leone
- TI Solutions AGZurichSwitzerland
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLifeBostonMassachusettsUSA
| | - Niels Kuster
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
- TI Solutions AGZurichSwitzerland
- Department of Information Technology and Electrical EngineeringETH ZurichZurichSwitzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
- TI Solutions AGZurichSwitzerland
| |
Collapse
|
2
|
Krishnan J, Joseph R, Vayalappil MC, Krishnan S, Kishore A. A Review on Implantable Neuroelectrodes. Crit Rev Biomed Eng 2024; 52:21-39. [PMID: 37938182 DOI: 10.1615/critrevbiomedeng.2023049282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The efficacy of every neuromodulation modality depends upon the characteristics of the electrodes used to stimulate the chosen target. The geometrical, chemical, mechanical and physical configuration of electrodes used in neurostimulation affects several performance attributes like stimulation efficiency, selectivity, tissue response, etc. The efficiency of stimulation in relation to electrode impedance is influenced by the electrode material and/or its geometry. The nature of the electrode material determines the charge transfer across the electrode-tissue interface, which also relates to neuronal tissue damage. Electrode morphology or configuration pattern can facilitate the modulation of extracellular electric field (field shaping). This enables selective activation of neurons and minimizes side effects. Biocompatibility and biostability of the electrode materials or electrode coating have a role in glial formation and tissue damage. Mechanical and electrochemical stability (corrosion resistance) determines the long-term efficacy of any neuromodulation technique. Here, a review of electrodes typically used for implantable neuromodulation is discussed. Factors affecting the performance of electrodes like stimulation efficiency, selectivity and tissue responses to the electrode-tissue interface are discussed. Technological advancements to improve electrode characteristics are also included.
Collapse
Affiliation(s)
- Jithin Krishnan
- Department of Medical Devices Engineering, BMT Wing, SCTIMST, Kerala, India
| | - Roy Joseph
- Department of Medical Devices Engineering, BMT Wing, SCTIMST, Kerala, India
| | | | | | - Asha Kishore
- Aster Parkinson & Movement Disorder Centre, Senior Consultant Neurologist and Movement Disorder Specialist
| |
Collapse
|
3
|
Zhuo J, Weidrick CE, Liu Y, Moffitt MA, Jansen ED, Chiel HJ, Jenkins MW. Selective Infrared Neural Inhibition Can Be Reproduced by Resistive Heating. Neuromodulation 2023; 26:1757-1771. [PMID: 36707292 PMCID: PMC10366334 DOI: 10.1016/j.neurom.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Small-diameter afferent axons carry various sensory signals that are critical for vital physiological conditions but sometimes contribute to pathologies. Infrared (IR) neural inhibition (INI) can induce selective heat block of small-diameter axons, which holds potential for translational applications such as pain management. Previous research suggested that IR-heating-induced acceleration of voltage-gated potassium channel kinetics is the mechanism for INI. Therefore, we hypothesized that other heating methods, such as resistive heating (RH) in a cuff, could reproduce the selective inhibition observed in INI. MATERIALS AND METHODS We conducted ex vivo nerve-heating experiments on pleural-abdominal connective nerves of Aplysia californica using both IR and RH. We fabricated a transparent silicone nerve cuff for simultaneous IR heating, RH, and temperature measurements. Temperature elevations (ΔT) on the nerve surface were recorded for both heating modalities, which were tested over a range of power levels that cover a similar ΔT range. We recorded electrically evoked compound action potentials (CAPs) and segmented them into fast and slow subcomponents on the basis of conduction velocity differences between the large and small-diameter axonal subpopulations. We calculated the normalized inhibition strength and inhibition selectivity index on the basis of the rectified area under the curve of each subpopulation. RESULTS INI and RH showed a similar selective inhibition effect on CAP subcomponents for slow-conducting axons, confirmed by the inhibition probability vs ΔT dose-response curve based on approximately 2000 CAP measurements. The inhibition selectivity indexes of the two heating modalities were similar across six nerves. RH only required half the total electrical power required by INI to achieve a similar ΔT. SIGNIFICANCE We show that selective INI can be reproduced by other heating modalities such as RH. RH, because of its high energy efficiency and simple design, can be a good candidate for future implantable neural interface designs.
Collapse
Affiliation(s)
- Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Chloe E Weidrick
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael A Moffitt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Biophotonics Center, Vanderbilt University, Nashville, TN, USA; Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Zannou AL, Khadka N, Bikson M. Bioheat Model of Spinal Column Heating During High-Density Spinal Cord Stimulation. Neuromodulation 2023; 26:1362-1370. [PMID: 36030146 PMCID: PMC9950282 DOI: 10.1016/j.neurom.2022.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION High-density (HD) spinal cord stimulation (SCS) delivers higher charge per time by increasing frequency and/or pulse duration, thus increasing stimulation energy. Previously, through phantom studies and computational modeling, we demonstrated that stimulation energy drives spinal tissue heating during kHz SCS. In this study, we predicted temperature increases in the spinal cord by HD SCS, the first step in considering the potential impact of heating on clinical outcomes. MATERIALS AND METHODS We adapted a high-resolution computer-aided design-derived spinal cord model, both with and without a lead encapsulation layer, and applied bioheat transfer finite element method multiphysics to predict temperature increases during SCS. We simulated HD SCS using a commercial SCS lead (eight contacts) with clinically relevant intensities (voltage-controlled: 0.5-7 Vrms) and electrode configuration (proximal bipolar, distal bipolar, guarded tripolar [+-+], and guarded quadripolar [+--+]). Results were compared with the conventional and 10-kHz SCS (current-controlled). RESULTS HD SCS waveform energy (reflecting charge per second) governs joule heating in the spinal tissues, increasing temperature supralinearly with stimulation root mean square. Electrode configuration and tissue properties (an encapsulation layer) influence peak tissue temperature increase-but in a manner distinct for voltage-controlled (HD SCS) compared with current-controlled (conventional/10-kHz SCS) stimulation. Therefore, depending on conditions, HD SCS could produce heating greater than that of 10-kHz SCS. For example, with an encapsulation layer, using guarded tripolar configuration (500-Hz, 250-μs pulse width, 5-Vpeak HD SCS), the peak temperature increases were 0.36 °C at the spinal cord and 1.78 °C in the epidural space. CONCLUSIONS As a direct consequence of the higher charge, HD SCS increases tissue heating; voltage-controlled stimulation introduces special dependencies on electrode configuration and lead encapsulation (reflected in impedance). If validated with an in vivo measurement as a possible mechanism of action of SCS, bioheat models of HD SCS serve as tools for programming optimization.
Collapse
Affiliation(s)
- Adantchede L Zannou
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Niranjan Khadka
- Department of Psychiatry, Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
5
|
Yasunaga H, Takeuchi H, Mizuguchi K, Nishikawa A, Loesing A, Ishikawa M, Kamiyoshihara C, Setogawa S, Ohkawa N, Sekiguchi H. MicroLED neural probe for effective in vivo optogenetic stimulation. OPTICS EXPRESS 2022; 30:40292-40305. [PMID: 36298964 DOI: 10.1364/oe.470318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The MicroLED probe enables optogenetic control of neural activity in spatially separated brain regions. Understanding its heat generation characteristics is important. In this study, we investigated the temperature rise (ΔT) characteristics in the brain tissue using a MicroLED probe. The ΔT strongly depended on the surrounding environment of the probe, including the differences between the air and the brain, and the area touching the brain tissue. Through animal experiments, we suggest an in situ temperature monitoring method using temperature dependence on electrical characteristics of the MicroLED. Finally, optical stimulation by MicroLEDs proved effective in controlling optogenetic neural activity in animal models.
Collapse
|
6
|
Zannou AL, Khadka N, FallahRad M, Truong DQ, Kopell BH, Bikson M. Tissue Temperature Increases by a 10 kHz Spinal Cord Stimulation System: Phantom and Bioheat Model. Neuromodulation 2021; 24:1327-1335. [PMID: 31225695 PMCID: PMC6925358 DOI: 10.1111/ner.12980] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE A recently introduced Spinal Cord Stimulation (SCS) system operates at 10 kHz, faster than conventional SCS systems, resulting in significantly more power delivered to tissues. Using a SCS heat phantom and bioheat multi-physics model, we characterized tissue temperature increases by this 10 kHz system. We also evaluated its Implanted Pulse Generator (IPG) output compliance and the role of impedance in temperature increases. MATERIALS AND METHODS The 10 kHz SCS system output was characterized under resistive loads (1-10 KΩ). Separately, fiber optic temperature probes quantified temperature increases (ΔTs) around the SCS lead in specially developed heat phantoms. The role of stimulation Level (1-7; ideal pulse peak-to-peak of 1-7mA) was considered, specifically in the context of stimulation current Root Mean Square (RMS). Data from the heat phantom were verified with the SCS heat-transfer models. A custom high-bandwidth stimulator provided 10 kHz pulses and sinusoidal stimulation for control experiments. RESULTS The 10 kHz SCS system delivers 10 kHz biphasic pulses (30-20-30 μs). Voltage compliance was 15.6V. Even below voltage compliance, IPG bandwidth attenuated pulse waveform, limiting applied RMS. Temperature increased supralinearly with stimulation Level in a manner predicted by applied RMS. ΔT increases with Level and impedance until stimulator compliance was reached. Therefore, IPG bandwidth and compliance dampen peak heating. Nonetheless, temperature increases predicted by bioheat multi-physic models (ΔT = 0.64°C and 1.42°C respectively at Level 4 and 7 at the cervical segment; ΔT = 0.68°C and 1.72°C respectively at Level 4 and 7 at the thoracic spinal cord)-within ranges previously reported to effect neurophysiology. CONCLUSIONS Heating of spinal tissues by this 10 kHz SCS system theoretically increases quickly with stimulation level and load impedance, while dampened by IPG pulse bandwidth and voltage compliance limitations. If validated in vivo as a mechanism of kHz SCS, bioheat models informed by IPG limitations allow prediction and optimization of temperature changes.
Collapse
Affiliation(s)
- Adantchede L Zannou
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Mohamad FallahRad
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Dennis Q. Truong
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Brian H. Kopell
- Department of Neurosurgery, Neurology, Psychiatry and Neuroscience, The Icahn School of Medicine, Mount Sinai, New York, NY
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| |
Collapse
|
7
|
Kamimura HAS, Saharkhiz N, Lee SA, Konofagou EE. Synchronous temperature variation monitoring during ultrasound imaging and/or treatment pulse application: a phantom study. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 1:1-10. [PMID: 34713274 PMCID: PMC8547607 DOI: 10.1109/ojuffc.2021.3085539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ultrasound attenuation through soft tissues can produce an acoustic radiation force (ARF) and heating. The ARF-induced displacements and temperature evaluations can reveal tissue properties and provide insights into focused ultrasound (FUS) bio-effects. In this study, we describe an interleaving pulse sequence tested in a tissue-mimicking phantom that alternates FUS and plane-wave imaging pulses at a 1 kHz frame rate. The FUS is amplitude modulated, enabling the simultaneous evaluation of tissue-mimicking phantom displacement using harmonic motion imaging (HMI) and temperature rise using thermal strain imaging (TSI). The parameters were varied with a spatial peak temporal average acoustic intensity (I spta ) ranging from 1.5 to 311 W.cm-2, mechanical index (MI) from 0.43 to 4.0, and total energy (E) from 0.24 to 83 J.cm-2. The HMI and TSI processing could estimate displacement and temperature independently for temperatures below 1.80°C and displacements up to ~117 μm (I spta <311 W.cm-2, MI<4.0, and E<83 J.cm-2) indicated by a steady-state tissue-mimicking phantom displacement throughout the sonication and a comparable temperature estimation with simulations in the absence of tissue-mimicking phantom motion. The TSI estimations presented a mean error of ±0.03°C versus thermocouple estimations with a mean error of ±0.24°C. The results presented herein indicate that HMI can operate at diagnostic-temperature levels (i.e., <1°C) even when exceeding diagnostic acoustic intensity levels (720 mW.cm-2 < I spta < 207 W.cm-2). In addition, the combined HMI and TSI can potentially be used for simultaneous evaluation of safety during tissue elasticity imaging as well as FUS mechanism involved in novel ultrasound applications such as ultrasound neuromodulation and tumor ablation.
Collapse
Affiliation(s)
- Hermes A S Kamimura
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| | - Niloufar Saharkhiz
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| | - Stephen A Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| |
Collapse
|
8
|
Vrba J, Janca R, Blaha M, Krsek P, Vrba D. Novel Paradigm of Subdural Cortical Stimulation Does Not Cause Thermal Damage in Brain Tissue: A Simulation-Based Study. IEEE Trans Neural Syst Rehabil Eng 2020; 29:230-238. [PMID: 33301405 DOI: 10.1109/tnsre.2020.3043823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The thermal effect of a novel effective electrical stimulation mapping (ESM) technique using an Ojemann's stimulation electrode in open craniotomy areas causes a nondestructive local increase in temperature. Another type of stimulating electrode is a subdural strip, routinely used in intraoperative electrocorticography (ECoG), which applies ESM in a covered subdural area over the motor cortex. ECoG electrode geometry produces a different electrical field, causing a different Joule heat distribution in tissue, one that is impossible to measure in subdural space. Therefore, the previous safety control study of the novel ESM technique needed to be extended to include an assessment of the thermal effect of ECoG strip electrodes. We adapted a previously well-validated numerical model and performed coupled complex electro-thermal transient simulations for short-time (28.4 ms) high-frequency (500 Hz) and hyperintense (peak 100 mA) ESM paradigm. The risk of heat-induced cellular damage was assessed by applying the Arrhenius equation integral on the computed time-dependent spatial distribution of temperature in the brain tissue during ESM stimulation and during the cooldown period. The results showed increases in temperature in the proximity around ECoG electrode discs in a safe range without destructive effects. As opposed to open craniotomy, subdural space is not cooled by the air; hence a higher - but still safe - induced temperature was observed. The presented simulation agrees with the previously published histopathological examination of the stimulated brain tissue, and confirms the safety of the novel ESM technique when applied using ECoG strip electrodes.
Collapse
|
9
|
Ayub S, David F, Klein E, Borel M, Paul O, Gentet LJ, Ruther P. Compact Optical Neural Probes With Up to 20 Integrated Thin-Film $\mu$LEDs Applied in Acute Optogenetic Studies. IEEE Trans Biomed Eng 2020; 67:2603-2615. [DOI: 10.1109/tbme.2020.2966293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Khadka N, Harmsen IE, Lozano AM, Bikson M. Bio-Heat Model of Kilohertz-Frequency Deep Brain Stimulation Increases Brain Tissue Temperature. Neuromodulation 2020; 23:489-495. [PMID: 32058634 DOI: 10.1111/ner.13120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Early clinical trials suggest that deep brain stimulation at kilohertz frequencies (10 kHz-DBS) may be effective in improving motor symptoms in patients with movement disorders. The 10 kHz-DBS can deliver significantly more power in tissue compared to conventional frequency DBS, reflecting increased pulse compression (duty cycle). We hypothesize that 10 kHz-DBS modulates neuronal function through moderate local tissue heating, analogous to kilohertz spinal cord stimulation (10 kHz-SCS). To establish the role of tissue heating in 10 kHz-DBS (30 μs, 10 kHz, at intensities of 3-7 mApeak ), a decisive first step is to characterize the range of temperature changes during clinical kHz-DBS protocols. MATERIALS AND METHODS We developed a high-resolution magnetic resonance imaging-derived DBS model incorporating joule-heat coupled bio-heat multi-physics to establish the role of tissue heating. Volume of tissue activated (VTA) under assumptions of activating function (for 130 Hz) or heating (for 10 kHz) based neuromodulation are contrasted. RESULTS DBS waveform power (waveform RMS) determined joule heating at the deep brain tissues. Peak heating was supralinearly dependent on stimulation RMS. The 10 kHz-DBS stimulation with 2.3 to 5.4 mARMS (corresponding to 3 to 7 mApeak ) produced 0.10 to 1.38°C heating at the subthalamic nucleus (STN) target under standard tissue parameters. Maximum temperature increases were predicted inside the electrode encapsulation layer (enCAP) with 2.3 to 5.4 mARMS producing 0.13 to 1.87°C under standard tissue parameters. Tissue parameter analysis predicted STN heating was especially sensitive (ranging from 0.44 to 1.35°C at 3.8 mARMS ) to decreasing enCAP electrical conductivity and decreasing STN thermal conductivity. CONCLUSIONS Subject to validation with in vivo measurements, neuromodulation through a heating mechanism of action by 10 kHz-DBS can indicate novel therapeutic pathways and strategies for dose optimization.
Collapse
Affiliation(s)
- Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| |
Collapse
|
11
|
Gentilal N, Salvador R, Miranda PC. Temperature control in TTFields therapy of GBM: impact on the duty cycle and tissue temperature. Phys Med Biol 2019; 64:225008. [PMID: 31671414 DOI: 10.1088/1361-6560/ab5323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In TTFields therapy, Optune® is used to deliver the electric field to the tumor via 4 transducer arrays. This device monitors the temperature of the transducers and reduces the current whenever a transducer reaches 41 °C. Our aim is to quantify Optune's duty cycle and to predict the steady-state temperature distribution in the head during GBM treatment. We used a realistic head model and the finite element method to solve Pennes equation and to simulate how Optune operates considering that current reduces to zero when the thermal limit is reached. The thermal impact was evaluated considering the maximum temperature reached by each tissue and using the CEM 43 °C metric. We observed that Optune switches the current on and off intermittently. In our model, one transducer reached the temperature limit quicker than the others and consequently it was the one that controlled current injection. This led to different duty cycles for the anterior-posterior and left-right array pairs. The thermal analysis indicated that the highest temperature in the model, 41.7 °C, was reached on the scalp under a transducer. However, TTFields may lead to significant changes only at the brain level such as BBB permeability increase, cerebral blood flow variation and changes in the concentration of some neurotransmitters. The duty cycle may be increased, e.g. by controlling the current at the transducer level. These predictions should be validated by comparison with experimental data and reconciled with the lack of evidence of thermal impact in clinical trials.
Collapse
Affiliation(s)
- Nichal Gentilal
- Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal. Author to whom correspondence should be addressed
| | | | | |
Collapse
|
12
|
Stocking KC, Vazquez AL, Kozai TDY. Intracortical Neural Stimulation With Untethered, Ultrasmall Carbon Fiber Electrodes Mediated by the Photoelectric Effect. IEEE Trans Biomed Eng 2019; 66:2402-2412. [PMID: 30605086 DOI: 10.1109/tbme.2018.2889832] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Neural stimulation with tethered, electrically activated probes is damaging to neural tissue and lacks good spatial selectivity and stable chronic performance. The photoelectric effect, which converts incident light into electric potential and heat, provides an opportunity for a tetherless stimulation method. We propose a novel stimulation paradigm that relies on the photoelectric effect to stimulate neurons around a free-floating, ultrasmall (7-8 μm diameter) carbon fiber probe. METHODS A two-photon microscope induced photo-stimulation with a near-infrared laser. Chronoamperometry and chronopotentiometry were used to characterize the electrochemical properties of photo-stimulation, while the fluorescence of Rhodamine-B was used to quantify temperature changes. RESULTS Photo-stimulation caused a local cathodic potential pulse with minimal leakage current. Stimulation induced voltage deflections of 0.05-0.4 V in vitro, varying linearly with the power of the laser source (5-40 mW). Temperature increases in the immediate vicinity of the electrode were limited to 2.5 °C, suggesting that this stimulation modality can be used without inducing heat damage. Successful stimulation was supported in vivo by increased calcium fluorescence in local neurons at stimulation onset in a transgenic GCaMP-3 mouse model. Furthermore, cells activated by photo-stimulation were closer to the electrode than in electrical stimulation under similar conditions, indicating increased spatial precision. CONCLUSION Our results support the hypothesis that the proposed photoelectric method for neural stimulation is effective. SIGNIFICANCE Photoelectric stimulation is precise and avoids the need for a potentially destructive tether, making it a promising alternative to electrical stimulation.
Collapse
|
13
|
Hannan S, Faulkner M, Aristovich K, Avery J, Holder D. Investigating the safety of fast neural electrical impedance tomography in the rat brain. Physiol Meas 2019; 40:034003. [DOI: 10.1088/1361-6579/ab0d53] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Vrba J, Janca R, Blaha M, Jezdik P, Belohlavkova A, Krsek P, Vrba D. Modeling of Brain Tissue Heating Caused by Direct Cortical Stimulation for Assessing the Risk of Thermal Damage. IEEE Trans Neural Syst Rehabil Eng 2019; 27:440-449. [PMID: 30763244 DOI: 10.1109/tnsre.2019.2898253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper aims to employ the numerical simulations to assess the risk of cellular damage during the application of a novel paradigm of electrical stimulation mapping (ESM) used in neurosurgery. The core principle of the paradigm is the use of short, high-intensity and high-frequency stimulation pulses. We developed a complex numerical model and performed coupled electro-thermal transient simulations. The model was optimized by incorporating ESM electrodes' resistance obtained during multiple intraoperative measurements and validated by comparing them with the results of temperature distribution measurement acquired by thermal imaging. The risk of heat-induced cellular damage was assessed by applying the Arrhenius equation integral on the computed time-dependent spatial distribution of temperature in the brain tissue. Our results suggest that the impact of the temperature increase during our novel ESM paradigm is thermally non-destructive. The presented simulation results match the previously published thermographic measurement and histopathological examination of the stimulated brain tissue and confirm the safety of the novel ESM.
Collapse
|
15
|
Janca R, Jezdik P, Jahodova A, Kudr M, Benova B, Celakovsky P, Zamecnik J, Komarek V, Liby P, Tichy M, Krsek P. Intraoperative Thermography of the Electrical Stimulation Mapping: A Safety Control Study. IEEE Trans Neural Syst Rehabil Eng 2018; 26:2126-2133. [PMID: 30475703 DOI: 10.1109/tnsre.2018.2871875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A standard procedure for continuous intraoperative monitoring of the integrity of the corticospinal tracts by eliciting muscle responses is the electric stimulation mapping (ESM). However, standard ESM protocols are ineffective in 20% of young children. We have developed a novel, highly efficient paradigm consisting of short-time burst (30 ms) of high frequency (500 Hz) and high peak current (≤100 mA), which may cause local tissue overheating. The presented safety control study was therefore designed. The infrared thermography camera captured to-be-resected cortex of 13 patients in vivo during ESM. Thermograms were image processed to reveal discrete ESM thermal effect of currents from 10 to 100 mA. Peak 100 mA currents induced a maximal increase in temperature of 3.1 °C, 1.23±0.72 °C in average. The warming correlated with stimulating electrode resistance ( ). The measurement uncertainty was estimated ± 1.01 ºC for the most skeptical conditions. The histopathological evaluation of stimulated tissue (performed in all cases) did not show any destructive changes. Our study demonstrates the ability of the thermographic camera to measure the discrete thermal effect of the ESM. The results provide evidence for the safety of the proposed protocol for full range currents with minimal risk of brain tissue damage.
Collapse
|
16
|
Sane A, Tangen K, Frim D, Singh MR, Linninger A. Cellular Obstruction Clearance in Proximal Ventricular Catheters Using Low-Voltage Joule Heating. IEEE Trans Biomed Eng 2018; 65:2503-2511. [DOI: 10.1109/tbme.2018.2802418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Zannou AL, Khadka N, Truong DQ, Zhang T, Esteller R, Hershey B, Bikson M. Temperature increases by kilohertz frequency spinal cord stimulation. Brain Stimul 2018; 12:62-72. [PMID: 30482674 DOI: 10.1016/j.brs.2018.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Kilohertz frequency spinal cord stimulation (kHz-SCS) deposits significantly more power in tissue compared to SCS at conventional frequencies, reflecting increased duty cycle (pulse compression). We hypothesize kHz-SCS increases local tissue temperature by joule heat, which may influence the clinical outcomes. METHODS To establish the role of tissue heating in KHZ-SCS, a decisive first step is to characterize the range of temperature changes expected during conventional and KHZ-SCS protocols. Fiber optic probes quantified temperature increases around an experimental SCS lead in a bath phantom. These data were used to verify a SCS lead heat-transfer model based on joule heat. Temperature increases were then predicted in a seven-compartment (soft tissue, vertebral bone, fat, intervertebral disc, meninges, spinal cord with nerve roots) geometric human spinal cord model under varied parameterization. RESULTS The experimentally constrained bio-heat model shows SCS waveform power (waveform RMS) determines tissue heating at the spinal cord and surrounding tissues. For example, we predict temperature increased at dorsal spinal cord of 0.18-1.72 °C during 3.5 mA peak 10 KHz stimulation with a 40-10-40 μs biphasic pulse pattern, 0.09-0.22 °C during 3.5 mA 1 KHz 100-100-100 μs stimulation, and less than 0.05 °C during 3.5 mA 50 Hz 200-100-200 μs stimulation. Notably, peak heating of the spinal cord and other tissues increases superlinearly with stimulation power and so are especially sensitive to incremental changes in SCS pulse amplitude or frequency (with associated pulse compression). Further supporting distinct SCS intervention strategies based on heating; the spatial profile of temperature changes is more uniform compared to electric fields, which suggests less sensitivity to lead position. CONCLUSIONS Tissue heating may impact short and long-term outcomes of KHZ-SCS, and even as an adjunct mechanism, suggests distinct strategies for lead position and programming optimization.
Collapse
Affiliation(s)
- Adantchede L Zannou
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Dennis Q Truong
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Tianhe Zhang
- Boston Scientific Inc., Neuromodulation Research and Advanced Concepts, Valencia, CA, USA
| | - Rosana Esteller
- Boston Scientific Inc., Neuromodulation Research and Advanced Concepts, Valencia, CA, USA
| | - Brad Hershey
- Boston Scientific Inc., Neuromodulation Research and Advanced Concepts, Valencia, CA, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, 10031, USA.
| |
Collapse
|
18
|
|
19
|
Lillicrap T, Tahtalı M, Neely A, Wang X, Bivard A, Lueck C. A model based on the Pennes bioheat transfer equation is valid in normal brain tissue but not brain tissue suffering focal ischaemia. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:841-850. [PMID: 29098600 DOI: 10.1007/s13246-017-0595-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 10/18/2017] [Indexed: 11/29/2022]
Abstract
Ischaemic stroke is a major public health issue in both developed and developing nations. Hypothermia is believed to be neuroprotective in cerebral ischaemia. Conversely, elevated brain temperature is associated with poor outcome after ischaemic stroke. Mechanisms of heat exchange in normally-perfused brain are relatively well understood, but these mechanisms have not been studied as extensively during focal cerebral ischaemia. A finite element model (FEM) of heat exchange during focal ischaemia in the human brain was developed, based on the Pennes bioheat equation. This model incorporated healthy (normally-perfused) brain tissue, tissue that was mildly hypoperfused but not at risk of cell death (referred to as oligaemia), tissue that was hypoperfused and at risk of death but not dead (referred to as penumbra) and tissue that had died as a result of ischaemia (referred to as infarct core). The results of simulations using this model were found to match previous in-vivo temperature data for normally-perfused brain. However, the results did not match what limited data are available for hypoperfused brain tissue, in particular the penumbra, which is the focus of acute neuroprotective treatments such as hypothermia. These results suggest that the assumptions of the Pennes bioheat equation, while valid in the brain under normal circumstances, are not valid during focal ischaemia. Further investigation into the heat exchange profiles that do occur during focal ischaemia may yield results for clinical trials of therapeutic hypothermia.
Collapse
Affiliation(s)
| | - Murat Tahtalı
- School of Engineering and IT, UNSW Canberra, Canberra, Australia
| | - Andrew Neely
- School of Engineering and IT, UNSW Canberra, Canberra, Australia
| | - Xiaofei Wang
- National University of Singapore, Singapore, Singapore
| | - Andrew Bivard
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Christian Lueck
- Medical School, Australian National University, Canberra, Australia.,Neurology Department, The Canberra Hospital, Canberra, Australia
| |
Collapse
|
20
|
Khadka N, Zannou AL, Zunara F, Truong DQ, Dmochowski J, Bikson M. Minimal Heating at the Skin Surface During Transcranial Direct Current Stimulation. Neuromodulation 2017; 21:334-339. [PMID: 28111832 DOI: 10.1111/ner.12554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To assess if transcranial direct current stimulation (tDCS) produces a temperature change at the skin surface, if any change is stimulation polarity (anode or cathode) specific, and the contribution of passive heating (joule heat) or blood flow on such change. MATERIAL AND METHODS Temperature differences (ΔTs) in an agar phantom study and an in vivo study (forearm stimulation) including 20 volunteers with both experimental measures and finite element method (FEM) multiphysics prediction (current flow and bioheat) models of skin comprising three tissue layers (epidermis, dermis, and subcutaneous layer with blood perfusion) or of the phantom for active stimulation and control cases were compared. Temperature was measured during pre, post, and stimulation phases for both phantom and subject's forearms using thermocouples. RESULTS In the phantom, ΔT under both anode and cathode, compared to control, was not significantly different and less than 0.1°C. Stimulation of subjects resulted in a gradual increase in temperature under both anode and cathode electrodes, compared to control (at t = 20 min: ΔTanode = 0.9°C, ΔTcathode = 1.1°C, ΔTcontrol = 0.05°C). The FEM phantom model predicted comparable maximum ΔT of 0.27°C and 0.28°C (at t = 20 min) for the control and anode/cathode cases, respectively. The FEM skin model predicted a maximum ΔT at t = 20 min of 0.98°C for control and 1.36°C under anode/cathode electrodes. CONCLUSIONS Taken together, our results indicate a moderate and nonhazardous increase in temperature at the skin surface during 2 mA tDCS that is independent of polarity, and results from stimulation induced blood flow rather than joule heat.
Collapse
Affiliation(s)
- Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
| | - Adantchede L Zannou
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
| | - Fatima Zunara
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
| | - Dennis Q Truong
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
| | - Jacek Dmochowski
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
| |
Collapse
|
21
|
Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe. Sci Rep 2016; 6:28381. [PMID: 27334849 PMCID: PMC4917834 DOI: 10.1038/srep28381] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/03/2016] [Indexed: 01/04/2023] Open
Abstract
Controlling neural circuits is a powerful approach to uncover a causal link between neural activity and behaviour. Optogenetics has been widely adopted by the neuroscience community as it offers cell-type-specific perturbation with millisecond precision. However, these studies require light delivery in complex patterns with cellular-scale resolution, while covering a large volume of tissue at depth in vivo. Here we describe a novel high-density silicon-based microscale light-emitting diode (μLED) array, consisting of up to ninety-six 25 μm-diameter μLEDs emitting at a wavelength of 450 nm with a peak irradiance of 400 mW/mm2. A width of 100 μm, tapering to a 1 μm point, and a 40 μm thickness help minimise tissue damage during insertion. Thermal properties permit a set of optogenetic operating regimes, with ~0.5 °C average temperature increase. We demonstrate depth-dependent activation of mouse neocortical neurons in vivo, offering an inexpensive novel tool for the precise manipulation of neural activity.
Collapse
|
22
|
Hernandez O, Papagiakoumou E, Tanese D, Fidelin K, Wyart C, Emiliani V. Three-dimensional spatiotemporal focusing of holographic patterns. Nat Commun 2016; 7:11928. [PMID: 27306044 PMCID: PMC4912686 DOI: 10.1038/ncomms11928] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/12/2016] [Indexed: 12/11/2022] Open
Abstract
Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae. Three-dimensional computer-generated holography cannot be implemented with temporal focusing. Here, Hernandez et al. use two spatial light modulators to control transverse- and axial-target light distribution, generating spatiotemporally focused patterns with uniform light distribution throughout the entire volume.
Collapse
Affiliation(s)
- Oscar Hernandez
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR 8250, Paris Descartes University, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Eirini Papagiakoumou
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR 8250, Paris Descartes University, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France.,Institut national de la santé et de la recherche médicale (Inserm), France
| | - Dimitrii Tanese
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR 8250, Paris Descartes University, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Kevin Fidelin
- Institut du Cerveau et de la Moelle Épinière, UPMC, Inserm UMR S975, CNRS UMR 7225, Campus Hospitalier Pitié Salpêtrière, 47 building de l'Hôpital, 75013 Paris, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle Épinière, UPMC, Inserm UMR S975, CNRS UMR 7225, Campus Hospitalier Pitié Salpêtrière, 47 building de l'Hôpital, 75013 Paris, France
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR 8250, Paris Descartes University, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
23
|
Stujenske JM, Spellman T, Gordon JA. Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for In Vivo Optogenetics. Cell Rep 2015; 12:525-34. [PMID: 26166563 DOI: 10.1016/j.celrep.2015.06.036] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/13/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
Despite the increasing use of optogenetics in vivo, the effects of direct light exposure to brain tissue are understudied. Of particular concern is the potential for heat induced by prolonged optical stimulation. We demonstrate that high-intensity light, delivered through an optical fiber, is capable of elevating firing rate locally, even in the absence of opsin expression. Predicting the severity and spatial extent of any temperature increase during optogenetic stimulation is therefore of considerable importance. Here, we describe a realistic model that simulates light and heat propagation during optogenetic experiments. We validated the model by comparing predicted and measured temperature changes in vivo. We further demonstrate the utility of this model by comparing predictions for various wavelengths of light and fiber sizes, as well as testing methods for reducing heat effects on neural targets in vivo.
Collapse
Affiliation(s)
- Joseph M Stujenske
- Graduate Program in Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Timothy Spellman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Joshua A Gordon
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
24
|
Wagner FB, Truccolo W, Wang J, Nurmikko AV. Spatiotemporal dynamics of optogenetically induced and spontaneous seizure transitions in primary generalized epilepsy. J Neurophysiol 2014; 113:2321-41. [PMID: 25552645 DOI: 10.1152/jn.01040.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 11/22/2022] Open
Abstract
Transitions into primary generalized epileptic seizures occur abruptly and synchronously across the brain. Their potential triggers remain unknown. We used optogenetics to causally test the hypothesis that rhythmic population bursting of excitatory neurons in a local neocortical region can rapidly trigger absence seizures. Most previous studies have been purely correlational, and it remains unclear whether epileptiform events induced by rhythmic stimulation (e.g., sensory/electrical) mimic actual spontaneous seizures, especially regarding their spatiotemporal dynamics. In this study, we used a novel combination of intracortical optogenetic stimulation and microelectrode array recordings in freely moving WAG/Rij rats, a model of absence epilepsy with a cortical focus in the somatosensory cortex (SI). We report three main findings: 1) Brief rhythmic bursting, evoked by optical stimulation of neocortical excitatory neurons at frequencies around 10 Hz, induced seizures consisting of self-sustained spike-wave discharges (SWDs) for about 10% of stimulation trials. The probability of inducing seizures was frequency-dependent, reaching a maximum at 10 Hz. 2) Local field potential power before stimulation and response amplitudes during stimulation both predicted seizure induction, demonstrating a modulatory effect of brain states and neural excitation levels. 3) Evoked responses during stimulation propagated as cortical waves, likely reaching the cortical focus, which in turn generated self-sustained SWDs after stimulation was terminated. Importantly, SWDs during induced and spontaneous seizures propagated with the same spatiotemporal dynamics. Our findings demonstrate that local rhythmic bursting of excitatory neurons in neocortex at particular frequencies, under susceptible ongoing brain states, is sufficient to trigger primary generalized seizures with stereotypical spatiotemporal dynamics.
Collapse
Affiliation(s)
- Fabien B Wagner
- Department of Neuroscience, Brown University, Providence, Rhode Island; School of Engineering, Brown University, Providence, Rhode Island;
| | - Wilson Truccolo
- Department of Neuroscience, Brown University, Providence, Rhode Island; Institute for Brain Science, Brown University, Providence, Rhode Island; and Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs, Providence, Rhode Island
| | - Jing Wang
- School of Engineering, Brown University, Providence, Rhode Island
| | - Arto V Nurmikko
- Department of Neuroscience, Brown University, Providence, Rhode Island; School of Engineering, Brown University, Providence, Rhode Island; Institute for Brain Science, Brown University, Providence, Rhode Island; and
| |
Collapse
|
25
|
Smith JT, O'Brien B, Lee YK, Bawolek EJ, Christen JB. Application of Flexible OLED Display Technology for Electro-Optical Stimulation and/or Silencing of Neural Activity. ACTA ACUST UNITED AC 2014. [DOI: 10.1109/jdt.2014.2308436] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Abstract
Both observational and perturbational technologies are essential for advancing the understanding of brain function and dysfunction. But while observational techniques have greatly advanced in the last century, techniques for perturbation that are matched to the speed and heterogeneity of neural systems have lagged behind. The technology of optogenetics represents a step toward addressing this disparity. Reliable and targetable single-component tools (which encompass both light sensation and effector function within a single protein) have enabled versatile new classes of investigation in the study of neural systems. Here we provide a primer on the application of optogenetics in neuroscience, focusing on the single-component tools and highlighting important problems, challenges, and technical considerations.
Collapse
Affiliation(s)
- Ofer Yizhar
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
27
|
Abdo A, Sahin M. Feasibility of Neural Stimulation With Floating-Light-Activated Microelectrical Stimulators. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2011; 2011:1. [PMID: 21552457 PMCID: PMC3087211 DOI: 10.1109/tbcas.2011.2114882] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Neural microstimulation is becoming a powerful tool for the restoration of impaired functions in the central nervous system. Microelectrode arrays with fine wire interconnects have traditionally been used in the development of these neural prosthetic devices. However, these interconnects are usually the most vulnerable part of the neuroprosthetic implant that can eventually cause the device to fail. In this paper, we investigate the feasibility of floating-light-activated microelectrical stimulators (FLAMES) for wireless neural stimulation. A computer model was developed to simulate the micro stimulators for typical requirements of neural activation in the human white and gray matters. First, the photon densities due to a circular laser beam were simulated in the neural tissue at near-infrared (NIR) wavelengths. Temperature elevation in the tissue was calculated and the laser power was retrospectively adjusted to 325 and 250 mW/cm(2) in the gray and white matters, respectively, to limit ΔT to 0.5 °C. Total device area of the FLAMES increased with all parameters considered but decreased with the output voltage. We conclude that the number of series photodiodes in the device can be used as a free parameter to minimize the device size. The results suggest that floating, optically activated stimulators are feasible at submillimeter sizes for the activation of the brain cortex or the spinal cord.
Collapse
Affiliation(s)
- Ammar Abdo
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | | |
Collapse
|
28
|
Larrat B, Pernot M, Aubry JF, Dervishi E, Sinkus R, Seilhean D, Marie Y, Boch AL, Fink M, Tanter M. MR-guided transcranial brain HIFU in small animal models. Phys Med Biol 2009; 55:365-88. [PMID: 20019400 DOI: 10.1088/0031-9155/55/2/003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent studies have demonstrated the feasibility of transcranial high-intensity focused ultrasound (HIFU) therapy in the brain using adaptive focusing techniques. However, the complexity of the procedures imposes provision of accurate targeting, monitoring and control of this emerging therapeutic modality in order to ensure the safety of the treatment and avoid potential damaging effects of ultrasound on healthy tissues. For these purposes, a complete workflow and setup for HIFU treatment under magnetic resonance (MR) guidance is proposed and implemented in rats. For the first time, tissue displacements induced by the acoustic radiation force are detected in vivo in brain tissues and measured quantitatively using motion-sensitive MR sequences. Such a valuable target control prior to treatment assesses the quality of the focusing pattern in situ and enables us to estimate the acoustic intensity at focus. This MR-acoustic radiation force imaging is then correlated with conventional MR-thermometry sequences which are used to follow the temperature changes during the HIFU therapeutic session. Last, pre- and post-treatment magnetic resonance elastography (MRE) datasets are acquired and evaluated as a new potential way to non-invasively control the stiffness changes due to the presence of thermal necrosis. As a proof of concept, MR-guided HIFU is performed in vitro in turkey breast samples and in vivo in transcranial rat brain experiments. The experiments are conducted using a dedicated MR-compatible HIFU setup in a high-field MRI scanner (7 T). Results obtained on rats confirmed that both the MR localization of the US focal point and the pre- and post-HIFU measurement of the tissue stiffness, together with temperature control during HIFU are feasible and valuable techniques for efficient monitoring of HIFU in the brain. Brain elasticity appears to be more sensitive to the presence of oedema than to tissue necrosis.
Collapse
Affiliation(s)
- B Larrat
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Université Paris VII, Laboratoire Ondes et Acoustique, 10 rue Vauquelin, 75 231 Paris Cedex 05, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim S, Tathireddy P, Normann RA, Solzbacher F. Thermal impact of an active 3-D microelectrode array implanted in the brain. IEEE Trans Neural Syst Rehabil Eng 2008; 15:493-501. [PMID: 18198706 DOI: 10.1109/tnsre.2007.908429] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A chronically implantable, wireless neural interface device will require integrating electronic circuitry with the interfacing microelectrodes in order to eliminate wired connections. Since the integrated circuit (IC) dissipates a certain amount of power, it will raise the temperature in surrounding tissues where it is implanted. In this paper, the thermal influence of the integrated 3-D Utah electrode array (UEA) device implanted in the brain was investigated by numerical simulation using finite element analysis (FEA) and by experimental measurement in vitro as well as in vivo. The numerically calculated and experimentally measured temperature increases due to the UEA implantation were in good agreement. The experimentally validated numerical model predicted that the temperature increases linearly with power dissipation through the UEA, with a slope of 0.029 degree C/mW over the power dissipation levels expected to be used. The influences of blood perfusion, brain metabolism, and UEA geometry on tissue heating were also investigated using the numerical model.
Collapse
Affiliation(s)
- Sohee Kim
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | |
Collapse
|