1
|
Paivana G, Barmpakos D, Mavrikou S, Kallergis A, Tsakiridis O, Kaltsas G, Kintzios S. Evaluation of Cancer Cell Lines by Four-Point Probe Technique, by Impedance Measurements in Various Frequencies. BIOSENSORS 2021; 11:345. [PMID: 34562935 PMCID: PMC8466278 DOI: 10.3390/bios11090345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Cell-based biosensors appear to be an attractive tool for the rapid, simple, and cheap monitoring of chemotherapy effects at a very early stage. In this study, electrochemical measurements using a four-point probe method were evaluated for suspensions of four cancer cell lines of different tissue origins: SK-N-SH, HeLa, MCF-7 and MDA-MB-231, all for two different population densities: 50 K and 100 K cells/500 μL. The anticancer agent doxorubicin was applied for each cell type in order to investigate whether the proposed technique was able to determine specific differences in cell responses before and after drug treatment. The proposed methodology can offer valuable insight into the frequency-dependent bioelectrical responses of various cellular systems using a low frequency range and without necessitating lengthy cell culture treatment. The further development of this biosensor assembly with the integration of specially designed cell/electronic interfaces can lead to novel diagnostic biosensors and therapeutic bioelectronics.
Collapse
Affiliation(s)
- Georgia Paivana
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| | - Dimitris Barmpakos
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Sophie Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| | - Alexandros Kallergis
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Odysseus Tsakiridis
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Grigoris Kaltsas
- microSENSES Laboratory, Department of Electrical and Electronics Engineering, Faculty of Engineering, University of West Attica, 12244 Athens, Greece; (D.B.); (A.K.); (O.T.); (G.K.)
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.P.); (S.K.)
| |
Collapse
|
2
|
Bussooa A. Characterising Vascular Cell Monolayers Using Electrochemical Impedance Spectroscopy and a Novel Electroanalytical Plot. Nanotechnol Sci Appl 2020; 13:89-101. [PMID: 33061321 PMCID: PMC7520662 DOI: 10.2147/nsa.s266663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/27/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Biological research relies on the culture of mammalian cells, which are prone to changes in phenotype during experiments involving several passages of cells. In regenerative medicine, specifically, there is an increasing need to expand the characterisation landscape for stem cells by identifying novel stable markers. This paper reports on a novel electric cell-substrate impedance sensing-based electroanalytical diagram which can be used for the "electrical characterisation" of cell monolayers consisting of smooth muscle cells, endothelial cells or co-culture. MATERIALS AND METHODS Interdigitated electrodes were microfabricated using standard cleanroom procedures and integrated into cell chambers. Electrochemical impedance spectroscopy data were acquired for 2 vascular cell types after they formed monolayers on the electrodes. RESULTS AND DISCUSSION A Mean impedance per unit area vs Mean phase plots provided a reproducible, visually obvious and statistically significant method of characterising cell monolayers. This electroanalytic diagram has never been used in previous papers, but it confirms findings by other research groups using similar approaches that the complex impedance spectra of different cell type are different. Further work is required to determine whether this method could be extended to other cell types, and if this is the case, a library of "signature spectra" could be generated for "electrical characterisation" of cells.
Collapse
Affiliation(s)
- Anubhav Bussooa
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
3
|
Gerasimenko T, Nikulin S, Zakharova G, Poloznikov A, Petrov V, Baranova A, Tonevitsky A. Impedance Spectroscopy as a Tool for Monitoring Performance in 3D Models of Epithelial Tissues. Front Bioeng Biotechnol 2020; 7:474. [PMID: 32039179 PMCID: PMC6992543 DOI: 10.3389/fbioe.2019.00474] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
In contrast to traditional 2D cell cultures, both 3D models and organ-on-a-chip devices allow the study of the physiological responses of human cells. These models reconstruct human tissues in conditions closely resembling the body. Translation of these techniques into practice is hindered by associated labor costs, a need which may be remedied by automation. Impedance spectroscopy (IS) is a promising, automation-compatible label-free technology allowing to carry out a wide range of measurements both in real-time and as endpoints. IS has been applied to both the barrier cultures and the 3D constructs. Here we provide an overview of the impedance-based analysis in different setups and discuss its utility for organ-on-a-chip devices. Most attractive features of impedance-based assays are their compatibility with high-throughput format and supports for the measurements in real time with high temporal resolution, which allow tracing of the kinetics. As of now, IS-based techniques are not free of limitations, including imperfect understanding of the parameters that have their effects on the impedance, especially in 3D cell models, and relatively high cost of the consumables. Moreover, as the theory of IS stems from electromagnetic theory and is quite complex, work on popularization and explanation of the method for experimental biologists is required. It is expected that overcoming these limitations will lead to eventual establishing IS based systems as a standard for automated management of cell-based experiments in both academic and industry environments.
Collapse
Affiliation(s)
| | - Sergey Nikulin
- Scientific Research Centre Bioclinicum, Moscow, Russia
- Laboratory of Microphysiological Systems, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Galina Zakharova
- Laboratory of Molecular Oncoendocrinology, Endocrinology Research Centre, Moscow, Russia
| | - Andrey Poloznikov
- Laboratory of Microphysiological Systems, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- Department of Translational Oncology, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Vladimir Petrov
- Scientific Research Centre Bioclinicum, Moscow, Russia
- Department of Development and Research of Micro- and Nanosystems, Institute of Nanotechnologies of Microelectronics RAS, Moscow, Russia
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Functional Genomics, “Research Centre for Medical Genetics”, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- art photonics GmbH, Berlin, Germany
| |
Collapse
|
4
|
In vitro analysis of various cell lines responses to electroporative electric pulses by means of electrical impedance spectroscopy. Biosens Bioelectron 2018; 117:207-216. [DOI: 10.1016/j.bios.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 11/17/2022]
|
5
|
Amini M, Hisdal J, Kalvøy H. Applications of Bioimpedance Measurement Techniques in Tissue Engineering. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2018; 9:142-158. [PMID: 33584930 PMCID: PMC7852004 DOI: 10.2478/joeb-2018-0019] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 05/19/2023]
Abstract
Rapid development in the field of tissue engineering necessitates implementation of monitoring methods for evaluation of the viability and characteristics of the cell cultures in a real-time, non-invasive and non-destructive manner. Current monitoring techniques are mainly histological and require labeling and involve destructive tests to characterize cell cultures. Bioimpedance measurement technique which benefits from measurement of electrical properties of the biological tissues, offers a non-invasive, label-free and real-time solution for monitoring tissue engineered constructs. This review outlines the fundamentals of bioimpedance, as well as electrical properties of the biological tissues, different types of cell culture constructs and possible electrode configuration set ups for performing bioimpedance measurements on these cell cultures. In addition, various bioimpedance measurement techniques and their applications in the field of tissue engineering are discussed.
Collapse
Affiliation(s)
- M. Amini
- Department of Physics, University of Oslo, Oslo, Norway
| | - J. Hisdal
- Vascular Investigations and Circulation lab, Aker Hospital, Oslo University Hospital, Oslo, Norway
| | - H. Kalvøy
- Department of Clinical and Biomedical Engineering, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Bajwa A, Tan ST, Mehta R, Bahreyni B. Rapid detection of viable microorganisms based on a plate count technique using arrayed microelectrodes. SENSORS (BASEL, SWITZERLAND) 2013; 13:8188-98. [PMID: 23803788 PMCID: PMC3758590 DOI: 10.3390/s130708188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/22/2013] [Accepted: 06/06/2013] [Indexed: 12/19/2022]
Abstract
Development of a miniaturized biosensor system that can be used for rapid detection and counting of microorganisms in food or water samples is described. The developed microsystem employs a highly sensitive impedimetric array of biosensors to monitor the growth of bacterial colonies that are dispersed across an agar growth medium. To use the system, a sample containing the bacteria is cultured above the agar layer. Using a multiplexing network, the electrical properties of the medium at different locations are continuously measured, recorded, and compared against a baseline signal. Variations of signals from different biosensors are used to reveal the presence of bacteria in the sample, as well as the locations of bacterial colonies across the biochip. This technique forms the basis for a label-free bacterial detection for rapid analysis of food samples, reducing the detection time by at least a factor of four compared to the current required incubation times of 24 to 72 hours for plate count techniques. The developed microsystem has the potential for miniaturization to a stage where it could be deployed for rapid analysis of food samples at commercial scale at laboratories, food processing facilities, and retailers.
Collapse
Affiliation(s)
- Avneet Bajwa
- Alberta Health Services, Calgary, AB T2N 2T9, Canada; E-Mail:
| | - Shaoqing Tim Tan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada; E-Mail:
| | - Ram Mehta
- PBR Laboratories Inc., Edmonton, AB T6E 0P5, Canada; E-Mail:
| | - Behraad Bahreyni
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, BC V3T 0A3, Canada; E-Mail:
| |
Collapse
|
7
|
Barthel A, Nacke T, Frense D, Pliquett U. Electrodes – the challenge in electrical characterization of biological material. ACTA ACUST UNITED AC 2012. [DOI: 10.1088/1742-6596/407/1/012027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Justice C, Brix A, Freimark D, Kraume M, Pfromm P, Eichenmueller B, Czermak P. Process control in cell culture technology using dielectric spectroscopy. Biotechnol Adv 2011; 29:391-401. [DOI: 10.1016/j.biotechadv.2011.03.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 03/04/2011] [Accepted: 03/06/2011] [Indexed: 10/18/2022]
|
9
|
Narayanan S, Nikkhah M, Strobl JS, Agah M. Method to quantify the effect of passivation layer in bio-impedance sensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:3783-6. [PMID: 19964816 DOI: 10.1109/iembs.2009.5334389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper investigates the effect of the passivation layer in a bio-impedance sensor. A sensor with 20 sensing sites has been designed, fabricated using a simple two mask process and tested. We have cultured in-vivo MDA-MB231 mammary cells and recorded the impedance from 1kHz to 1MHz. Processing the recorded data brings to light the drawback of the passivation layer which results in a drop in sensitivity of 13%. Simulation results based on parameters extracted from measurements re-affirm the drop in sensitivity. Thus, the passivation layer needs to be provided a special consideration in future design of the sensor as it can modify the response of the sensor.
Collapse
Affiliation(s)
- Shree Narayanan
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, 24060, USA.
| | | | | | | |
Collapse
|
10
|
Bogónez-Franco P, Bragós R, Bayés-Genis A, Rosell-Ferrer J. Implantable bioimpedance monitor using ZigBee. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:4868-4871. [PMID: 19963630 DOI: 10.1109/iembs.2009.5332452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this paper, a novel implantable bioimpedance monitor using a free ZigBee protocol for the transmission of the measured data is described. The application field is the tissue and organ monitoring through electrical impedance spectroscopy in the 100 Hz - 200 kHz range. The specific application is the study of the viability and evolution of engineered tissue in cardiac regeneration. Additionally to the telemetric feature, the measured data are stored in a memory for backup purposes and can be downloaded at any time after an RF link break. In the debugging prototype, the system autonomy exceeds 1 month when a 14 frequencies impedance spectrum is acquired every 5 minutes. In the current implementation, the effective range of the RF link is reduced and needs for a range extender placed near the animal. Current work deals with improving this range.
Collapse
Affiliation(s)
- P Bogónez-Franco
- Instrumentation and Bioengineering Group (IEB) of the Universitat Politècnica de Catalunya (UPC), c/Jordi Girona 1-3, Barcelona, Spain.
| | | | | | | |
Collapse
|
11
|
Yufera A, Rueda A. A method for bioimpedance measure with four- and two-electrode sensor systems. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2008; 2008:2318-2321. [PMID: 19163165 DOI: 10.1109/iembs.2008.4649662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This paper presents an alternative method to measure impedances based on constant amplitude voltage excitation. The method makes use of feedback principle to adapt the measure conditions to load under test, being easily applied to bioimpedance measure with electrode sensors. The method has been tested for several frequencies and loads, employing four and two electrode setups. Results from electrical simulations, using CMOS circuits, fulfil the expected performance. This technique can be extended to wide frequency and load ranges, being an excellent option for impedance spectroscopy and EIT applications.
Collapse
Affiliation(s)
- Alberto Yufera
- Instituto de Microelectrénica de Sevilla, Centro Nacional de Microelectrónica, 41012, SPAIN.
| | | |
Collapse
|