1
|
Shen XY, Tao CL, Ma L, Shen JH, Li ZL, Wang ZG, Lü XY. Influence of spinal cord injury on core regions of motor function. Neural Regen Res 2021; 16:567-572. [PMID: 32985489 PMCID: PMC7996037 DOI: 10.4103/1673-5374.293158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Functional electrical stimulation is an effective way to rebuild hindlimb motor function after spinal cord injury. However, no site map exists to serve as a reference for implanting stimulator electrodes. In this study, rat models of thoracic spinal nerve 9 contusion were established by a heavy-impact method and rat models of T6/8/9 spinal cord injury were established by a transection method. Intraspinal microstimulation was performed to record motion types, site coordinates, and threshold currents induced by stimulation. After transection (complete injury), the core region of hip flexion migrated from the T13 to T12 vertebral segment, and the core region of hip extension migrated from the L1 to T13 vertebral segment. Migration was affected by post-transection time, but not transection segment. Moreover, the longer the post-transection time, the longer the distance of migration. This study provides a reference for spinal electrode implantation after spinal cord injury. This study was approved by the Institutional Animal Care and Use Committee of Nantong University, China (approval No. 20190225-008) on February 26, 2019.
Collapse
Affiliation(s)
- Xiao-Yan Shen
- School of Information Science and Technology; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Chun-Ling Tao
- School of Information Science and Technology, Nantong University, Nantong, Jiangsu Province, China
| | - Lei Ma
- School of Information Science and Technology, Nantong University, Nantong, Jiangsu Province, China
| | - Jia-Huan Shen
- School of Information Science and Technology, Nantong University, Nantong, Jiangsu Province, China
| | - Zhi-Ling Li
- School of Information Science and Technology, Nantong University, Nantong, Jiangsu Province, China
| | - Zhi-Gong Wang
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong; Institute of RF and OE-ICs, Southeast University, Nanjing, Jiangsu Province, China
| | - Xiao-Ying Lü
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
A Review of Different Stimulation Methods for Functional Reconstruction and Comparison of Respiratory Function after Cervical Spinal Cord Injury. Appl Bionics Biomech 2020; 2020:8882430. [PMID: 33014127 PMCID: PMC7519444 DOI: 10.1155/2020/8882430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/30/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022] Open
Abstract
Background Spinal cord injury (SCI) is a common severe trauma in clinic, hundreds of thousands of people suffer from which every year in the world. In terms of injury location, cervical spinal cord injury (CSCI) has the greatest impact. After cervical spinal cord injury, the lack of innervated muscles is not enough to provide ventilation and other activities to complete the respiratory function. In addition to the decline of respiratory capacity, respiratory complications also have a serious impact on the life of patients. The most commonly used assisted breathing and cough equipment is the ventilator, but in recent years, the functional electrical stimulation method is being used gradually and widely. Methods About hundred related academic papers are cited for data analysis. They all have the following characteristics: (1) basic conditions of patients were reported, (2) patients had received nerve or muscle stimulation and the basic parameters, and (3) the results were evaluated based on some indicators. Results The papers mentioned above are classified as four kinds of stimulation methods: muscle electric/magnetic stimulation, spinal dural electric stimulation, intraspinal microstimulation, and infrared light stimulation. This paper describes the stimulation principle and application experiment. Finally, this paper will compare the indexes and effects of typical stimulation methods, as well as the two auxiliary methods: training and operation. Conclusions Although there is limited evidence for the treatment of respiratory failure by nerve or muscle stimulation after cervical spinal cord injury, the two techniques seem to be safe and effective. At the same time, light stimulation is gradually applied to clinical medicine with its strong advantages and becomes the development trend of nerve stimulation in the future.
Collapse
|
3
|
Dalrymple AN, Roszko DA, Sutton RS, Mushahwar VK. Pavlovian control of intraspinal microstimulation to produce over-ground walking. J Neural Eng 2020; 17:036002. [PMID: 32348970 DOI: 10.1088/1741-2552/ab8e8e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Neuromodulation technologies are increasingly used for improving function after neural injury. To achieve a symbiotic relationship between device and user, the device must augment remaining function, and independently adapt to day-to-day changes in function. The goal of this study was to develop predictive control strategies to produce over-ground walking in a model of hemisection spinal cord injury (SCI) using intraspinal microstimulation (ISMS). APPROACH Eight cats were anaesthetized and placed in a sling over a walkway. The residual function of a hemisection SCI was mimicked by manually moving one hind-limb through the walking cycle. ISMS targeted motor networks in the lumbosacral enlargement to activate muscles in the other, presumably 'paralyzed' limb, using low levels of current (<130 μA). Four people took turns to move the 'intact' limb, generating four different walking styles. Two control strategies, which used ground reaction force and angular velocity information about the manually moved 'intact' limb to control the timing of the transitions of the 'paralyzed' limb through the step cycle, were compared. The first strategy used thresholds on the raw sensor values to initiate transitions. The second strategy used reinforcement learning and Pavlovian control to learn predictions about the sensor values. Thresholds on the predictions were then used to initiate transitions. MAIN RESULTS Both control strategies were able to produce alternating, over-ground walking. Transitions based on raw sensor values required manual tuning of thresholds for each person to produce walking, whereas Pavlovian control did not. Learning occurred quickly during walking: predictions of the sensor signals were learned rapidly, initiating correct transitions after ≤4 steps. Pavlovian control was resilient to different walking styles and different cats, and recovered from induced mistakes during walking. SIGNIFICANCE This work demonstrates, for the first time, that Pavlovian control can augment remaining function and facilitate personalized walking with minimal tuning requirements.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
4
|
Tao C, Shen X, Ma L, Shen J, Li Z, Wang Z, Lu X. Comparative Study of Intraspinal Microstimulation and Epidural Spinal Cord Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3795-3798. [PMID: 31946700 DOI: 10.1109/embc.2019.8857696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intraspinal microstimulation and epidural spinal cord stimulation can be considered as the technique to restore function following spinal cord injury through further research. In this paper, the automatic brain stereotaxic instrument was used to electrically stimulate the lumbosacral spinal cord (T12-L2 spinal segments) in rats. The motor function regions under intraspinal microstimulation and epidural spinal cord stimulation were measured. Threshold currents and coordinate sites of related motions were recorded. Comparative analysis revealed that the threshold current required for epidural stimulation to induce hindlimb motion was greater. Although the distribution of motor function regions measured by these two methods differed in the type of motion, the segment distribution of each motion were roughly the same. Therefore, if conditions permit, epidural stimulation can be used instead of intraspinal microstimulation to reduce secondary damage to the spinal cord. This provides a reference for locating stimulation sites for epidural spinal cord stimulation.
Collapse
|
5
|
Dalrymple AN, Everaert DG, Hu DS, Mushahwar VK. A speed-adaptive intraspinal microstimulation controller to restore weight-bearing stepping in a spinal cord hemisection model. J Neural Eng 2018; 15:056023. [PMID: 30084388 DOI: 10.1088/1741-2552/aad872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The goal of this study was to develop control strategies to produce alternating, weight-bearing stepping in a cat model of hemisection spinal cord injury (SCI) using intraspinal microstimulation (ISMS). APPROACH Six cats were anesthetized and the functional consequences of a hemisection SCI were simulated by manually moving one hind-limb through the gait cycle over a moving treadmill belt. ISMS activated the muscles in the other leg by stimulating motor networks in the lumbosacral enlargement using low levels of current (<110 µA). The control strategy used signals from ground reaction forces and angular velocity from the manually-moved limb to anticipate states of the gait cycle, and controlled ISMS to move the other hind-limb into the opposite state. Adaptive control strategies were developed to ensure weight-bearing at different stepping speeds. The step period was predicted using generalizations obtained through four supervised machine learning algorithms and used to adapt the control strategy for faster steps. MAIN RESULTS At a single speed, 100% of the steps had sufficient weight-bearing; at faster speeds without adaptation, 97.6% of steps were weight-bearing (significantly less than that for single speed; p = 0.002). By adapting the control strategy for faster steps using the predicted step period, weight-bearing was achieved in more than 99% of the steps in three of four methods (significantly more than without adaptation p < 0.04). Overall, a multivariate model tree increased the number of weight-bearing steps, restored step symmetry, and maintained alternation at faster stepping speeds. SIGNIFICANCE Through the adaptive control strategies guided by supervised machine learning, we were able to restore weight-bearing and maintain alternation and step symmetry at varying stepping speeds.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
6
|
Mazurek KA, Holinski BJ, Everaert DG, Mushahwar VK, Etienne-Cummings R. A Mixed-Signal VLSI System for Producing Temporally Adapting Intraspinal Microstimulation Patterns for Locomotion. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:902-911. [PMID: 26978832 PMCID: PMC4970939 DOI: 10.1109/tbcas.2015.2501419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Neural pathways can be artificially activated through the use of electrical stimulation. For individuals with a spinal cord injury, intraspinal microstimulation, using electrical currents on the order of 125 μ A, can produce muscle contractions and joint torques in the lower extremities suitable for restoring walking. The work presented here demonstrates an integrated circuit implementing a state-based control strategy where sensory feedback and intrinsic feed forward control shape the stimulation waveforms produced on-chip. Fabricated in a 0.5 μ m process, the device was successfully used in vivo to produce walking movements in a model of spinal cord injury. This work represents progress towards an implantable solution to be used for restoring walking in individuals with spinal cord injuries.
Collapse
Affiliation(s)
- Kevin A. Mazurek
- Electrical and Computer Engineering Department, Johns Hopkins University, Baltimore, MD 21218 USA ()
| | - Bradley J. Holinski
- Biomedical Engineering Department, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Dirk G. Everaert
- Physiology Department, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Vivian K. Mushahwar
- Physical Medicine and Rehabilitation Department, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Ralph Etienne-Cummings
- Electrical and Computer Engineering Department, Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
7
|
Bamford JA, Marc Lebel R, Parseyan K, Mushahwar VK. The Fabrication, Implantation, and Stability of Intraspinal Microwire Arrays in the Spinal Cord of Cat and Rat. IEEE Trans Neural Syst Rehabil Eng 2016; 25:287-296. [PMID: 28113558 DOI: 10.1109/tnsre.2016.2555959] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intraspinal microstimulation (ISMS) is currently under investigation for its ability to restore function following spinal cord injury and aid in addressing basic investigations of the spinal cord in feline and murine (rat) models. In this report we describe the procedures for fabricating and implanting intraspinal microwires, with special emphasis on the rat model. We also report our results on targeting success and long-term stability and functionality of the implants. Early targeting with implants fabricated based on general "average" dimensions of the spinal cord was approximately 50% successful in reaching the proper targets within the ventral grey matter in cats. Improvements in insertion technique and the use of multiple contact electrodes have raised the targeting success to 100%. Furthermore, the manufacturing of ISMS arrays has been improved by the use of magnetic resonance imaging to create subject-specific implants for cats and track the location of the arrays post-implant. In the rat, our procedures have produced desirable targeting of all recovered microwires. We speculate this is due to the different targeting parameters and the shorter depth of insertion in the rat spinal cord. Although there is a heightened mechanical mismatch between the 30 μm -diameter microwires and the small rat spinal cord, chronic implantation and stimulation produce limited histological damage and do not compromise function. Furthermore, despite the increased difficulties of implanting into the smaller rat spinal cord, ISMS is effective in activating spinal cord networks in the lumbosacral enlargement in a manner that is safe, stable and reproducible.
Collapse
|
8
|
Ho CH, Triolo RJ, Elias AL, Kilgore KL, DiMarco AF, Bogie K, Vette AH, Audu ML, Kobetic R, Chang SR, Chan KM, Dukelow S, Bourbeau DJ, Brose SW, Gustafson KJ, Kiss ZHT, Mushahwar VK. Functional electrical stimulation and spinal cord injury. Phys Med Rehabil Clin N Am 2015; 25:631-54, ix. [PMID: 25064792 DOI: 10.1016/j.pmr.2014.05.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI.
Collapse
Affiliation(s)
- Chester H Ho
- Division of Physical Medicine & Rehabilitation, Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada.
| | - Ronald J Triolo
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Orthopaedics, Case Western Reserve University, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Anastasia L Elias
- Chemical and Materials Engineering, W7-002 ECERF, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Kevin L Kilgore
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Anthony F DiMarco
- MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Kath Bogie
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Orthopaedics, Case Western Reserve University, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, Alberta T6G 2G8, Canada; Glenrose Rehabilitation Hospital, Alberta Health Services, 10230 - 111 Avenue, Edmonton, Alberta T5G 0B7, Canada
| | - Musa L Audu
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Rudi Kobetic
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Sarah R Chang
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - K Ming Chan
- Division of Physical Medicine and Rehabilitation, Centre for Neuroscience, University of Alberta, 5005 Katz Group Centre, 11361-87 Avenue, Edmonton, Alberta T6G 2E1, Canada
| | - Sean Dukelow
- Division of Physical Medicine & Rehabilitation, Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Dennis J Bourbeau
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Steven W Brose
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA; Ohio University Heritage College of Osteopathic Medicine, Grosvenor Hall, Athens, OH 45701, USA
| | - Kenneth J Gustafson
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Zelma H T Kiss
- Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Vivian K Mushahwar
- Division of Physical Medicine and Rehabilitation, Centre for Neuroscience, University of Alberta, 5005 Katz Group Centre, 11361-87 Avenue, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
9
|
Giszter SF. Spinal primitives and intra-spinal micro-stimulation (ISMS) based prostheses: a neurobiological perspective on the "known unknowns" in ISMS and future prospects. Front Neurosci 2015; 9:72. [PMID: 25852454 PMCID: PMC4367173 DOI: 10.3389/fnins.2015.00072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/18/2014] [Indexed: 11/13/2022] Open
Abstract
The current literature on Intra-Spinal Micro-Stimulation (ISMS) for motor prostheses is reviewed in light of neurobiological data on spinal organization, and a neurobiological perspective on output motor modularity, ISMS maps, stimulation combination effects, and stability. By comparing published data in these areas, the review identifies several gaps in current knowledge that are crucial to the development of effective intraspinal neuroprostheses. Gaps can be categorized into a lack of systematic and reproducible details of: (a) Topography and threshold for ISMS across the segmental motor system, the topography of autonomic recruitment by ISMS, and the coupling relations between these two types of outputs in practice. (b) Compositional rules for ISMS motor responses tested across the full range of the target spinal topographies. (c) Rules for ISMS effects' dependence on spinal cord state and neural dynamics during naturally elicited or ISMS triggered behaviors. (d) Plasticity of the compositional rules for ISMS motor responses, and understanding plasticity of ISMS topography in different spinal cord lesion states, disease states, and following rehabilitation. All these knowledge gaps to a greater or lesser extent require novel electrode technology in order to allow high density chronic recording and stimulation. The current lack of this technology may explain why these prominent gaps in the ISMS literature currently exist. It is also argued that given the "known unknowns" in the current ISMS literature, it may be prudent to adopt and develop control schemes that can manage the current results with simple superposition and winner-take-all interactions, but can also incorporate the possible plastic and stochastic dynamic interactions that may emerge in fuller analyses over longer terms, and which have already been noted in some simpler model systems.
Collapse
Affiliation(s)
- Simon F Giszter
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Drexel University Philadelphia, PA, USA ; School of Biomedical Engineering and Health Systems, Drexel University Philadelphia, PA, USA
| |
Collapse
|
10
|
Grahn PJ, Mallory GW, Berry BM, Hachmann JT, Lobel DA, Lujan JL. Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis. Front Neurosci 2014; 8:296. [PMID: 25278830 PMCID: PMC4166363 DOI: 10.3389/fnins.2014.00296] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 08/31/2014] [Indexed: 11/13/2022] Open
Abstract
Movement is planned and coordinated by the brain and carried out by contracting muscles acting on specific joints. Motor commands initiated in the brain travel through descending pathways in the spinal cord to effector motor neurons before reaching target muscles. Damage to these pathways by spinal cord injury (SCI) can result in paralysis below the injury level. However, the planning and coordination centers of the brain, as well as peripheral nerves and the muscles that they act upon, remain functional. Neuroprosthetic devices can restore motor function following SCI by direct electrical stimulation of the neuromuscular system. Unfortunately, conventional neuroprosthetic techniques are limited by a myriad of factors that include, but are not limited to, a lack of characterization of non-linear input/output system dynamics, mechanical coupling, limited number of degrees of freedom, high power consumption, large device size, and rapid onset of muscle fatigue. Wireless multi-channel closed-loop neuroprostheses that integrate command signals from the brain with sensor-based feedback from the environment and the system's state offer the possibility of increasing device performance, ultimately improving quality of life for people with SCI. In this manuscript, we review neuroprosthetic technology for improving functional restoration following SCI and describe brain-machine interfaces suitable for control of neuroprosthetic systems with multiple degrees of freedom. Additionally, we discuss novel stimulation paradigms that can improve synergy with higher planning centers and improve fatigue-resistant activation of paralyzed muscles. In the near future, integration of these technologies will provide SCI survivors with versatile closed-loop neuroprosthetic systems for restoring function to paralyzed muscles.
Collapse
Affiliation(s)
- Peter J. Grahn
- Mayo Clinic College of Medicine, Mayo ClinicRochester, MN, USA
| | | | | | - Jan T. Hachmann
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
| | | | - J. Luis Lujan
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo ClinicRochester, MN, USA
| |
Collapse
|
11
|
Guertin PA. Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients. Front Hum Neurosci 2014; 8:272. [PMID: 24910602 PMCID: PMC4038974 DOI: 10.3389/fnhum.2014.00272] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/11/2014] [Indexed: 12/14/2022] Open
Abstract
Ambulation or walking is one of the main gaits of locomotion. In terrestrial animals, it may be defined as a series of rhythmic and bilaterally coordinated movement of the limbs which creates a forward movement of the body. This applies regardless of the number of limbs-from arthropods with six or more limbs to bipedal primates. These fundamental similarities among species may explain why comparable neural systems and cellular properties have been found, thus far, to control in similar ways locomotor rhythm generation in most animal models. The aim of this article is to provide a comprehensive review of the known structural and functional features associated with central nervous system (CNS) networks that are involved in the control of ambulation and other stereotyped motor patterns-specifically Central Pattern Generators (CPGs) that produce basic rhythmic patterned outputs for locomotion, micturition, ejaculation, and defecation. Although there is compelling evidence of their existence in humans, CPGs have been most studied in reduced models including in vitro isolated preparations, genetically-engineered mice and spinal cord-transected animals. Compared with other structures of the CNS, the spinal cord is generally considered as being well-preserved phylogenetically. As such, most animal models of spinal cord-injured (SCI) should be considered as valuable tools for the development of novel pharmacological strategies aimed at modulating spinal activity and restoring corresponding functions in chronic SCI patients.
Collapse
Affiliation(s)
- Pierre A. Guertin
- Department of Psychiatry and Neurosciences, Laval UniversityQuebec City, QC, Canada
- Spinal Cord Injury and Functional Recovery Laboratory, Laval University Medical Center (CHU de Quebec)Quebec City, QC, Canada
| |
Collapse
|
12
|
Hachmann JT, Jeong JH, Grahn PJ, Mallory GW, Evertz LQ, Bieber AJ, Lobel DA, Bennet KE, Lee KH, Lujan JL. Large animal model for development of functional restoration paradigms using epidural and intraspinal stimulation. PLoS One 2013; 8:e81443. [PMID: 24339929 PMCID: PMC3855281 DOI: 10.1371/journal.pone.0081443] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/22/2013] [Indexed: 12/29/2022] Open
Abstract
Restoration of movement following spinal cord injury (SCI) has been achieved using electrical stimulation of peripheral nerves and skeletal muscles. However, practical limitations such as the rapid onset of muscle fatigue hinder clinical application of these technologies. Recently, direct stimulation of alpha motor neurons has shown promise for evoking graded, controlled, and sustained muscle contractions in rodent and feline animal models while overcoming some of these limitations. However, small animal models are not optimal for the development of clinical spinal stimulation techniques for functional restoration of movement. Furthermore, variance in surgical procedure, targeting, and electrode implantation techniques can compromise therapeutic outcomes and impede comparison of results across studies. Herein, we present a protocol and large animal model that allow standardized development, testing, and optimization of novel clinical strategies for restoring motor function following spinal cord injury. We tested this protocol using both epidural and intraspinal stimulation in a porcine model of spinal cord injury, but the protocol is suitable for the development of other novel therapeutic strategies. This protocol will help characterize spinal circuits vital for selective activation of motor neuron pools. In turn, this will expedite the development and validation of high-precision therapeutic targeting strategies and stimulation technologies for optimal restoration of motor function in humans.
Collapse
Affiliation(s)
- Jan T. Hachmann
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ju Ho Jeong
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Neurosurgery, Kosin University College of Medicine, Busan, Korea
| | - Peter J. Grahn
- Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Grant W. Mallory
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Loribeth Q. Evertz
- Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Allan J. Bieber
- Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Darlene A. Lobel
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Kevin E. Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - J. Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
13
|
Collinger JL, Foldes S, Bruns TM, Wodlinger B, Gaunt R, Weber DJ. Neuroprosthetic technology for individuals with spinal cord injury. J Spinal Cord Med 2013; 36:258-72. [PMID: 23820142 PMCID: PMC3758523 DOI: 10.1179/2045772313y.0000000128] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CONTEXT Spinal cord injury (SCI) results in a loss of function and sensation below the level of the lesion. Neuroprosthetic technology has been developed to help restore motor and autonomic functions as well as to provide sensory feedback. FINDINGS This paper provides an overview of neuroprosthetic technology that aims to address the priorities for functional restoration as defined by individuals with SCI. We describe neuroprostheses that are in various stages of preclinical development, clinical testing, and commercialization including functional electrical stimulators, epidural and intraspinal microstimulation, bladder neuroprosthesis, and cortical stimulation for restoring sensation. We also discuss neural recording technologies that may provide command or feedback signals for neuroprosthetic devices. CONCLUSION/CLINICAL RELEVANCE Neuroprostheses have begun to address the priorities of individuals with SCI, although there remains room for improvement. In addition to continued technological improvements, closing the loop between the technology and the user may help provide intuitive device control with high levels of performance.
Collapse
|
14
|
Bruns TM, Wagenaar JB, Bauman MJ, Gaunt RA, Weber DJ. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings. J Neural Eng 2013; 10:026020. [PMID: 23503062 DOI: 10.1088/1741-2560/10/2/026020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. APPROACH We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. MAIN RESULTS Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. SIGNIFICANCE This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.
Collapse
Affiliation(s)
- Tim M Bruns
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
15
|
Guertin PA. Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front Neurol 2013; 3:183. [PMID: 23403923 PMCID: PMC3567435 DOI: 10.3389/fneur.2012.00183] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/14/2012] [Indexed: 12/14/2022] Open
Abstract
This article provides a perspective on major innovations over the past century in research on the spinal cord and, specifically, on specialized spinal circuits involved in the control of rhythmic locomotor pattern generation and modulation. Pioneers such as Charles Sherrington and Thomas Graham Brown have conducted experiments in the early twentieth century that changed our views of the neural control of locomotion. Their seminal work supported subsequently by several decades of evidence has led to the conclusion that walking, flying, and swimming are largely controlled by a network of spinal neurons generally referred to as the central pattern generator (CPG) for locomotion. It has been subsequently demonstrated across all vertebrate species examined, from lampreys to humans, that this CPG is capable, under some conditions, to self-produce, even in absence of descending or peripheral inputs, basic rhythmic, and coordinated locomotor movements. Recent evidence suggests, in turn, that plasticity changes of some CPG elements may contribute to the development of specific pathophysiological conditions associated with impaired locomotion or spontaneous locomotor-like movements. This article constitutes a comprehensive review summarizing key findings on the CPG as well as on its potential role in Restless Leg Syndrome, Periodic Leg Movement, and Alternating Leg Muscle Activation. Special attention will be paid to the role of the CPG in a recently identified, and uniquely different neurological disorder, called the Uner Tan Syndrome.
Collapse
Affiliation(s)
- Pierre A. Guertin
- Department of Psychiatry and Neurosciences, Laval UniversityQuebec City, QC, Canada
- Laval University Medical Center (CHU de Quebec)Quebec City, QC, Canada
| |
Collapse
|