1
|
Zhao Z, Meng H, Li S, Wang S, Wang J, Gao S. High-Accuracy Intermittent Strabismus Screening via Wearable Eye-Tracking and AI-Enhanced Ocular Feature Analysis. BIOSENSORS 2025; 15:110. [PMID: 39997012 PMCID: PMC11852461 DOI: 10.3390/bios15020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
An effective and highly accurate strabismus screening method is expected to identify potential patients and provide timely treatment to prevent further deterioration, such as amblyopia and even permanent vision loss. To satisfy this need, this work showcases a novel strabismus screening method based on a wearable eye-tracking device combined with an artificial intelligence (AI) algorithm. To identify the minor and occasional inconsistencies in strabismus patients during the binocular coordination process, which are usually seen in early-stage patients and rarely recognized in current studies, the system captures temporally and spatially continuous high-definition infrared images of the eye during wide-angle continuous motion, and is effective in inducing intermittent strabismus. Based on the collected eye motion information, 16 features of the oculomotor process with strong physiological interpretations, which help biomedical staff understand and evaluate results generated later, are calculated through the introduction of pupil-canthus vectors. These features can be normalized, and reflect individual differences. After these features are processed by the random forest (RF) algorithm, this method experimentally yields 97.1% accuracy in strabismus detection in 70 people under diverse indoor testing conditions, validating the high accuracy and robustness of the method, and implying that the method has strong potential to support widespread and highly accurate strabismus screening.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuo Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; (Z.Z.); (H.M.); (S.L.); (S.W.); (J.W.)
| |
Collapse
|
2
|
Khanna A, Jones G. Toward Personalized Medicine Approaches for Parkinson Disease Using Digital Technologies. JMIR Form Res 2023; 7:e47486. [PMID: 37756050 PMCID: PMC10568402 DOI: 10.2196/47486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson disease (PD) is a complex neurodegenerative disorder that afflicts over 10 million people worldwide, resulting in debilitating motor and cognitive impairment. In the United States alone (with approximately 1 million cases), the economic burden for treating and caring for persons with PD exceeds US $50 billion and myriad therapeutic approaches are under development, including both symptomatic- and disease-modifying agents. The challenges presented in addressing PD are compounded by observations that numerous, statistically distinct patient phenotypes present with a wide variety of motor and nonmotor symptomatic profiles, varying responses to current standard-of-care symptom-alleviating medications (L-DOPA and dopaminergic agonists), and different disease trajectories. The existence of these differing phenotypes highlights the opportunities in personalized approaches to symptom management and disease control. The prodromal period of PD can span across several decades, allowing the potential to leverage the unique array of composite symptoms presented to trigger early interventions. This may be especially beneficial as disease progression in PD (alongside Alzheimer disease and Huntington disease) may be influenced by biological processes such as oxidative stress, offering the potential for individual lifestyle factors to be tailored to delay disease onset. In this viewpoint, we offer potential scenarios where emerging diagnostic and monitoring strategies might be tailored to the individual patient under the tenets of P4 medicine (predict, prevent, personalize, and participate). These approaches may be especially relevant as the causative factors and biochemical pathways responsible for the observed neurodegeneration in patients with PD remain areas of fluid debate. The numerous observational patient cohorts established globally offer an excellent opportunity to test and refine approaches to detect, characterize, control, modify the course, and ultimately stop progression of this debilitating disease. Such approaches may also help development of parallel interventive strategies in other diseases such as Alzheimer disease and Huntington disease, which share common traits and etiologies with PD. In this overview, we highlight near-term opportunities to apply P4 medicine principles for patients with PD and introduce the concept of composite orthogonal patient monitoring.
Collapse
Affiliation(s)
- Amit Khanna
- Neuroscience Global Drug Development, Novartis Pharma AG, Basel, Switzerland
| | - Graham Jones
- GDD Connected Health and Innovation Group, Novartis Pharmaceuticals, East Hanover, NJ, United States
- Clinical and Translational Science Institute, Tufts University Medical Center, Boston, MA, United States
| |
Collapse
|
3
|
Kunasegaran K, Ismail AMH, Ramasamy S, Gnanou JV, Caszo BA, Chen PL. Understanding mental fatigue and its detection: a comparative analysis of assessments and tools. PeerJ 2023; 11:e15744. [PMID: 37637168 PMCID: PMC10460155 DOI: 10.7717/peerj.15744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/21/2023] [Indexed: 08/29/2023] Open
Abstract
Mental fatigue has shown to be one of the root causes of decreased productivity and overall cognitive performance, by decreasing an individual's ability to inhibit responses, process information and concentrate. The effects of mental fatigue have led to occupational errors and motorway accidents. Early detection of mental fatigue can prevent the escalation of symptoms that may lead to chronic fatigue syndrome and other disorders. To date, in clinical settings, the assessment of mental fatigue and stress is done through self-reported questionnaires. The validity of these questionnaires is questionable, as they are highly subjective measurement tools and are not immune to response biases. This review examines the wider presence of mental fatigue in the general population and critically compares its various detection techniques (i.e., self-reporting questionnaires, heart rate variability, salivary cortisol levels, electroencephalogram, and saccadic eye movements). The ability of these detection tools to assess inhibition responses (which are sensitive enough to be manifested in a fatigue state) is specifically evaluated for a reliable marker in identifying mentally fatigued individuals. In laboratory settings, antisaccade tasks have been long used to assess inhibitory control and this technique can potentially serve as the most promising assessment tool to objectively detect mental fatigue. However, more studies need to be conducted in the future to validate and correlate this assessment with other existing measures of mental fatigue detection. This review is intended for, but not limited to, mental health professionals, digital health scientists, vision researchers, and behavioral scientists.
Collapse
Affiliation(s)
- Kaveena Kunasegaran
- Department of Psychology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | | | - Shamala Ramasamy
- Department of Psychology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Justin Vijay Gnanou
- Department of Biochemistry, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Brinnell Annette Caszo
- Department of Physiology, International Medial University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Po Ling Chen
- School of Psychology, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| |
Collapse
|
4
|
Kenworthy L, Moore P, Rao HM, Brattain LJ, James K, Heldt T. Fatigue Assessment from Facial Videos using Deep Neural Networks and Engineered Features Informed by Domain Knowledge. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083265 DOI: 10.1109/embc40787.2023.10340266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Fatigue impairs cognitive and motor function, potentially leading to mishaps in high-pressure occupations such as aviation and emergency medical services. The current approach is primarily based on self-assessment, which is subjective and error-prone. An objective method is needed to detect severe and likely dangerous levels of fatigue quickly and accurately. Here, we present a quantitative evaluation tool that uses less than two minutes of facial video, captured using an iPad, to assess fatigue vs. alertness. The tool is fast, easy to use, and scalable since it uses cameras readily available on consumer-electronic devices. We compared the classification performance between a Long Short-Term Memory (LSTM) deep neural network and a Random Forest (RF) classifier applied to engineered features informed by domain knowledge. The preliminary results on an 11-subject dataset show that RF outperforms LSTM, with added interpretability on the features used. For the RF classifiers, the average areas under the receiver operating characteristic curve, based on the 11-fold and individualized 11-fold cross validations, are 0.72 ± 0.16 and 0.8 ± 0.12, respectively. Equal error rates are 0.34 and 0.26, respectively. This study presents a promising approach for rapid fatigue detection. Additional data will be collected to assess the generalizability across populations.
Collapse
|
5
|
Cohen M, Hesse S, Polet K, Louchart de la Chapelle S, Morisot A, Bresch S, Pesce A, Lebrun-Frenay C. Reliability of mobile video-oculography in multiple sclerosis patients using an iPad: A prospective validation study. Mult Scler Relat Disord 2022; 64:103944. [DOI: 10.1016/j.msard.2022.103944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
|
6
|
Eye Movement Alterations in Post-COVID-19 Condition: A Proof-of-Concept Study. SENSORS 2022; 22:s22041481. [PMID: 35214383 PMCID: PMC8875414 DOI: 10.3390/s22041481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
There is much evidence pointing out eye movement alterations in several neurological diseases. To the best of our knowledge, this is the first video-oculography study describing potential alterations of eye movements in the post-COVID-19 condition. Visually guided saccades, memory-guided saccades, and antisaccades in horizontal axis were measured. In all visual tests, the stimulus was deployed with a gap condition. The duration of the test was between 5 and 7 min per participant. A group of n=9 patients with the post-COVID-19 condition was included in this study. Values were compared with a group (n=9) of healthy volunteers whom the SARS-CoV-2 virus had not infected. Features such as centripetal and centrifugal latencies, success rates in memory saccades, antisaccades, and blinks were computed. We found that patients with the post-COVID-19 condition had eye movement alterations mainly in centripetal latency in visually guided saccades, the success rate in memory-guided saccade test, latency in antisaccades, and its standard deviation, which suggests the involvement of frontoparietal networks. Further work is required to understand these eye movements' alterations and their functional consequences.
Collapse
|
7
|
Abstract
Internet-connected devices, including personal computers, smartphones, smartwatches, and voice assistants, have evolved into powerful multisensor technologies that billions of people interact with daily to connect with friends and colleagues, access and share information, purchase goods, play games, and navigate their environment. Digital phenotyping taps into the data streams captured by these devices to characterize and understand health and disease. The purpose of this article is to summarize opportunities for digital phenotyping in neurology, review studies using everyday technologies to obtain motor and cognitive information, and provide a perspective on how neurologists can embrace and accelerate progress in this emerging field.
Collapse
Affiliation(s)
- Anoopum S. Gupta
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Mahanama B, Jayawardana Y, Rengarajan S, Jayawardena G, Chukoskie L, Snider J, Jayarathna S. Eye Movement and Pupil Measures: A Review. FRONTIERS IN COMPUTER SCIENCE 2022. [DOI: 10.3389/fcomp.2021.733531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our subjective visual experiences involve complex interaction between our eyes, our brain, and the surrounding world. It gives us the sense of sight, color, stereopsis, distance, pattern recognition, motor coordination, and more. The increasing ubiquity of gaze-aware technology brings with it the ability to track gaze and pupil measures with varying degrees of fidelity. With this in mind, a review that considers the various gaze measures becomes increasingly relevant, especially considering our ability to make sense of these signals given different spatio-temporal sampling capacities. In this paper, we selectively review prior work on eye movements and pupil measures. We first describe the main oculomotor events studied in the literature, and their characteristics exploited by different measures. Next, we review various eye movement and pupil measures from prior literature. Finally, we discuss our observations based on applications of these measures, the benefits and practical challenges involving these measures, and our recommendations on future eye-tracking research directions.
Collapse
|
9
|
Lai HY, Saavedra-Pena G, Sodini C, Heldt T, Sze V. App-based saccade latency and directional error determination across the adult age spectrum. IEEE Trans Biomed Eng 2021; 69:1029-1039. [PMID: 34529556 DOI: 10.1109/tbme.2021.3112007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We aid in neurocognitive monitoring outside the hospital environment by enabling app-based measurements of visual reaction time (saccade latency) and directional error rate in a cohort of subjects spanning the adult age spectrum. Methods: We developed an iOS app to record subjects with the frontal camera during pro- and anti-saccade tasks. We further developed automated algorithms for measuring saccade latency and directional error rate that take into account the possibility that it might not always be possible to determine the eye movement from app-based recordings. Results: To measure saccade latency on a tablet, we ensured that the absolute timing error between on-screen task presentation and the camera recording is within 5 ms. We collected over 235,000 eye movements in 80 subjects ranging in age from 20 to 92 years, with 96% of recorded eye movements either declared good or directional errors. Our error detection code achieved a sensitivity of 0.97 and a specificity of 0.97. Confirming prior reports, we observed a positive correlation between saccade latency and age while the relationship between directional error rate and age was not significant. Finally, we observed significant intra- and inter-subject variations in saccade latency and directional error rate distributions, which highlights the importance of individualized tracking of these visual digital biomarkers. Conclusion and Significance: Our system and algorithms allow ubiquitous tracking of saccade latency and directional error rate, which opens up the possibility of quantifying patient state on a finer timescale in a broader population than previously possible.
Collapse
|