1
|
Jia H, Chen X, Shen J, Liu R, Hou P, Yue S. Label-Free Fiber-Optic Raman Spectroscopy for Intravascular Coronary Atherosclerosis and Plaque Detection. ACS OMEGA 2024; 9:27789-27797. [PMID: 38973848 PMCID: PMC11223210 DOI: 10.1021/acsomega.4c01611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
The rupture of atherosclerotic plaques remains one of the leading causes of morbidity and mortality worldwide. The plaques have certain pathological characteristics including a fibrous cap, inflammation, and extensive lipid deposition in a lipid core. Various invasive and noninvasive imaging techniques can interrogate structural aspects of atheroma; however, the composition of the lipid core in coronary atherosclerosis and plaques cannot be accurately detected. Fiber-optic Raman spectroscopy has the capability of in vivo rapid and accurate biomarker detection as an emerging omics technology. Previous studies demonstrated that an intravascular Raman spectroscopic technique may assess and manage the therapeutic and medication strategies intraoperatively. The Raman spectral information identified plaque depositions consisting of lipids, triglycerides, and cholesterol esters as the major components by comparing normal region and early plaque formation region with histology. By focusing on the composition of plaques, we could identify the subgroups of plaques accurately and rapidly by Raman spectroscopy. Collectively, this fiber-optic Raman spectroscopy opens up new opportunities for coronary atherosclerosis and plaque detection, which would assist optimal surgical strategy and instant postoperative decision-making. In this paper, we will review the advancement of label-free fiber-optic Raman probe spectroscopy and its applications of coronary atherosclerosis and atherosclerotic plaque detection.
Collapse
Affiliation(s)
- Hao Jia
- Key
Laboratory of Biomechanics and Mechanobiology (Beihang University),
Ministry of Education, Institute of Medical Photonics, Beijing Advanced
Innovation Center for Biomedical Engineering, School of Biological
Science and Medical Engineering, Beihang
University, Beijing 100191, China
| | - Xun Chen
- Key
Laboratory of Biomechanics and Mechanobiology (Beihang University),
Ministry of Education, Institute of Medical Photonics, Beijing Advanced
Innovation Center for Biomedical Engineering, School of Biological
Science and Medical Engineering, Beihang
University, Beijing 100191, China
| | - Jianghao Shen
- Key
Laboratory of Biomechanics and Mechanobiology (Beihang University),
Ministry of Education, Institute of Medical Photonics, Beijing Advanced
Innovation Center for Biomedical Engineering, School of Biological
Science and Medical Engineering, Beihang
University, Beijing 100191, China
| | - Rujia Liu
- Key
Laboratory of Biomechanics and Mechanobiology (Beihang University),
Ministry of Education, Institute of Medical Photonics, Beijing Advanced
Innovation Center for Biomedical Engineering, School of Biological
Science and Medical Engineering, Beihang
University, Beijing 100191, China
| | - Peipei Hou
- Department
of Cardiology, The People’s Hospital
of China Medical University, Shenyang 110016, China
| | - Shuhua Yue
- Key
Laboratory of Biomechanics and Mechanobiology (Beihang University),
Ministry of Education, Institute of Medical Photonics, Beijing Advanced
Innovation Center for Biomedical Engineering, School of Biological
Science and Medical Engineering, Beihang
University, Beijing 100191, China
| |
Collapse
|
2
|
Jiao H, Mao Q, Razzaq N, Ankri R, Cui J. Ultrasound technology assisted colloidal nanocrystal synthesis and biomedical applications. ULTRASONICS SONOCHEMISTRY 2024; 103:106798. [PMID: 38330546 PMCID: PMC10865478 DOI: 10.1016/j.ultsonch.2024.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Non-invasive and high spatiotemporal resolution mythologies for the diagnosis and treatment of disease in clinical medicine promote the development of modern medicine. Ultrasound (US) technology provides a non-invasive, real-time, and cost-effective clinical imaging modality, which plays a significant role in chemical synthesis and clinical translation, especially in in vivo imaging and cancer therapy. On the one hand, the US treatment is usually accompanied by cavitation, leading to high temperature and pressure, so-called "hot spot", playing a significant role in sonochemical-based colloidal synthesis. Compared with the classical nucleation synthetic method, the sonochemical synthesis strategy presents high efficiency for the fabrication of colloidal nanocrystals due to its fast nucleation and growth procedure. On the other hand, the US is attractive for in vivo and medical treatment, with applications increasing with the development of novel contrast agents, such as the micro and nano bubbles, which are widely used in neuromodulation, with which the US can breach the blood-brain barrier temporarily and safely, opening a new door to neuromodulation and therapy. In terms of cancer treatment, sonodynamic therapy and US-assisted synergetic therapy show great effects against cancer and sonodynamic immunotherapy present unparalleled potentiality compared with other synergetic therapies. Further development of ultrasound technology can revolutionize both chemical synthesis and clinical translation by improving efficiency, precision, and accessibility while reducing environmental impact and enhancing patient care. In this paper, we review the US-assisted sonochemical synthesis and biological applications, to promote the next generation US technology-assisted applications.
Collapse
Affiliation(s)
- Haorong Jiao
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China
| | - Qiulian Mao
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China
| | - Noman Razzaq
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China
| | - Rinat Ankri
- The Biomolecular and Nanophotonics Lab, Ariel University, 407000, P.O.B. 3, Ariel, Israel.
| | - Jiabin Cui
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
3
|
Wang B, Tao K, Hu X, Chen W, Wen Z, Liu X, You C, Geng Z, Li X, Liu R, Wu D. Intravascular Optical Coherence Tomography Utilizing a Miniature Piezoelectric-Driven Probe. IEEE Trans Biomed Eng 2023; 70:3490-3500. [PMID: 37379179 DOI: 10.1109/tbme.2023.3290210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Intravascular optical coherence tomography (IV-OCT) is crucial for evaluating lumen dimensions and guiding interventional procedures. However, traditional catheter-based IV-OCT faces challenges in achieving precise and full-field 360° imaging in tortuous vessels. Current IV-OCT catheters that employ proximal actuators and torque coils are susceptible to non-uniform rotational distortion (NURD) in tortuous vessels, while distal micromotor-driven catheters struggle with complete 360° imaging due to wiring artifacts. In this study, we developed a miniature optical scanning probe with an integrated piezoelectric-driven fiber optic slip ring (FOSR) to facilitate smooth navigation and precise imaging within tortuous vessels. The FOSR features a coil spring-wrapped optical lens serving as a rotor, enabling efficient 360° optical scanning. The structurally-and-functionally-integrated design significantly streamlines the probe (with a diameter of 0.85 mm and a length of 7 mm) while maintaining an excellent rotational speed of 10,000 rpm. High-precision 3D printing technology ensures accurate optical alignment of the fiber and lens inside the FOSR, with a maximum insertion loss variation of 2.67 dB during probe rotation. Finally, a vascular model demonstrated smooth probe insertion into the carotid artery, and imaging of oak leaf, metal rod phantoms, and ex vivo porcine vessels verified its capabilities for precise optical scanning, comprehensive 360° imaging, and artifact elimination. The FOSR probe exhibits small size, rapid rotation, and optical precision scanning, rendering it exceptionally promising for cutting-edge intravascular optical imaging techniques.
Collapse
|
4
|
He Y, Liu X, Zhang J, Peng C. A Backing-Layer-Shared Miniature Dual-Frequency Ultrasound Probe for Intravascular Ultrasound Imaging: In Vitro and Ex Vivo Validations. BIOSENSORS 2023; 13:971. [PMID: 37998146 PMCID: PMC10669229 DOI: 10.3390/bios13110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Intravascular ultrasound (IVUS) imaging has been extensively utilized to visualize atherosclerotic coronary artery diseases and to guide coronary interventions. To receive ultrasound signals within the vessel wall safely and effectively, miniaturized ultrasound transducers that meet the strict size constraints and have a simple manufacturing procedure are highly demanded. In this work, the first known IVUS probe that employs a backing-layer-shared dual-frequency structure and a single coaxial cable is introduced, featuring a small thickness and easy interconnection procedure. The dual-frequency transducer is designed to have center frequencies of 30 MHz and 80 MHz, and both have an aperture size of 0.5 mm × 0.5 mm. The total thickness of the dual-frequency transducer is less than 700 µm. In vitro phantom imaging and ex vivo porcine coronary artery imaging experiments are conducted. The low-frequency transducer achieves spatial resolutions of 40 µm axially and 321 µm laterally, while the high-frequency transducer exhibits axial and lateral resolutions of 17 µm and 247 µm, respectively. A bandpass filter is utilized to separate the ultrasound images. Combining in vitro phantom imaging analysis with ex vivo imaging validation, a comprehensive demonstration of the promising application of the proposed miniature ultrasound probe is established.
Collapse
Affiliation(s)
- Yashuo He
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Xi Liu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Jiayi Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Chang Peng
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Yuan Y, Zhang G, Chen Y, Ni H, Li M, Sturek M, Cheng JX. A high-sensitivity high-resolution intravascular photoacoustic catheter through mode cleaning in a graded-index fiber. PHOTOACOUSTICS 2023; 29:100451. [PMID: 36654962 PMCID: PMC9841289 DOI: 10.1016/j.pacs.2023.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Intravascular photoacoustic imaging has been developed to evaluate the possibility of plaque rupture in atherosclerosis by high spatial resolution imaging of lipid. However, the detection sensitivity and spatial resolution are compromised by the poor focusing caused by a multimode fiber. In this work, we report an intravascular photoacoustic catheter with mode self-cleaning in a graded-index fiber to improve the beam quality and the sensitivity for lipid detection. Compared with the higher-order modes in a step-index multimode fiber, the lower-order modes generated by the self-cleaning effect in the graded-index fiber greatly enhanced the photoacoustic spatial resolution and detection sensitivity. The dominant ringing artifact caused by laser absorption of the ultrasound transducer was further reduced by using stripe suppression. A lipid plaque mimicking phantom was imaged for evaluation. Lipid particles with a small diameter of 75.7 µm were clearly observed.
Collapse
Affiliation(s)
- Yuhao Yuan
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Guangju Zhang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Yuqi Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Michael Sturek
- CorVus Biomedical, LLC and CorVus Foundation, Inc, Crawfordsville, IN 47933, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
6
|
Duan W, Akinyemi T, Du W, Ma J, Chen X, Wang F, Omisore O, Luo J, Wang H, Wang L. Technical and Clinical Progress on Robot-Assisted Endovascular Interventions: A Review. MICROMACHINES 2023; 14:197. [PMID: 36677258 PMCID: PMC9864595 DOI: 10.3390/mi14010197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Prior methods of patient care have changed in recent years due to the availability of minimally invasive surgical platforms for endovascular interventions. These platforms have demonstrated the ability to improve patients' vascular intervention outcomes, and global morbidities and mortalities from vascular disease are decreasing. Nonetheless, there are still concerns about the long-term effects of exposing interventionalists and patients to the operational hazards in the cath lab, and the perioperative risks that patients undergo. For these reasons, robot-assisted vascular interventions were developed to provide interventionalists with the ability to perform minimally invasive procedures with improved surgical workflow. We conducted a thorough literature search and presented a review of 130 studies published within the last 20 years that focused on robot-assisted endovascular interventions and are closely related to the current gains and obstacles of vascular interventional robots published up to 2022. We assessed both the research-based prototypes and commercial products, with an emphasis on their technical characteristics and application domains. Furthermore, we outlined how the robotic platforms enhanced both surgeons' and patients' perioperative experiences of robot-assisted vascular interventions. Finally, we summarized our findings and proposed three key milestones that could improve the development of the next-generation vascular interventional robots.
Collapse
Affiliation(s)
- Wenke Duan
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Toluwanimi Akinyemi
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenjing Du
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jun Ma
- Shenzhen Raysight Intelligent Medical Technology Co., Ltd., Shenzhen 518063, China
| | - Xingyu Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fuhao Wang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Olatunji Omisore
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Engineering Laboratory for Diagnosis & Treatment Key Technologies of Interventional Surgical Robots, Shenzhen 518055, China
| | - Jingjing Luo
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Hongbo Wang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Lei Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Engineering Laboratory for Diagnosis & Treatment Key Technologies of Interventional Surgical Robots, Shenzhen 518055, China
| |
Collapse
|
7
|
Weng ST, Lai QL, Cai MT, Wang JJ, Zhuang LY, Cheng L, Mo YJ, Liu L, Zhang YX, Qiao S. Detecting vulnerable carotid plaque and its component characteristics: Progress in related imaging techniques. Front Neurol 2022; 13:982147. [PMID: 36188371 PMCID: PMC9515377 DOI: 10.3389/fneur.2022.982147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Carotid atherosclerotic plaque rupture and thrombosis are independent risk factors for acute ischemic cerebrovascular disease. Timely identification of vulnerable plaque can help prevent stroke and provide evidence for clinical treatment. Advanced invasive and non-invasive imaging modalities such as computed tomography, magnetic resonance imaging, intravascular ultrasound, optical coherence tomography, and near-infrared spectroscopy can be employed to image and classify carotid atherosclerotic plaques to provide clinically relevant predictors used for patient risk stratification. This study compares existing clinical imaging methods, and the advantages and limitations of different imaging techniques for identifying vulnerable carotid plaque are reviewed to effectively prevent and treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Shi-Ting Weng
- The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Qi-Lun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Meng-Ting Cai
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun-Jun Wang
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Li-Ying Zhuang
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Lin Cheng
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Ye-Jia Mo
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Lu Liu
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Yin-Xi Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Yin-Xi Zhang
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
- Song Qiao
| |
Collapse
|
8
|
Wang J, Yuan S, Qi J, Zhang Q, Ji Z. Advantages and prospects of optical coherence tomography in interventional therapy of coronary heart disease (Review). Exp Ther Med 2022; 23:255. [PMID: 35261627 PMCID: PMC8855506 DOI: 10.3892/etm.2022.11180] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/13/2022] [Indexed: 11/06/2022] Open
Abstract
Coronary heart disease is the leading cause of mortality among all diseases globally. Percutaneous coronary intervention (PCI) is a key method for the treatment of coronary heart disease. Optical coherence tomography (OCT) is an optical diagnostic technology with a resolution of up to 10 µm, which is able to accurately assess the composition of the coronary arterial wall and determine the characteristics of atherosclerotic lesions. It is also highly consistent with pathological examinations, optimizing the effect of stent implantation and evaluation of the long-term effectiveness and safety of the stent, which has irreplaceable value in the field of precision and optimization of coronary intervention. The innovative OCT technology may help provide more comprehensive clinical research evidence. The application of OCT in clinical and basic research of coronary atherosclerosis, selection of treatment strategies for acute coronary syndromes, optimization of interventional treatment efficacy, evaluation of novel stents, intimal stent coverage and selection of dual antiplatelet drugs has become more widely used, affecting the current coronary interventional treatment strategies to a certain extent. The aim of the present review was to discuss the role of OCT in evaluating preoperative plaque characteristics, guiding PCI and evaluating the effects of postoperative stents or drug treatments.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiology, Tangshan Gongren Hospital Affiliated of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Shuo Yuan
- Key Laboratory of Natural Medicines of The Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, P.R. China
- Chronic Diseases Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Jingjing Qi
- Department of Cardiology, Tangshan Gongren Hospital Affiliated of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Qinggao Zhang
- Chronic Diseases Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Zheng Ji
- Department of Cardiology, Tangshan Gongren Hospital Affiliated of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
9
|
Wang B, Zhou Y, Wang Y, Li X, He L, Wen Z, Cao T, Sun L, Wu D. Three-Dimensional Intravascular Ultrasound Imaging Using a Miniature Helical Ultrasonic Motor. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:681-690. [PMID: 34860650 DOI: 10.1109/tuffc.2021.3132607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Existing 3-D intravascular ultrasound (IVUS) systems that combine two electromagnetic (EM) motors to drive catheters are bulky and require considerable efforts to eliminate EM interference (EMI). Here, we propose a new scanning method to realize 3-D IVUS imaging using a helical ultrasonic motor to overcome the aforementioned issues. The ultrasonic motor with compact dimensions (7-mm outer diameter and 30-mm longitudinal length), lightweight (20.5 g), and free of EMI exhibits a great application potential in mobile imaging devices. In particular, it can simultaneously perform rotary and linear motions, facilitating precise 3-D scanning of an imaging catheter. Experimental results show that the signal-to-noise ratio (SNR) of raw images obtained using the ultrasonic motor is 5.3 dB better than that of an EM motor. Moreover, the proposed imaging device exhibits the maximum rotary speed of 12.3 r/s and the positioning accuracy of 2.6 [Formula: see text] at a driving voltage of 240 Vp-p. The 3-D wire phantom imaging and 3-D tube phantom imaging are performed to evaluate the performance of the imaging device. Finally, the in vitro imaging of a porcine coronary artery demonstrates that the layered architecture of the vessel can be precisely identified while significantly increasing the SNR of the raw images.
Collapse
|
10
|
Liang S, Su M, Liu B, Liu R, Zheng H, Qiu W, Zhang Z. Evaluation of Blood Induced Influence for High-Definition Intravascular Ultrasound (HD-IVUS). IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:98-105. [PMID: 34437062 DOI: 10.1109/tuffc.2021.3108163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-definition intravascular ultrasound (HD-IVUS) utilizing more than 80 MHz frequency to assess atherosclerotic plaque, can theoretically achieve an axial resolution of less than [Formula: see text]. However, the blood is a high-attenuation source at high frequency, which would affect the imaging quality. There has been no research evaluating the blood-induced influence on HD-IVUS imaging. And whether a temporary removal of blood is needed for HD-IVUS is unknown. In this study, an ultrahigh-frequency (100 MHz) ultrasound transducer was developed to evaluate the blood-induced attenuation for HD-IVUS imaging. A series of tungsten-wire phantom images in saline and blood at varying hematocrits were obtained. The images showed that blood did influence the ultrahigh-frequency imaging quality greatly. The signal-to-noise ratio (SNR) decrease by 71.7% in porcine whole blood compared to that in saline at the same depth of 2.3 mm. Moreover, the potential flushing schemes for HD-IVUS were studied in varying hematocrits. Three flushing agents commonly used in intravascular optical coherence tomography (IV-OCT) were investigated, including iohexol, mannitol, and dextran 5% and saline as the control group. The attenuation of blood in varying hematocrits/flushing agents was measured from 90 to 110 MHz. The result indicated dextran 5% was a suitable flushing agent for HD-IVUS due to its less signal attenuation compared to others.
Collapse
|
11
|
Sung JH, Chang JH. Mechanically Rotating Intravascular Ultrasound (IVUS) Transducer: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:3907. [PMID: 34198822 PMCID: PMC8201242 DOI: 10.3390/s21113907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Intravascular ultrasound (IVUS) is a valuable imaging modality for the diagnosis of atherosclerosis. It provides useful clinical information, such as lumen size, vessel wall thickness, and plaque composition, by providing a cross-sectional vascular image. For several decades, IVUS has made remarkable progress in improving the accuracy of diagnosing cardiovascular disease that remains the leading cause of death globally. As the quality of IVUS images mainly depends on the performance of the IVUS transducer, various IVUS transducers have been developed. Therefore, in this review, recently developed mechanically rotating IVUS transducers, especially ones exploiting piezoelectric ceramics or single crystals, are discussed. In addition, this review addresses the history and technical challenges in the development of IVUS transducers and the prospects of next-generation IVUS transducers.
Collapse
Affiliation(s)
| | - Jin-Ho Chang
- Department of Information and Communication Engineering, Deagu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| |
Collapse
|
12
|
Peng C, Wu H, Kim S, Dai X, Jiang X. Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging. SENSORS (BASEL, SWITZERLAND) 2021; 21:3540. [PMID: 34069613 PMCID: PMC8160965 DOI: 10.3390/s21103540] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
As a well-known medical imaging methodology, intravascular ultrasound (IVUS) imaging plays a critical role in diagnosis, treatment guidance and post-treatment assessment of coronary artery diseases. By cannulating a miniature ultrasound transducer mounted catheter into an artery, the vessel lumen opening, vessel wall morphology and other associated blood and vessel properties can be precisely assessed in IVUS imaging. Ultrasound transducer, as the key component of an IVUS system, is critical in determining the IVUS imaging performance. In recent years, a wide range of achievements in ultrasound transducers have been reported for IVUS imaging applications. Herein, a comprehensive review is given on recent advances in ultrasound transducers for IVUS imaging. Firstly, a fundamental understanding of IVUS imaging principle, evaluation parameters and IVUS catheter are summarized. Secondly, three different types of ultrasound transducers (piezoelectric ultrasound transducer, piezoelectric micromachined ultrasound transducer and capacitive micromachined ultrasound transducer) for IVUS imaging are presented. Particularly, the recent advances in piezoelectric ultrasound transducer for IVUS imaging are extensively examined according to their different working mechanisms, configurations and materials adopted. Thirdly, IVUS-based multimodality intravascular imaging of atherosclerotic plaque is discussed. Finally, summary and perspectives on the future studies are highlighted for IVUS imaging applications.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | | | - Xuming Dai
- Department of Cardiology, New York-Presbyterian Queens Hospital, Flushing, NY 11355, USA;
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| |
Collapse
|
13
|
Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. Int J Mol Sci 2020; 21:ijms21082992. [PMID: 32340284 PMCID: PMC7216001 DOI: 10.3390/ijms21082992] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a lipoprotein-driven inflammatory disorder leading to a plaque formation at specific sites of the arterial tree. After decades of slow progression, atherosclerotic plaque rupture and formation of thrombi are the major factors responsible for the development of acute coronary syndromes (ACSs). In this regard, the detection of high-risk (vulnerable) plaques is an ultimate goal in the management of atherosclerosis and cardiovascular diseases (CVDs). Vulnerable plaques have specific morphological features that make their detection possible, hence allowing for identification of high-risk patients and the tailoring of therapy. Plaque ruptures predominantly occur amongst lesions characterized as thin-cap fibroatheromas (TCFA). Plaques without a rupture, such as plaque erosions, are also thrombi-forming lesions on the most frequent pathological intimal thickening or fibroatheromas. Many attempts to comprehensively identify vulnerable plaque constituents with different invasive and non-invasive imaging technologies have been made. In this review, advantages and limitations of invasive and non-invasive imaging modalities currently available for the identification of plaque components and morphologic features associated with plaque vulnerability, as well as their clinical diagnostic and prognostic value, were discussed.
Collapse
|
14
|
Li Y, Chen J, Chen Z. Multimodal intravascular imaging technology for characterization of atherosclerosis. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2020; 13:2030001. [PMID: 32308744 PMCID: PMC7164814 DOI: 10.1142/s1793545820300013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Early detection of vulnerable plaques is the critical step in the prevention of acute coronary events. Morphology, composition, and mechanical property of a coronary artery have been demonstrated to be the key characteristics for the identification of vulnerable plaques. Several intravascular multimodal imaging technologies providing co-registered simultaneous images have been developed and applied in clinical studies to improve the characterization of atherosclerosis. In this paper, the authors review the present system and probe designs of representative intravascular multimodal techniques. In addition, the scientific innovations, potential limitations, and future directions of these technologies are also discussed.
Collapse
Affiliation(s)
- Yan Li
- Beckman Laser Institute, University of California, Irvine 1002 Health Sciences Road, Irvine, CA 92617 USA
| | - Jason Chen
- Beckman Laser Institute, University of California, Irvine 1002 Health Sciences Road, Irvine, CA 92617 USA
| | - Zhongping Chen
- Department of Biomedical Engineering University of California, Irvine, CA 92697-2700 USA
| |
Collapse
|
15
|
Gharaibeh Y, Prabhu D, Kolluru C, Lee J, Zimin V, Bezerra H, Wilson D. Coronary calcification segmentation in intravascular OCT images using deep learning: application to calcification scoring. J Med Imaging (Bellingham) 2019; 6:045002. [PMID: 31903407 PMCID: PMC6934132 DOI: 10.1117/1.jmi.6.4.045002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/05/2019] [Indexed: 01/18/2023] Open
Abstract
Major calcifications are of great concern when performing percutaneous coronary interventions because they inhibit proper stent deployment. We created a comprehensive software to segment calcifications in intravascular optical coherence tomography (IVOCT) images and to calculate their impact using the stent-deployment calcification score, as reported by Fujino et al. We segmented the vascular lumen and calcifications using the pretrained SegNet, convolutional neural network, which was refined for our task. We cleaned segmentation results using conditional random field processing. We evaluated the method on manually annotated IVOCT volumes of interest (VOIs) without lesions and with calcifications, lipidous, or mixed lesions. The dataset included 48 VOIs taken from 34 clinical pullbacks, giving a total of 2640 in vivo images. Annotations were determined from consensus between two expert analysts. Keeping VOIs intact, we performed 10-fold cross-validation over all data. Following segmentation noise cleaning, we obtained sensitivities of 0.85 ± 0.04 , 0.99 ± 0.01 , and 0.97 ± 0.01 for calcified, lumen, and other tissue classes, respectively. From segmented regions, we automatically determined calcification depth, angle, and thickness attributes. Bland-Altman analysis suggested strong correlation between manually and automatically obtained lumen and calcification attributes. Agreement between manually and automatically obtained stent-deployment calcification scores was good (four of five lesions gave exact agreement). Results are encouraging and suggest our classification approach could be applied clinically for assessment and treatment planning of coronary calcification lesions.
Collapse
Affiliation(s)
- Yazan Gharaibeh
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - David Prabhu
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Chaitanya Kolluru
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Juhwan Lee
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Vladislav Zimin
- University Hospitals Cleveland Medical Center, Harrington Heart and Vascular Institute, Cardiovascular Imaging Core Laboratory, Cleveland, Ohio, United States
| | - Hiram Bezerra
- University Hospitals Cleveland Medical Center, Harrington Heart and Vascular Institute, Cardiovascular Imaging Core Laboratory, Cleveland, Ohio, United States
| | - David Wilson
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Radiology, Cleveland, Ohio, United States
| |
Collapse
|
16
|
Liu R, Zhang Y, Zheng Y, Liu Y, Zhao Y, Yi L. Automated Detection of Vulnerable Plaque for Intravascular Optical Coherence Tomography Images. Cardiovasc Eng Technol 2019; 10:590-603. [DOI: 10.1007/s13239-019-00425-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
|
17
|
Su M, Zhang Z, Hong J, Huang Y, Mu P, Yu Y, Liu R, Liang S, Zheng H, Qiu W. Cable shared dual-frequency catheter for intravascular ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:849-856. [PMID: 30762542 DOI: 10.1109/tuffc.2019.2898256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study proposes a catheter consisting of dual-frequency transducer for intravascular ultrasound. Both ultrasonic elements with different frequencies were connected to one coaxial cable to make the connection simple. The aperture size of the ultrasound elements were 0.4×0.6 mm2 and 0.3×0.4 mm2 for the low frequency element and high frequency element, respectively. The center frequency and bandwidth of the fabricated low frequency transducer were 33.8 MHz and 49.3%, respectively. Meanwhile, the center frequency and bandwidth of the high frequency transducer were 80.6 MHz and 50.3%, respectively. Imaging evaluations of wire phantom, tissue phantom and vessel tissue demonstrated good imaging capability of the dual-frequency catheter. The spatial resolution are 19 μm axially and 128 μm laterally for the high frequency transducer, and 37 μm axially and 199 μm laterally for the low frequency transducer. Band-pass filters were designed to separate the mixed echo signals. After filtering, the images from different ultrasound elements can be successfully identified, indicating the feasibility of the proposed cable shared dual-frequency imaging strategy. The proposed method has simple structure, good imaging resolution, and large penetration depth, showing good application prospect for intravascular ultrasound.
Collapse
|
18
|
Arkan EF, Degertekin FL. Analysis and Design of High-Frequency 1-D CMUT Imaging Arrays in Noncollapsed Mode. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:382-393. [PMID: 30571620 PMCID: PMC6415772 DOI: 10.1109/tuffc.2018.2887043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
High-frequency ultrasound imaging arrays are important for a broad range of applications, from small animal imaging to photoacoustics. Capacitive micromachined ultrasonic transducer (CMUT) arrays are particularly attractive for these applications as low noise receiver electronics can be integrated for an overall improved performance. In this paper, we present a comprehensive analysis of high-frequency CMUT arrays based on an experimentally verified CMUT array simulation tool. The results obtained on an example, a 40-MHz 1-D CMUT array for intravascular imaging, are used to obtain key design insights and tradeoffs for receive only and pulse-echo imaging. For the receiver side, thermal mechanical current noise, plane wave pressure sensitivity, and pressure noise spectrum are extracted from simulations. Using these parameters, we find that the receiver performance of CMUT arrays can be close to an ideal piston, independent of gap thickness, and applied dc bias, when coupled to low noise electronics with arrays utilizing smaller membranes performing better. For pulse-echo imaging, thermal mechanical current noise limited signal-to-noise ratio is observed to be dependent on the maximum available voltage and gap thickness. In terms of bandwidth, we find that the Bragg resonance of the array, related to the fill factor, is a significant determinant of the high frequency limit and the fluid loaded single membrane resonance determines the lower limit. Based on these results, we present design guidelines requiring only fluid loaded single membrane simulations and membrane pitch to achieve a desired pulse-echo response. We also provide a design example and discuss limitations of the approach.
Collapse
|
19
|
Dugandžić V, Drikermann D, Ryabchykov O, Undisz A, Vilotijević I, Lorkowski S, Bocklitz TW, Matthäus C, Weber K, Cialla-May D, Popp J. Surface enhanced Raman spectroscopy-detection of the uptake of mannose-modified nanoparticles by macrophages in vitro: A model for detection of vulnerable atherosclerotic plaques. JOURNAL OF BIOPHOTONICS 2018; 11:e201800013. [PMID: 29799670 DOI: 10.1002/jbio.201800013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Atherosclerosis is a process of thickening and stiffening of the arterial walls through the accumulation of lipids and fibrotic material, as a consequence of aging and unhealthy life style. However, not all arterial plaques lead to complications, which can lead to life-threatening events such as stroke and myocardial infarction. Diagnosis of the disease in early stages and identification of unstable atherosclerotic plaques are still challenging. It has been shown that the development of atherosclerotic plaques is an inflammatory process, where the accumulation of macrophages in the arterial walls is immanent in the early as well as late stages of the disease. We present a novel surface enhanced Raman spectroscopy (SERS)-based strategy for the detection of early stage atherosclerosis, based on the uptake of tagged gold nanoparticles by macrophages and subsequent detection by means of SERS. The results presented here provide a basis for future in vivo studies in animal models.The workflow of tracing the SERS-active nanoparticle uptake by macrophages employing confocal Raman imaging.
Collapse
Affiliation(s)
- Vera Dugandžić
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Denis Drikermann
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Oleg Ryabchykov
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Undisz
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany
| | - Ivan Vilotijević
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Lorkowski
- Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
- Jena Centre for Soft Matter, (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Thomas W Bocklitz
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Matthäus
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Karina Weber
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Jena, Germany
- Jena Centre for Soft Matter, (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Dana Cialla-May
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
- Jena Centre for Soft Matter, (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
20
|
Shih CC, Chen PY, Ma T, Zhou Q, Shung KK, Huang CC. Development of an intravascular ultrasound elastography based on a dual-element transducer. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180138. [PMID: 29765694 PMCID: PMC5936959 DOI: 10.1098/rsos.180138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/12/2018] [Indexed: 06/03/2023]
Abstract
The ability to measure the elastic properties of plaques and vessels would be useful in clinical diagnoses, particularly for detecting a vulnerable plaque. This study demonstrates the feasibility of the combination of intravascular ultrasound (IVUS) and acoustic radiation force elasticity imaging for detecting the distribution of stiffness within atherosclerotic arteries ex vivo. A dual-frequency IVUS transducer with two elements was used to induce the propagation of the shear wave (by the 8.5 MHz pushing element) which could be simultaneously monitored by the 31 MHz imaging element. The wave-amplitude image and the wave-velocity image were reconstructed by measuring the peak displacement and wave velocity of shear wave propagation, respectively. System performance was verified using gelatin phantoms. The phantom results demonstrate that the stiffness differences of shear modulus of 1.6 kPa can be distinguished through the wave-amplitude and wave-velocity images. The stiffness distributions of the atherosclerotic aorta from a rabbit were obtained, for which the values of peak displacement and the shear wave velocity were 3.7 ± 1.2 µm and 0.38 ± 0.19 m s-1 for the lipid-rich plaques, and 1.0 ± 0.2 µm and 3.45 ± 0.45 m s-1 for the arterial walls, respectively. These results indicate that IVUS elasticity imaging can be used to distinguish the elastic properties of plaques and vessels.
Collapse
Affiliation(s)
- Cho-Chiang Shih
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yu Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Teng Ma
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - K. Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
21
|
Fei C, Yang Y, Guo F, Lin P, Chen Q, Zhou Q, Sun L. PMN-PT Single Crystal Ultrasonic Transducer With Half-Concave Geometric Design for IVUS Imaging. IEEE Trans Biomed Eng 2017; 65:2087-2092. [PMID: 29989942 DOI: 10.1109/tbme.2017.2784437] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As the key component of intravascular ultrasound (IVUS) imaging systems, traditional commercial side-looking IVUS transducers are flat and unfocused, which limits their lateral resolution. We propose a PMN-PT single crystal IVUS transducer with a half-concave geometry. This unique configuration makes it possible to conduct geometric focusing at a desired depth. To compare performances, the proposed and the traditional flat transducer with similar dimensions were fabricated. We determined that the half-concave transducer has a slightly higher center frequency (35 MHz), significantly broader -6 dB bandwidth (54%) but a higher insertion loss (-22.4 dB) compared to the flat transducer (32 MHz, 28%, and -19.3 dB, respectively). A significant enhancement of the lateral resolution was also confirmed. The experimental results are in agreement with the finite element simulation results. This preliminary investigation suggests that the half-concave geometry design is a promising approach in the development of focused IVUS transducers with broad bandwidth and high lateral resolution.
Collapse
|
22
|
Increased light penetration due to ultrasound-induced air bubbles in optical scattering media. Sci Rep 2017; 7:16105. [PMID: 29170545 PMCID: PMC5701037 DOI: 10.1038/s41598-017-16444-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/13/2017] [Indexed: 01/11/2023] Open
Abstract
Light is an attractive tool for high spatial- and contrast-resolution imaging, highly sensitive molecular imaging, and target-selective therapy, and it does not exhibit the risks associated with ionizing radiation. The main limitation of using light in clinical applications is its superficial imaging and therapeutic depth caused by high optical scattering in biological media. Here, we demonstrate that the scattering and thus defocusing of the incident light can be alleviated when simultaneously delivered ultrasound generates air bubbles in the pathway of the incident light, thus increasing the light penetration. The bubbles are temporally induced by ultrasound with an intensity that is sufficiently low to avoid tissue damage and act as a Mie scattering medium in which light is scattered predominantly in the forward direction. The change in the optical scattering property caused by the ultrasound is undone after cessation of the insonification. From the results, it is expected that this proposed method will open a new route for overcoming the limitations of current optical imaging and therapeutic techniques.
Collapse
|
23
|
Phipps JE, Hoyt T, Vela D, Wang T, Michalek JE, Buja LM, Jang IK, Milner TE, Feldman MD. Diagnosis of Thin-Capped Fibroatheromas in Intravascular Optical Coherence Tomography Images: Effects of Light Scattering. Circ Cardiovasc Interv 2017; 9:CIRCINTERVENTIONS.115.003163. [PMID: 27406987 DOI: 10.1161/circinterventions.115.003163] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intravascular optical coherence tomography (IVOCT) images are recorded by detecting light backscattered within coronary arteries. We hypothesize that non-thin-capped fibroatheroma (TCFA) causes may scatter light to create the false appearance of IVOCT TCFA. METHODS AND RESULTS Ten human cadaver hearts were imaged with IVOCT (n=14 coronary arteries). IVOCT and histological TCFA images were coregistered and compared. Of 21 IVOCT TCFAs (fibrous cap <65 μm, lipid arc >1 quadrant), only 8 were true histological TCFA. Foam cell infiltration was responsible for 70% of false IVOCT TCFA and caused both thick-capped fibroatheromas to appear as TCFA, and the appearance of TCFAs when no lipid core was present. Other false IVOCT TCFA causes included smooth muscle cell-rich fibrous tissue (12%) and loose connective tissue (9%). If the lipid arc >1 quadrant (obtuse) criterion was disregarded, 45 IVOCT TCFAs were identified, and sensitivity of IVOCT TCFA detection increased from 63% to 87%, and specificity remained high at 92%. CONCLUSIONS We demonstrate that IVOCT can exhibit 87% (95% CI, 75%-93%) sensitivity and 92% specificity (95% CI, 86%-96%) to detect all lipid arcs (both obtuse and acute, <1 quadrant) TCFA, and we also propose new mechanisms involving light scattering that explain why other plaque components can masquerade as TCFA and cause low positive predictive value of IVOCT for TCFA detection (47% for obtuse lipid arcs). Disregarding the lipid arc >1 quadrant requirement enhances the ability of IVOCT to detect TCFA.
Collapse
Affiliation(s)
- Jennifer E Phipps
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Taylor Hoyt
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Deborah Vela
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Tianyi Wang
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Joel E Michalek
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - L Maximilian Buja
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Ik-Kyung Jang
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Thomas E Milner
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Marc D Feldman
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.).
| |
Collapse
|
24
|
Qu Y, Ma T, He Y, Yu M, Zhu J, Miao Y, Dai C, Patel P, Shung KK, Zhou Q, Chen Z. Miniature probe for mapping mechanical properties of vascular lesions using acoustic radiation force optical coherence elastography. Sci Rep 2017; 7:4731. [PMID: 28680156 PMCID: PMC5498569 DOI: 10.1038/s41598-017-05077-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/24/2017] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases are the leading cause of fatalities in the United States. Atherosclerotic plaques are one of the primary complications that can lead to strokes and heart attacks if left untreated. It is essential to diagnose the disease early and distinguish vulnerable plaques from harmless ones. Many methods focus on the structural or molecular properties of plaques. Mechanical properties have been shown to change drastically when abnormalities develop in arterial tissue. We report the development of an acoustic radiation force optical coherence elastography (ARF-OCE) system that uses an integrated miniature ultrasound and optical coherence tomography (OCT) probe to map the relative elasticity of vascular tissues. We demonstrate the capability of the miniature probe to map the biomechanical properties in phantom and human cadaver carotid arteries.
Collapse
Affiliation(s)
- Yueqiao Qu
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92617, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2700, USA
| | - Teng Ma
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Youmin He
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92617, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2700, USA
| | - Mingyue Yu
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jiang Zhu
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92617, USA
| | - Yusi Miao
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92617, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2700, USA
| | - Cuixia Dai
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92617, USA.,Shanghai Institute of Technology, 100 Haiquan Road, Fengxian, Shanghai, China
| | - Pranav Patel
- Division of Cardiology, Irvine Medical Center, University of California, Orange, CA, 92868, USA
| | - K Kirk Shung
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Qifa Zhou
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd., Irvine, CA, 92617, USA. .,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2700, USA.
| |
Collapse
|
25
|
Choi H, Woo PC, Yeom JY, Yoon C. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation. SENSORS 2017; 17:s17040764. [PMID: 28375165 PMCID: PMC5421724 DOI: 10.3390/s17040764] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 12/03/2022]
Abstract
A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (−1.8 and −0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (−2.95 and −3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dBm input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dBm at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dBm at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dBm input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (−48.34, −44.21, −48.34, and −46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (−45.61, −41.57, −45.01, and −45.51 dB, respectively). When five-cycle 20 dBm input power was applied, the second, third, fourth, and fifth harmonic distortions of the HVPA with the power MOSFET linearizer (−41.54, −41.80, −48.86, and −46.27 dB, respectively) were also lower than that of the HVPA without the power MOSFET linearizer (−25.85, −43.56, −49.04, and −49.24 dB, respectively). Therefore, we conclude that the power MOSFET linearizer could reduce gain deviation of the HVPA, thus reducing the echo signal harmonic distortions generated by the high-frequency ultrasonic transducers in pulse-echo instrumentation.
Collapse
Affiliation(s)
- Hojong Choi
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea.
| | - Park Chul Woo
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39253, Korea.
| | - Jung-Yeol Yeom
- School of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Changhan Yoon
- Department of Biomedical Engineering, Inje University, Gimhae 50834, Korea.
| |
Collapse
|
26
|
New Potassium Sodium Niobate Single Crystal with Thickness-independent High-performance for Photoacoustic Angiography of Atherosclerotic Lesion. Sci Rep 2016; 6:39679. [PMID: 28000778 PMCID: PMC5175147 DOI: 10.1038/srep39679] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022] Open
Abstract
The synthesis of (K0.45Na0.55)0.96Li0.04NbO3 (KNLN) single crystals with a <100>-orientation, using a seed-free solid state crystal growth method, is described here. With the thickness of the crystals decreasing down to the order of tens of micrometers, this new lead-free single crystal exhibits thickness-independent electrical behavior, and maintains superior piezoelectric constant (d33 = 670 pC N-1) and electromechanical coupling factor (kt = 0.55). The successful fabrication of a tiny intravascular photoacoustic probe, with a 1 mm outside diameter, is achieved using a single crystal with a thickness of around 60 μm, in combination with a 200 μm core multimode fiber. Wire phantom photoacoustic images show that the axial resolution and lateral resolution of the single crystal based probe are 60 and 220 μm, respectively. In addition, intravascular photoacoustic imaging of the atherosclerotic lesion of a human artery is presented. In the time-domain and frequency-domain images, calcified regions are clearly distinguishable from surrounding tissue. These interesting results demonstrate that KNN-based lead-free piezoelectric single crystals are a promising candidate to substitute for lead-based piezoelectric materials for photoacoustic imaging in the future.
Collapse
|
27
|
Ma J, Luo Y, Sevag Packard RR, Ma T, Ding Y, Abiri P, Tai YC, Zhou Q, Shung KK, Li R, Hsiai T. Ultrasonic Transducer-Guided Electrochemical Impedance Spectroscopy to Assess Lipid-Laden Plaques. SENSORS AND ACTUATORS. B, CHEMICAL 2016; 235:154-161. [PMID: 27773967 PMCID: PMC5068578 DOI: 10.1016/j.snb.2016.04.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plaque rupture causes acute coronary syndromes and stroke. Intraplaque oxidized low density lipoprotein (oxLDL) is metabolically unstable and prone to induce rupture. We designed an intravascular ultrasound (IVUS)-guided electrochemical impedance spectroscopy (EIS) sensor to enhance the detection reproducibility of oxLDL-laden plaques. The flexible 2-point micro-electrode array for EIS was affixed to an inflatable balloon anchored onto a co-axial double layer catheter (outer diameter = 2 mm). The mechanically scanning-driven IVUS transducer (45 MHz) was deployed through the inner catheter (diameter = 1.3 mm) to the acoustic impedance matched-imaging window. Water filled the inner catheter to match acoustic impedance and air was pumped between the inner and outer catheters to inflate the balloon. The integrated EIS and IVUS sensor was deployed into the ex vivo aortas dissected from the fat-fed New Zealand White (NZW) rabbits (n=3 for fat-fed, n= 5 normal diet). IVUS imaging was able to guide the 2-point electrode to align with the plaque for EIS measurement upon balloon inflation. IVUS-guided EIS signal demonstrated reduced variability and increased reproducibility (p < 0.0001 for magnitude, p < 0.05 for phase at < 15 kHz) as compared to EIS sensor alone (p < 0.07 for impedance, p < 0.4 for phase at < 15 kHz). Thus, we enhanced topographic and EIS detection of oxLDL-laden plaques via a catheter-based integrated sensor design to enhance clinical assessment for unstable plaque.
Collapse
Affiliation(s)
- Jianguo Ma
- Department of Bioengineering, School of Engineering and Applied Sciences, University of California, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yuan Luo
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - René R. Sevag Packard
- Department of Bioengineering, School of Engineering and Applied Sciences, University of California, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Teng Ma
- Department of Biomedical Engineering and Cardiovascular Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Yichen Ding
- Department of Bioengineering, School of Engineering and Applied Sciences, University of California, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Parinaz Abiri
- Department of Bioengineering, School of Engineering and Applied Sciences, University of California, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yu-Chong Tai
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Cardiovascular Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kirk K. Shung
- Department of Biomedical Engineering and Cardiovascular Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Rongsong Li
- Department of Bioengineering, School of Engineering and Applied Sciences, University of California, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tzung Hsiai
- Department of Bioengineering, School of Engineering and Applied Sciences, University of California, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
28
|
Ma T, Zhou B, Hsiai TK, Shung KK. A Review of Intravascular Ultrasound-based Multimodal Intravascular Imaging: The Synergistic Approach to Characterizing Vulnerable Plaques. ULTRASONIC IMAGING 2016; 38:314-31. [PMID: 26400676 PMCID: PMC4803636 DOI: 10.1177/0161734615604829] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Catheter-based intravascular imaging modalities are being developed to visualize pathologies in coronary arteries, such as high-risk vulnerable atherosclerotic plaques known as thin-cap fibroatheroma, to guide therapeutic strategy at preventing heart attacks. Mounting evidences have shown three distinctive histopathological features-the presence of a thin fibrous cap, a lipid-rich necrotic core, and numerous infiltrating macrophages-are key markers of increased vulnerability in atherosclerotic plaques. To visualize these changes, the majority of catheter-based imaging modalities used intravascular ultrasound (IVUS) as the technical foundation and integrated emerging intravascular imaging techniques to enhance the characterization of vulnerable plaques. However, no current imaging technology is the unequivocal "gold standard" for the diagnosis of vulnerable atherosclerotic plaques. Each intravascular imaging technology possesses its own unique features that yield valuable information although encumbered by inherent limitations not seen in other modalities. In this context, the aim of this review is to discuss current scientific innovations, technical challenges, and prospective strategies in the development of IVUS-based multi-modality intravascular imaging systems aimed at assessing atherosclerotic plaque vulnerability.
Collapse
Affiliation(s)
- Teng Ma
- NIH Resource Center on Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Bill Zhou
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - K Kirk Shung
- NIH Resource Center on Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Shih CC, Lai TY, Huang CC. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results. ULTRASONICS 2016; 70:64-74. [PMID: 27135187 DOI: 10.1016/j.ultras.2016.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 05/13/2023]
Abstract
The ability to measure the elastic properties of plaques and vessels is significant in clinical diagnosis, particularly for detecting a vulnerable plaque. A novel concept of combining intravascular ultrasound (IVUS) imaging and acoustic radiation force impulse (ARFI) imaging has recently been proposed. This method has potential in elastography for distinguishing between the stiffness of plaques and arterial vessel walls. However, the intensity of the acoustic radiation force requires calibration as a standard for the further development of an ARFI-IVUS imaging device that could be used in clinical applications. In this study, a dual-frequency transducer with 11MHz and 48MHz was used to measure the association between the biological tissue displacement and the applied acoustic radiation force. The output intensity of the acoustic radiation force generated by the pushing element ranged from 1.8 to 57.9mW/cm(2), as measured using a calibrated hydrophone. The results reveal that all of the acoustic intensities produced by the transducer in the experiments were within the limits specified by FDA regulations and could still displace the biological tissues. Furthermore, blood clots with different hematocrits, which have elastic properties similar to the lipid pool of plaques, with stiffness ranging from 0.5 to 1.9kPa could be displaced from 1 to 4μm, whereas the porcine arteries with stiffness ranging from 120 to 291kPa were displaced from 0.4 to 1.3μm when an acoustic intensity of 57.9mW/cm(2) was used. The in vitro ARFI images of the artery with a blood clot and artificial arteriosclerosis showed a clear distinction of the stiffness distributions of the vessel wall. All the results reveal that ARFI-IVUS imaging has the potential to distinguish the elastic properties of plaques and vessels. Moreover, the acoustic intensity used in ARFI imaging has been experimentally quantified. Although the size of this two-element transducer is unsuitable for IVUS imaging, the experimental results reported herein can be applied in ARFI-IVUS imaging applications.
Collapse
Affiliation(s)
- Cho-Chiang Shih
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yu Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
30
|
Li J, Chen Z. Integrated intravascular ultrasound and optical coherence tomography technology: a promising tool to identify vulnerable plaques [INVITED PAPER]. JOURNAL OF BIOMEDICAL PHOTONICS & ENGINEERING 2016; 1. [PMID: 28966987 DOI: 10.18287/jbpe-2015-1-4-209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Heart attack is mainly caused by the rupture of a vulnerable plaque. IVUS-OCT is a novel medical imaging modality that provides opportunities for accurate assessment of vulnerable plaques in vivo in patients. IVUS provides deep penetration to image the whole necrotic core while OCT enables accurate measurement of the fibrous cap of a plaque owing to its high resolution. In this paper, the authors describe the fundamentals, the technical designs and the applications of IVUS-OCT technology. Results from cadaver specimens are summarized, which indicated the complementary nature of OCT and IVUS for assessment of vulnerable plaques, plaque composition, and stent-tissue interactions. Furthermore, previously reported in vivo animal experiments are reviewed to assess the clinical adaptability of IVUS-OCT. Future directions for this technology are also discussed in this review.
Collapse
Affiliation(s)
- Jiawen Li
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| |
Collapse
|
31
|
Li J, Ma T, Mohar D, Steward E, Yu M, Piao Z, He Y, Shung KK, Zhou Q, Patel PM, Chen Z. Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo. Sci Rep 2015; 5:18406. [PMID: 26678300 PMCID: PMC4683418 DOI: 10.1038/srep18406] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022] Open
Abstract
Atherosclerotic coronary artery disease (CAD) is the number one cause of death worldwide. The majority of CAD-induced deaths are due to the rupture of vulnerable plaques. Accurate assessment of plaques is crucial to optimize treatment and prevent death in patients with CAD. Current diagnostic techniques are often limited by either spatial resolution or penetration depth. Several studies have proved that the combined use of optical and ultrasonic imaging techniques increase diagnostic accuracy of vulnerable plaques. Here, we introduce an ultrafast optical-ultrasonic dual-modality imaging system and flexible miniaturized catheter, which enables the translation of this technology into clinical practice. This system can perform simultaneous optical coherence tomography (OCT)-intravascular ultrasound (IVUS) imaging at 72 frames per second safely in vivo, i.e., visualizing a 72 mm-long artery in 4 seconds. Results obtained in atherosclerotic rabbits in vivo and human coronary artery segments show that this ultrafast technique can rapidly provide volumetric mapping of plaques and clearly identify vulnerable plaques. By providing ultrafast imaging of arteries with high resolution and deep penetration depth simultaneously, this hybrid IVUS-OCT technology opens new and safe opportunities to evaluate in real-time the risk posed by plaques, detect vulnerable plaques, and optimize treatment decisions.
Collapse
Affiliation(s)
- Jiawen Li
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd. Irvine, CA 92617, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2700, USA
| | - Teng Ma
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Dilbahar Mohar
- School of Medicine, University of California, Irvine, 101 The City Drive South, Orange, CA, 92868, USA
| | - Earl Steward
- School of Medicine, University of California, Irvine, 101 The City Drive South, Orange, CA, 92868, USA
| | - Mingyue Yu
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhonglie Piao
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd. Irvine, CA 92617, USA
| | - Youmin He
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd. Irvine, CA 92617, USA
| | - K Kirk Shung
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Qifa Zhou
- NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Pranav M Patel
- School of Medicine, University of California, Irvine, 101 The City Drive South, Orange, CA, 92868, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Rd. Irvine, CA 92617, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697-2700, USA
| |
Collapse
|
32
|
Piao Z, Ma T, Li J, Wiedmann MT, Huang S, Yu M, Kirk Shung K, Zhou Q, Kim CS, Chen Z. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm. APPLIED PHYSICS LETTERS 2015; 107:083701. [PMID: 26339072 PMCID: PMC4552696 DOI: 10.1063/1.4929584] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/14/2015] [Indexed: 05/19/2023]
Abstract
Intravascular photoacoustic imaging at 1.7 μm spectral band has shown promising capabilities for lipid-rich vulnerable atherosclerotic plaque detection. In this work, we report a high speed catheter-based integrated intravascular photoacoustic/intravascular ultrasound (IVPA/IVUS) imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A lipid-mimicking phantom and atherosclerotic rabbit abdominal aorta were imaged at 1 frame per second, which is two orders of magnitude faster than previously reported in IVPA imaging with the same wavelength. Clear photoacoustic signals by the absorption of lipid rich deposition demonstrated the ability of the system for high speed vulnerable atherosclerotic plaques detection.
Collapse
Affiliation(s)
| | - Teng Ma
- Department of Biomedical Engineering, NIH Ultrasonic Transducer Resource Center, University of Southern California , Los Angeles, California 90089, USA
| | - Jiawen Li
- Beckman Laser Institute, Department of Biomedical Engineering, University of California , Irvine, Irvine, California 92612, USA
| | - Maximilian T Wiedmann
- Beckman Laser Institute, Department of Biomedical Engineering, University of California , Irvine, Irvine, California 92612, USA
| | - Shenghai Huang
- Beckman Laser Institute, Department of Biomedical Engineering, University of California , Irvine, Irvine, California 92612, USA
| | - Mingyue Yu
- Department of Biomedical Engineering, NIH Ultrasonic Transducer Resource Center, University of Southern California , Los Angeles, California 90089, USA
| | - K Kirk Shung
- Department of Biomedical Engineering, NIH Ultrasonic Transducer Resource Center, University of Southern California , Los Angeles, California 90089, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, NIH Ultrasonic Transducer Resource Center, University of Southern California , Los Angeles, California 90089, USA
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University , Busan 609-735, South Korea
| | - Zhongping Chen
- Beckman Laser Institute, Department of Biomedical Engineering, University of California , Irvine, Irvine, California 92612, USA
| |
Collapse
|
33
|
Yoon S, Williams J, Kang BJ, Yoon C, Cabrera-Munoz N, Jeong JS, Lee SG, Shung KK, Kim HH. Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging. SENSORS AND ACTUATORS. A, PHYSICAL 2015; 228:16-22. [PMID: 25914443 PMCID: PMC4405812 DOI: 10.1016/j.sna.2015.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A transducer with an angled and focused aperture for intravascular ultrasound imaging has been developed. The acoustic stack for the angled-focused transducer was made of PMN-PT single crystal with one matching layer, one protective coating layer, and a highly damped backing layer. It was then press-focused to a desired focal length and inserted into a thin needle housing with an angled tip. A transducer with an angled and unfocused aperture was also made, following the same fabrication procedure, to compare the performance of the two transducers. The focused and unfocused transducers were tested to measure their center frequencies, bandwidths, and spatial resolutions. Lateral resolution of the angled-focused transducer (AFT) improved more than two times compared to that of the angled-unfocused transducer (AUT). A tissue-mimicking phantom in water and a rabbit aorta tissue sample in rabbit blood were scanned using AFT and AUT. Imaging with AFT offered improved contrast, over imaging with AUT, of the tissue-mimicking phantom and the rabbit aorta tissue sample by 23 dB and 8 dB, respectively. The results show that AFT has strong potential to provide morphological and pathological information of coronary arteries with high resolution and high contrast.
Collapse
Affiliation(s)
- Sangpil Yoon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jay Williams
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Bong Jin Kang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Yoon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Nestor Cabrera-Munoz
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jong Seob Jeong
- Department of Medical Biotechnology, Dongguk University, Seoul 100-715, Republic of Korea
| | - Sang Goo Lee
- IBULE Photonics Co., Ltd., Incheon, Republic of Korea
| | - K. Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Hyung Ham Kim
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Analogic Corporation, Peabody, MA 01960, USA
- Corresponding author at: 8 Centennial Drive, Peabody, MA 01960, USA. Tel.: +1 978 326 4511. (H.H. Kim)
| |
Collapse
|
34
|
Lin JB, Phillips EH, Riggins TE, Sangha GS, Chakraborty S, Lee JY, Lycke RJ, Hernandez CL, Soepriatna AH, Thorne BRH, Yrineo AA, Goergen CJ. Imaging of small animal peripheral artery disease models: recent advancements and translational potential. Int J Mol Sci 2015; 16:11131-77. [PMID: 25993289 PMCID: PMC4463694 DOI: 10.3390/ijms160511131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
Peripheral artery disease (PAD) is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic.
Collapse
Affiliation(s)
- Jenny B Lin
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Evan H Phillips
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Ti'Air E Riggins
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Gurneet S Sangha
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Sreyashi Chakraborty
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Janice Y Lee
- Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Roy J Lycke
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Clarissa L Hernandez
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Bradford R H Thorne
- School of Sciences, Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| | - Alexa A Yrineo
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, Room 3025, West Lafayette, IN 47907, USA.
| |
Collapse
|
35
|
Wang T, McElroy A, Halaney D, Vela D, Fung E, Hossain S, Phipps J, Wang B, Yin B, Feldman MD, Milner TE. Dual-modality fiber-based OCT-TPL imaging system for simultaneous microstructural and molecular analysis of atherosclerotic plaques. BIOMEDICAL OPTICS EXPRESS 2015; 6:1665-78. [PMID: 26137371 PMCID: PMC4467709 DOI: 10.1364/boe.6.001665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 05/25/2023]
Abstract
New optical imaging techniques that provide contrast to study both the anatomy and composition of atherosclerotic plaques can be utilized to better understand the formation, progression and clinical complications of human coronary artery disease. We present a dual-modality fiber-based optical imaging system for simultaneous microstructural and molecular analysis of atherosclerotic plaques that combines optical coherence tomography (OCT) and two-photon luminescence (TPL) imaging. Experimental results from ex vivo human coronary arteries show that OCT and TPL optical contrast in recorded OCT-TPL images is complimentary and in agreement with histological analysis. Molecular composition (e.g., lipid and oxidized-LDL) detected by TPL imaging can be overlaid onto plaque microstructure depicted by OCT, providing new opportunities for atherosclerotic plaque identification and characterization.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Austin McElroy
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - David Halaney
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA ; South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Deborah Vela
- Texas Heart Institute, Houston, Texas 77030, USA
| | - Edmund Fung
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Shafat Hossain
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Jennifer Phipps
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Bingqing Wang
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Biwei Yin
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| | - Marc D Feldman
- Division of Cardiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA ; South Texas Veterans Health Care System, San Antonio, Texas 78229, USA
| | - Thomas E Milner
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station C0800, Austin, Texas 78712, USA
| |
Collapse
|
36
|
Yoon S, Kim MG, Williams JA, Yoon C, Kang BJ, Cabrera-Munoz N, Shung KK, Kim HH. Dual-element needle transducer for intravascular ultrasound imaging. J Med Imaging (Bellingham) 2015; 2:027001. [PMID: 26158118 DOI: 10.1117/1.jmi.2.2.027001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/24/2015] [Indexed: 11/14/2022] Open
Abstract
A dual-element needle transducer for intravascular ultrasound imaging has been developed. A low-frequency element and a high-frequency element were integrated into one device to obtain images which conveyed both low- and high-frequency information from a single scan. The low-frequency element with a center frequency of 48 MHz was fabricated from the single crystal form of lead magnesium niobate-lead titanate solid solution with two matching layers (MLs) and the high frequency element with a center frequency of 152 MHz was fabricated from lithium niobate with one ML. The measured axial and lateral resolutions were 27 and [Formula: see text], respectively, for the low-frequency element, and 14 and [Formula: see text], respectively, for the high-frequency element. The performance of the dual-element needle transducer was validated by imaging a tissue-mimicking phantom with lesion-mimicking area, and ex vivo rabbit aortas in water and rabbit whole blood. The results suggest that a low-frequency element effectively provides depth resolved images of the whole vessel and its adjacent tissue, and a high-frequency element visualizes detailed structure near the surface of the lumen wall in the presence of blood within the lumen. The advantages of a dual-element approach for intravascular imaging are also discussed.
Collapse
Affiliation(s)
- Sangpil Yoon
- University of Southern California , Department of Biomedical Engineering, 1042 Downey Way DRB-130, Los Angeles, California 90089, United States
| | - Min Gon Kim
- University of Southern California , Department of Biomedical Engineering, 1042 Downey Way DRB-130, Los Angeles, California 90089, United States
| | - Jay A Williams
- University of Southern California , Department of Biomedical Engineering, 1042 Downey Way DRB-130, Los Angeles, California 90089, United States
| | - Changhan Yoon
- University of Southern California , Department of Biomedical Engineering, 1042 Downey Way DRB-130, Los Angeles, California 90089, United States
| | - Bong Jin Kang
- University of Southern California , Department of Biomedical Engineering, 1042 Downey Way DRB-130, Los Angeles, California 90089, United States
| | - Nestor Cabrera-Munoz
- University of Southern California , Department of Biomedical Engineering, 1042 Downey Way DRB-130, Los Angeles, California 90089, United States
| | - K Kirk Shung
- University of Southern California , Department of Biomedical Engineering, 1042 Downey Way DRB-130, Los Angeles, California 90089, United States
| | - Hyung Ham Kim
- University of Southern California , Department of Biomedical Engineering, 1042 Downey Way DRB-130, Los Angeles, California 90089, United States ; Analogic Corporation , 8 Centennial Drive, Peabody, Massachusetts 01960, United States
| |
Collapse
|
37
|
Kawasaki M. An integrated backscatter ultrasound technique for the detection of coronary and carotid atherosclerotic lesions. SENSORS 2015; 15:979-94. [PMID: 25574937 PMCID: PMC4327059 DOI: 10.3390/s150100979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/15/2014] [Indexed: 01/06/2023]
Abstract
The instability of carotid and coronary plaques has been reported to be associated with acute coronary syndrome, strokes and other cerebrovascular events. Therefore, recognition of the tissue characteristics of carotid and coronary plaques is important to understand and prevent coronary and cerebral artery disease. Recently, an ultrasound integrated backscatter (IB) technique has been developed. The ultrasound IB power ratio is a function of the difference in acoustic characteristic impedance between the medium and target tissue, and the acoustic characteristic impedance is determined by the density of tissue multiplied by the speed of sound. This concept allows for tissue characterization of carotid and coronary plaques for risk stratification of patients with coronary and cerebral artery disease. Two- and three-dimensional IB color-coded maps for the evaluation of tissue components consist of four major components: fibrous, dense fibrosis, lipid pool and calcification. Although several ultrasound techniques using special mathematical algorithms have been reported, a growing body of literature has shown the reliability and usefulness of the IB technique for the tissue characterization of carotid and coronary plaques. This review summarizes concepts, experimental procedures, image reliability and the application of the IB technique. Furthermore, the IB technique is compared with other techniques.
Collapse
Affiliation(s)
- Masanori Kawasaki
- Department of Cardiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
38
|
Zou Z, Zhou L, Li X, Chen J. Channel-spacing tunable silicon comb filter using two linearly chirped Bragg gratings. OPTICS EXPRESS 2014; 22:19513-19522. [PMID: 25321034 DOI: 10.1364/oe.22.019513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We propose a novel silicon-based comb filter with tunable channel spacing using a Michelson interferometer consisting of a pair of apodized linearly chirped Bragg gratings (ALC-BGs). The channel spacing of the proposed comb filter can be continuously tuned with a large tuning range by changing the effective refractive index of one of the ALC-BGs through the thermo-optic effect. Our numerical calculation shows that the channel spacing can be continuously tuned form 8.21 nm to 0.19 nm with an out-of-band rejection ratio of greater than 30 dB.
Collapse
|
39
|
Li J, Ma T, Jing J, Zhang J, Patel PM, Kirk Shung K, Zhou Q, Chen Z. Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:100502. [PMID: 24145701 PMCID: PMC3801153 DOI: 10.1117/1.jbo.18.10.100502] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/05/2013] [Accepted: 09/16/2013] [Indexed: 05/11/2023]
Abstract
We have developed a novel miniature integrated optical coherence tomography (OCT)-intravascular ultrasound (IVUS) probe, with a 1.5-mm-long rigid part and 0.9-mm outer diameter, for real-time intracoronary imaging of atherosclerotic plaques and guiding of interventional procedures. By placing the OCT ball lens and IVUS transducer back-to-back at the same axial position, this probe can provide automatically coregistered, coaxial OCT-IVUS imaging. To demonstrate its real-time capability, three-dimensional OCT-IVUS imaging of a pig's coronary artery displaying in polar coordinates, as well as images of three major types of atherosclerotic plaques in human cadaver coronary segments, were obtained using this probe and our upgraded system. Histology validation is also presented.
Collapse
Affiliation(s)
- Jiawen Li
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California 92612
- University of California, Irvine, Beckman Laser Institute, Irvine, California 92612
- University of California, Irvine, The Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California 92617
| | - Teng Ma
- University of Southern California, NIH Ultrasonic Transducer Resource Center, Los Angeles, California 90089
| | - Joseph Jing
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California 92612
- University of California, Irvine, Beckman Laser Institute, Irvine, California 92612
| | - Jun Zhang
- University of California, Irvine, Beckman Laser Institute, Irvine, California 92612
| | - Pranav M. Patel
- University of California, Irvine, Division of Cardiology, Irvine, California 92868
- University of California, Irvine, The Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California 92617
| | - K. Kirk Shung
- University of Southern California, NIH Ultrasonic Transducer Resource Center, Los Angeles, California 90089
| | - Qifa Zhou
- University of Southern California, NIH Ultrasonic Transducer Resource Center, Los Angeles, California 90089
| | - Zhongping Chen
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California 92612
- University of California, Irvine, Beckman Laser Institute, Irvine, California 92612
- University of California, Irvine, The Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California 92617
| |
Collapse
|