1
|
Ping A, Haque R, Li NC, Eskandari R, Diop M. Minimum spectral resolution for continuous-wave hyperspectral near-infrared tissue spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:047002. [PMID: 40276012 PMCID: PMC12018911 DOI: 10.1117/1.jbo.30.4.047002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025]
Abstract
Significance Continuous-wave hyperspectral near-infrared spectroscopy (h-NIRS) is a reliable and cost-effective technique for noninvasive monitoring of tissue blood content and oxygenation at the point-of-care; however, most h-NIRS devices are based on expensive custom-built spectrometers. For widespread adoption, low-cost, miniature, off-the-shelf spectrometers are needed. To guide the development of such spectrometers, a standard for spectral resolution must first be defined. Aim We aim to identify the minimum spectral resolution needed for h-NIRS devices to accurately measure oxy- and deoxy-hemoglobin (HbO and Hb) concentrations in tissue. Approach h-NIRS measurements were acquired from fully oxygenated and deoxygenated blood-lipid phantoms at 13 spectral resolutions. Data for other oxygenation levels were simulated using NIRFAST. HbO and Hb concentrations were estimated at each resolution and compared with the ground truth hemoglobin concentration. Results The concentration of Hb was estimated with high accuracy for resolutions up to 10 nm, whereas HbO estimates were more variable. For both chromophores, the accuracy of the estimation gradually decreased with resolutions beyond 10 nm. Conclusions Spectral resolutions up to 10 nm can be used for h-NIRS without compromising the accuracy of estimating tissue blood content and oxygenation.
Collapse
Affiliation(s)
- Ann Ping
- University of Toronto, Department of Mechanical and Industrial Engineering, Toronto, Ontario, Canada
| | - Redwan Haque
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Natalie C. Li
- Western University, School of Biomedical Engineering, London, Ontario, Canada
| | - Rasa Eskandari
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Imaging Program, Lawson Research Institute, London, Ontario, Canada
| | - Mamadou Diop
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Western University, School of Biomedical Engineering, London, Ontario, Canada
- Imaging Program, Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
2
|
Leadley G, Cooper RJ, Austin T, Hebden JC, Bale G. Investigating the effect of limited spectral information on NIRS-derived changes in hemoglobin and cytochrome-c-oxidase concentration with a diffusion-based model. BIOMEDICAL OPTICS EXPRESS 2024; 15:5912-5931. [PMID: 39421769 PMCID: PMC11482185 DOI: 10.1364/boe.531775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024]
Abstract
This paper investigates the theoretical capability of near-infrared spectroscopy (NIRS) systems to accurately measure changes in the oxidation state of cerebral cytochrome-c-oxidase (CCO) alongside the hemoglobins, for a deeper understanding of NIRS limitations. Concentration changes of oxy and deoxyhemoglobin (HbO and HbR) indicate the oxygen status of blood vessels and correlate with several other physiological parameters across different pathologies. The oxidation state of CCO indicates cellular energy usage efficiency through oxidative metabolism, potentially serving as a biomarker for brain and other tissue disorders. This study employs an analytical model based on the diffusion equation and statistical analyses to explore the dependency of estimated concentration changes on various systematic parameters, such as choice of wavelengths, spectral bandwidth, and uncertainties in extinction coefficient (ε) and differential pathlength factor (DPF). When there is a 10% uncertainty in DPF and ε, errors were found to be highly dependent on the number of discrete wavelengths, but not on their bandwidth if appropriate considerations are taken to account for it.
Collapse
Affiliation(s)
- Georgina Leadley
- Department of Paediatrics, University of Cambridge, UK
- Department of Engineering, University of Cambridge, UK
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Robert J. Cooper
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, UK
| | - Jeremy C. Hebden
- Department of Medical Physics and Biomedical Engineering, University College London, UK
| | - Gemma Bale
- Department of Engineering, University of Cambridge, UK
- Department of Physics, University of Cambridge, UK
| |
Collapse
|
3
|
Williams T, Lange F, Smith KJ, Tachtsidis I, Chataway J. Investigating cortical hypoxia in multiple sclerosis via time-domain near-infrared spectroscopy. Ann Clin Transl Neurol 2024; 11:2372-2381. [PMID: 39037277 PMCID: PMC11537135 DOI: 10.1002/acn3.52150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
OBJECTIVES Hypoperfusion and tissue hypoxia have been implicated as contributory mechanisms in the neuropathology of multiple sclerosis (MS). Our objective has been to study cortical oxygenation in vivo in patients with MS and age-matched controls. METHODS A custom, multiwavelength time-domain near-infrared spectroscopy system was developed for assessing tissue hypoxia from the prefrontal cortex. A cross-sectional case-control study was undertaken assessing patients with secondary progressive MS (SPMS) and age-matched controls. Co-registered magnetic resonance imaging was used to verify the location from which near-infrared spectroscopy data were obtained through Monte Carlo simulations of photon propagation. Additional clinical assessments of MS disease severity were carried out by trained neurologists. Linear mixed effect models were used to compare cortical oxygenation between cases and controls, and against measures of MS severity. RESULTS Thirty-three patients with secondary progressive MS (median expanded disability status scale 6 [IQR: 5-6.5]; median age 53.0 [IQR: 49-58]) and 20 age-matched controls were recruited. Modeling of photon propagation confirmed spectroscopy data were obtained from the prefrontal cortex. Patients with SPMS had significantly lower cortical hemoglobin oxygenation compared with controls (-6.0% [95% CI: -10.0 to -1.9], P = 0.004). There were no significant associations between cortical oxygenation and MS severity. INTERPRETATION Using an advanced, multiwavelength time-domain near-infrared spectroscopy system, we demonstrate that patients with SPMS have lower cortical oxygenation compared with controls.
Collapse
Affiliation(s)
- Thomas Williams
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Frédéric Lange
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Kenneth J. Smith
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Jeremy Chataway
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
4
|
Leadley G, Austin T, Bale G. Review of measurements and imaging of cytochrome-c-oxidase in humans using near-infrared spectroscopy: an update. BIOMEDICAL OPTICS EXPRESS 2024; 15:162-184. [PMID: 38223181 PMCID: PMC10783912 DOI: 10.1364/boe.501915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024]
Abstract
This review examines advancements in the measurement and imaging of oxidized cytochrome-c-oxidase (oxCCO) using near-infrared spectroscopy (NIRS) in humans since 2016. A total of 34 published papers were identified, with a focus on both adult and neonate populations. The NIRS-derived oxCCO signal has been demonstrated to correlate with physiological parameters and hemodynamics. New instrumentation, such as systems that allow the imaging of changes of oxCCO with diffuse optical tomography or combine the oxCCO measurement with diffuse correlation spectroscopy measures of blood flow, have advanced the field in the past decade. However, variability in its response across different populations and paradigms and lack of standardization limit its potential as a reliable and valuable indicator of brain health. Future studies should address these issues to fulfill the vision of oxCCO as a clinical biomarker.
Collapse
Affiliation(s)
- Georgina Leadley
- Department of Paediatrics, University of Cambridge, UK
- Department of Engineering, University of Cambridge, UK
- Department of Medical Physics and Biomedical Engineering, UCL, UK
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, UK
| | - Gemma Bale
- Department of Engineering, University of Cambridge, UK
- Department of Physics, University of Cambridge, UK
| |
Collapse
|
5
|
Li NC, Ioussoufovitch S, Diop M. HyperTRCSS: A hyperspectral time-resolved compressive sensing spectrometer for depth-sensitive monitoring of cytochrome-c-oxidase and blood oxygenation. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:015002. [PMID: 38269084 PMCID: PMC10807872 DOI: 10.1117/1.jbo.29.1.015002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Significance Hyperspectral time-resolved (TR) near-infrared spectroscopy offers the potential to monitor cytochrome-c-oxidase (oxCCO) and blood oxygenation in the adult brain with minimal scalp/skull contamination. We introduce a hyperspectral TR spectrometer that uses compressive sensing to minimize acquisition time without compromising spectral range or resolution and demonstrate oxCCO and blood oxygenation monitoring in deep tissue. Aim Develop a hyperspectral TR compressive sensing spectrometer and use it to monitor oxCCO and blood oxygenation in deep tissue. Approach Homogeneous tissue-mimicking phantom experiments were conducted to confirm the spectrometer's sensitivity to oxCCO and blood oxygenation. Two-layer phantoms were used to evaluate the spectrometer's sensitivity to oxCCO and blood oxygenation in the bottom layer through a 10 mm thick static top layer. Results The spectrometer was sensitive to oxCCO and blood oxygenation changes in the bottom layer of the two-layer phantoms, as confirmed by concomitant measurements acquired directly from the bottom layer. Measures of oxCCO and blood oxygenation by the spectrometer were highly correlated with "gold standard" measures in the homogeneous and two-layer phantom experiments. Conclusions The results show that the hyperspectral TR compressive sensing spectrometer is sensitive to changes in oxCCO and blood oxygenation in deep tissue through a thick static top layer.
Collapse
Affiliation(s)
- Natalie C. Li
- Western University, School of Biomedical Engineering, Faculty of Engineering, London, Ontario, Canada
| | - Seva Ioussoufovitch
- Western University, School of Biomedical Engineering, Faculty of Engineering, London, Ontario, Canada
| | - Mamadou Diop
- Western University, School of Biomedical Engineering, Faculty of Engineering, London, Ontario, Canada
- Western University, Schulich School of Medicine and Dentistry, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| |
Collapse
|
6
|
Peng K, Karunakaran KD, Green S, Borsook D. Machines, mathematics, and modules: the potential to provide real-time metrics for pain under anesthesia. NEUROPHOTONICS 2024; 11:010701. [PMID: 38389718 PMCID: PMC10883389 DOI: 10.1117/1.nph.11.1.010701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
The brain-based assessments under anesthesia have provided the ability to evaluate pain/nociception during surgery and the potential to prevent long-term evolution of chronic pain. Prior studies have shown that the functional near-infrared spectroscopy (fNIRS)-measured changes in cortical regions such as the primary somatosensory and the polar frontal cortices show consistent response to evoked and ongoing pain in awake, sedated, and anesthetized patients. We take this basic approach and integrate it into a potential framework that could provide real-time measures of pain/nociception during the peri-surgical period. This application could have significant implications for providing analgesia during surgery, a practice that currently lacks quantitative evidence to guide patient tailored pain management. Through a simple readout of "pain" or "no pain," the proposed system could diminish or eliminate levels of intraoperative, early post-operative, and potentially, the transition to chronic post-surgical pain. The system, when validated, could also be applied to measures of analgesic efficacy in the clinic.
Collapse
Affiliation(s)
- Ke Peng
- University of Manitoba, Department of Electrical and Computer Engineering, Price Faculty of Engineering, Winnipeg, Manitoba, Canada
| | - Keerthana Deepti Karunakaran
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
| | - Stephen Green
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Boston, Massachusetts, United States
| | - David Borsook
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Caredda C, Van Reeth E, Mahieu-Williame L, Sablong R, Sdika M, Schneider FC, Picart T, Guyotat J, Montcel B. Intraoperative identification of functional brain areas with RGB imaging using statistical parametric mapping: Simulation and clinical studies. Neuroimage 2023; 278:120286. [PMID: 37487945 DOI: 10.1016/j.neuroimage.2023.120286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023] Open
Abstract
Complementary technique to preoperative fMRI and electrical brain stimulation (EBS) for glioma resection could improve dramatically the surgical procedure and patient care. Intraoperative RGB optical imaging is a technique for localizing functional areas of the human cerebral cortex that can be used during neurosurgical procedures. However, it still lacks robustness to be used with neurosurgical microscopes as a clinical standard. In particular, a robust quantification of biomarkers of brain functionality is needed to assist neurosurgeons. We propose a methodology to evaluate and optimize intraoperative identification of brain functional areas by RGB imaging. This consist in a numerical 3D brain model based on Monte Carlo simulations to evaluate intraoperative optical setups for identifying functional brain areas. We also adapted fMRI Statistical Parametric Mapping technique to identify functional brain areas in RGB videos acquired for 12 patients. Simulation and experimental results were consistent and showed that the intraoperative identification of functional brain areas is possible with RGB imaging using deoxygenated hemoglobin contrast. Optical functional identifications were consistent with those provided by EBS and preoperative fMRI. We also demonstrated that a halogen lighting may be particularity adapted for functional optical imaging. We showed that an RGB camera combined with a quantitative modeling of brain hemodynamics biomarkers can evaluate in a robust way the functional areas during neurosurgery and serve as a tool of choice to complement EBS and fMRI.
Collapse
Affiliation(s)
- Charly Caredda
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon, France.
| | - Eric Van Reeth
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon, France
| | - Laurent Mahieu-Williame
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon, France
| | - Raphaël Sablong
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon, France
| | - Michaël Sdika
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon, France
| | - Fabien C Schneider
- Service de Radiologie, Centre Hospitalier Universitaire de Saint Etienne, TAPE EA7423, Université de Lyon, UJM Saint Etienne, F42023, France
| | - Thiébaud Picart
- Service de Neurochirurgie D, Hospices Civils de Lyon, Bron, France
| | - Jacques Guyotat
- Service de Neurochirurgie D, Hospices Civils de Lyon, Bron, France
| | - Bruno Montcel
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F69100, Lyon, France.
| |
Collapse
|
8
|
Sudakou A, Wabnitz H, Liemert A, Wolf M, Liebert A. Two-layered blood-lipid phantom and method to determine absorption and oxygenation employing changes in moments of DTOFs. BIOMEDICAL OPTICS EXPRESS 2023; 14:3506-3531. [PMID: 37497481 PMCID: PMC10368065 DOI: 10.1364/boe.492168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 07/28/2023]
Abstract
Near-infrared spectroscopy (NIRS) is an established technique for measuring tissue oxygen saturation (StO2), which is of high clinical value. For tissues that have layered structures, it is challenging but clinically relevant to obtain StO2 of the different layers, e.g. brain and scalp. For this aim, we present a new method of data analysis for time-domain NIRS (TD-NIRS) and a new two-layered blood-lipid phantom. The new analysis method enables accurate determination of even large changes of the absorption coefficient (Δµa) in multiple layers. By adding Δµa to the baseline µa, this method provides absolute µa and hence StO2 in multiple layers. The method utilizes (i) changes in statistical moments of the distributions of times of flight of photons (DTOFs), (ii) an analytical solution of the diffusion equation for an N-layered medium, (iii) and the Levenberg-Marquardt algorithm (LMA) to determine Δµa in multiple layers from the changes in moments. The method is suitable for NIRS tissue oximetry (relying on µa) as well as functional NIRS (fNIRS) applications (relying on Δµa). Experiments were conducted on a new phantom, which enabled us to simulate dynamic StO2 changes in two layers for the first time. Two separate compartments, which mimic superficial and deep layers, hold blood-lipid mixtures that can be deoxygenated (using yeast) and oxygenated (by bubbling oxygen) independently. Simultaneous NIRS measurements can be performed on the two-layered medium (variable superficial layer thickness, L), the deep (homogeneous), and/or the superficial (homogeneous). In two experiments involving ink, we increased the nominal µa in one of two compartments from 0.05 to 0.25 cm-1, L set to 14.5 mm. In three experiments involving blood (L set to 12, 15, or 17 mm), we used a protocol consisting of six deoxygenation cycles. A state-of-the-art multi-wavelength TD-NIRS system measured simultaneously on the two-layered medium, as well as on the deep compartment for a reference. The new method accurately determined µa (and hence StO2) in both compartments. The method is a significant progress in overcoming the contamination from the superficial layer, which is beneficial for NIRS and fNIRS applications, and may improve the determination of StO2 in the brain from measurements on the head. The advanced phantom may assist in the ongoing effort towards more realistic standardized performance tests in NIRS tissue oximetry. Data and MATLAB codes used in this study were made publicly available.
Collapse
Affiliation(s)
- Aleh Sudakou
- Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - André Liemert
- Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm, Germany
| | - Martin Wolf
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Adam Liebert
- Nałęcz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Ko TS, Catennacio E, Shin SS, Stern J, Massey SL, Kilbaugh TJ, Hwang M. Advanced Neuromonitoring Modalities on the Horizon: Detection and Management of Acute Brain Injury in Children. Neurocrit Care 2023; 38:791-811. [PMID: 36949362 PMCID: PMC10241718 DOI: 10.1007/s12028-023-01690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/31/2023] [Indexed: 03/24/2023]
Abstract
Timely detection and monitoring of acute brain injury in children is essential to mitigate causes of injury and prevent secondary insults. Increasing survival in critically ill children has emphasized the importance of neuroprotective management strategies for long-term quality of life. In emergent and critical care settings, traditional neuroimaging modalities, such as computed tomography and magnetic resonance imaging (MRI), remain frontline diagnostic techniques to detect acute brain injury. Although detection of structural and anatomical abnormalities remains crucial, advanced MRI sequences assessing functional alterations in cerebral physiology provide unique diagnostic utility. Head ultrasound has emerged as a portable neuroimaging modality for point-of-care diagnosis via assessments of anatomical and perfusion abnormalities. Application of electroencephalography and near-infrared spectroscopy provides the opportunity for real-time detection and goal-directed management of neurological abnormalities at the bedside. In this review, we describe recent technological advancements in these neurodiagnostic modalities and elaborate on their current and potential utility in the detection and management of acute brain injury.
Collapse
Affiliation(s)
- Tiffany S Ko
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, USA.
| | - Eva Catennacio
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Samuel S Shin
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Joseph Stern
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA
| | - Shavonne L Massey
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
10
|
Cohen DJF, Li NC, Ioussoufovitch S, Diop M. Fast estimation of adult cerebral blood content and oxygenation with hyperspectral time-resolved near-infrared spectroscopy. Front Neurosci 2023; 17:1020151. [PMID: 36875650 PMCID: PMC9978211 DOI: 10.3389/fnins.2023.1020151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Near-infrared spectroscopy (NIRS) can measure tissue blood content and oxygenation; however, its use for adult neuromonitoring is challenging due to significant contamination from their thick extracerebral layers (ECL; primarily scalp and skull). This report presents a fast method for accurate estimation of adult cerebral blood content and oxygenation from hyperspectral time resolved NIRS (trNIRS) data. A two-phase fitting method, based on a two-layer head model (ECL and brain), was developed. Phase 1 uses spectral constraints to accurately estimate the baseline blood content and oxygenation in both layers, which are then used by Phase 2 to correct for the ECL contamination of the late-arriving photons. The method was validated with in silico data from Monte-Carlo simulations of hyperspectral trNIRS in a realistic model of the adult head obtained from a high-resolution MRI. Phase 1 recovered cerebral blood oxygenation and total hemoglobin with an accuracy of 2.7 ± 2.5 and 2.8 ± 1.8%, respectively, with unknown ECL thickness, and 1.5 ± 1.4 and 1.7 ± 1.1% when the ECL thickness was known. Phase 2 recovered these parameters with an accuracy of 1.5 ± 1.5 and 3.1 ± 0.9%, respectively. Future work will include further validation in tissue-mimicking phantoms with various top layer thicknesses and in a pig model of the adult head before human applications.
Collapse
Affiliation(s)
| | - Natalie C Li
- School of Biomedical Engineering, Western University, London, ON, Canada
| | | | - Mamadou Diop
- Department of Medical Biophysics, Western University, London, ON, Canada.,School of Biomedical Engineering, Western University, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
11
|
Prasuhn J, Kunert L, Brüggemann N. Neuroimaging Methods to Map In Vivo Changes of OXPHOS and Oxidative Stress in Neurodegenerative Disorders. Int J Mol Sci 2022; 23:ijms23137263. [PMID: 35806267 PMCID: PMC9266616 DOI: 10.3390/ijms23137263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is a pathophysiological hallmark of most neurodegenerative diseases. Several clinical trials targeting mitochondrial dysfunction have been performed with conflicting results. Reliable biomarkers of mitochondrial dysfunction in vivo are thus needed to optimize future clinical trial designs. This narrative review highlights various neuroimaging methods to probe mitochondrial dysfunction. We provide a general overview of the current biological understanding of mitochondrial dysfunction in degenerative brain disorders and how distinct neuroimaging methods can be employed to map disease-related changes. The reviewed methodological spectrum includes positron emission tomography, magnetic resonance, magnetic resonance spectroscopy, and near-infrared spectroscopy imaging, and how these methods can be applied to study alterations in oxidative phosphorylation and oxidative stress. We highlight the advantages and shortcomings of the different neuroimaging methods and discuss the necessary steps to use these for future research. This review stresses the importance of neuroimaging methods to gain deepened insights into mitochondrial dysfunction in vivo, its role as a critical disease mechanism in neurodegenerative diseases, the applicability for patient stratification in interventional trials, and the quantification of individual treatment responses. The in vivo assessment of mitochondrial dysfunction is a crucial prerequisite for providing individualized treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (L.K.)
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Liesa Kunert
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (L.K.)
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, 23538 Lübeck, Germany; (J.P.); (L.K.)
- Department of Neurology, University Medical Center Schleswig Holstein, Campus Lübeck, 23538 Lübeck, Germany
- Center for Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Correspondence: ; Tel.: +49-451-500-43420; Fax: +49-451-500-43424
| |
Collapse
|
12
|
Lanka P, Yang L, Orive-Miguel D, Veesa JD, Tagliabue S, Sudakou A, Samaei S, Forcione M, Kovacsova Z, Behera A, Gladytz T, Grosenick D, Hervé L, Durduran T, Bejm K, Morawiec M, Kacprzak M, Sawosz P, Gerega A, Liebert A, Belli A, Tachtsidis I, Lange F, Bale G, Baratelli L, Gioux S, Alexander K, Wolf M, Sekar SKV, Zanoletti M, Pirovano I, Lacerenza M, Qiu L, Ferocino E, Maffeis G, Amendola C, Colombo L, Frabasile L, Levoni P, Buttafava M, Renna M, Di Sieno L, Re R, Farina A, Spinelli L, Dalla Mora A, Contini D, Taroni P, Tosi A, Torricelli A, Dehghani H, Wabnitz H, Pifferi A. Multi-laboratory performance assessment of diffuse optics instruments: the BitMap exercise. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210373SSR. [PMID: 35701869 PMCID: PMC9199954 DOI: 10.1117/1.jbo.27.7.074716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/05/2022] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. AIM The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. APPROACH The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). RESULTS This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5 % over 1 h, and day-to-day reproducibility of <3 % . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. CONCLUSIONS This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset-available soon in an open data repository-can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.
Collapse
Affiliation(s)
- Pranav Lanka
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Address all correspondence to Pranav Lanka, ; Heidrun Wabnitz,
| | - Lin Yang
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | | | - Joshua Deepak Veesa
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | | | - Aleh Sudakou
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Saeed Samaei
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Mario Forcione
- University Hospitals Birmingham, National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Birmingham, United Kingdom
| | - Zuzana Kovacsova
- UCL, Department of Medical Physics & Biomedical Engineering, London, United Kingdom
| | - Anurag Behera
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Thomas Gladytz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Dirk Grosenick
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Lionel Hervé
- Université Grenoble Alpes, CEA, LETI, DTBS, Grenoble, France
| | - Turgut Durduran
- The Institute of Photonic Sciences (ICFO), Castelldefels, Spain
| | - Karolina Bejm
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Magdalena Morawiec
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Michał Kacprzak
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Antonio Belli
- University Hospitals Birmingham, National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Birmingham, United Kingdom
| | - Ilias Tachtsidis
- UCL, Department of Medical Physics & Biomedical Engineering, London, United Kingdom
| | - Frédéric Lange
- UCL, Department of Medical Physics & Biomedical Engineering, London, United Kingdom
| | - Gemma Bale
- University of Cambridge, Department of Engineering and Department of Physics, Cambridge, United Kingdom
| | - Luca Baratelli
- University of Strasbourg, ICube Laboratory, Strasbourg, France
| | - Sylvain Gioux
- University of Strasbourg, ICube Laboratory, Strasbourg, France
| | - Kalyanov Alexander
- University Hospital Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
| | - Martin Wolf
- University Hospital Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
| | | | - Marta Zanoletti
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Ileana Pirovano
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Lina Qiu
- South China Normal University, School of Software, Guangzhou, China
| | | | - Giulia Maffeis
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Lorenzo Colombo
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Pietro Levoni
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Marco Renna
- Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | - Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Rebecca Re
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy
| | - Andrea Farina
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy
| | - Lorenzo Spinelli
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy
| | | | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Paola Taroni
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Alberto Tosi
- Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | | | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
- Address all correspondence to Pranav Lanka, ; Heidrun Wabnitz,
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| |
Collapse
|
13
|
Buot A, Brownhill K, Lange F. Upper Trapezius Muscle Tonicity, Assessed by Palpation, Relates to Change in Tissue Oxygenation and Structure as Measured by Time-Domain Near Infrared Spectroscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:417-421. [PMID: 36527672 DOI: 10.1007/978-3-031-14190-4_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Palpation is a diagnostic tool widely used by manual therapists despite its disputed reliability and validity. Previous studies have usually focused on the detection of myofascial trigger points (MTrPs), i.e., the points within muscles thought to have undergone molecular composition, oxygenation and structural changes, altering their tonicity. Time-domain near-infrared spectroscopy (TD-NIRS) could provide new insights into soft tissue oxygenation and structure, in order to objectively assess the validity and reliability of palpation. This pilot study aims at (1) assessing the ability of TD-NIRS to detect a difference between palpably normal and hypertonic upper trapezius (UT) muscles, and (2) to estimate the reproducibility of the TD-NIRS measurement on UT muscles. TD-NIRS measurements were performed on 4 points of the UT muscles in 18 healthy participants (10F, mean age: 27.6 years), after a physical examination by a student osteopath to locate these points and identify the most and least hypertonic. From TD-NIRS, the most hypertonic points had a higher concentration in deoxy- ([HHb]) (0.887 ± 0.253 μM, p < 0.001) and total haemoglobin ([HbT]) (1.447 ± 0.772 μM, p < 0.001), a lower tissue oxygen saturation (StO2) (-0.575 ± 0.286%, p < 0.001), and a greater scattering amplitude factor (AF) (0.2238 ± 0.1343 cm-1, p = 0.001) than the least hypertonic points. Moreover, the intraclass correlation coefficient one-way random-effects model (ICC (1,1)) calculated for each TD-NIRS parameter and for each point revealed an excellent reliability of the measurement (Mean ± SD, 0.9253 ± 0.0678). These initial results, showing that changes in TD-NIRS parameters correlate with changes in muscle tonicity as assessed by palpation, are encouraging and show that TD-NIRS could help to further assess the validity of palpation as a diagnostic tool in manual therapy.
Collapse
|
14
|
Ban HY, Barrett GM, Borisevich A, Chaturvedi A, Dahle JL, Dehghani H, Dubois J, Field RM, Gopalakrishnan V, Gundran A, Henninger M, Ho WC, Hughes HD, Jin R, Kates-Harbeck J, Landy T, Leggiero M, Lerner G, Aghajan ZM, Moon M, Olvera I, Park S, Patel MJ, Perdue KL, Siepser B, Sorgenfrei S, Sun N, Szczepanski V, Zhang M, Zhu Z. Kernel Flow: a high channel count scalable time-domain functional near-infrared spectroscopy system. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210278SSR. [PMID: 35043610 PMCID: PMC8765296 DOI: 10.1117/1.jbo.27.7.074710] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 05/26/2023]
Abstract
SIGNIFICANCE Time-domain functional near-infrared spectroscopy (TD-fNIRS) has been considered as the gold standard of noninvasive optical brain imaging devices. However, due to the high cost, complexity, and large form factor, it has not been as widely adopted as continuous wave NIRS systems. AIM Kernel Flow is a TD-fNIRS system that has been designed to break through these limitations by maintaining the performance of a research grade TD-fNIRS system while integrating all of the components into a small modular device. APPROACH The Kernel Flow modules are built around miniaturized laser drivers, custom integrated circuits, and specialized detectors. The modules can be assembled into a system with dense channel coverage over the entire head. RESULTS We show performance similar to benchtop systems with our miniaturized device as characterized by standardized tissue and optical phantom protocols for TD-fNIRS and human neuroscience results. CONCLUSIONS The miniaturized design of the Kernel Flow system allows for broader applications of TD-fNIRS.
Collapse
Affiliation(s)
- Han Y. Ban
- Kernel, Los Angeles, California, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | - Rong Jin
- Kernel, Los Angeles, California, United States
| | | | - Thanh Landy
- Kernel, Los Angeles, California, United States
| | | | | | | | | | - Isai Olvera
- Kernel, Los Angeles, California, United States
| | | | | | | | | | | | - Nathan Sun
- Kernel, Los Angeles, California, United States
| | | | - Mary Zhang
- Kernel, Los Angeles, California, United States
| | - Zhenye Zhu
- Kernel, Los Angeles, California, United States
| |
Collapse
|
15
|
Verma V, Lange F, Bainbridge A, Harvey-Jones K, Robertson NJ, Tachtsidis I, Mitra S. Brain temperature monitoring in newborn infants: Current methodologies and prospects. Front Pediatr 2022; 10:1008539. [PMID: 36268041 PMCID: PMC9577084 DOI: 10.3389/fped.2022.1008539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/15/2022] [Indexed: 02/02/2023] Open
Abstract
Brain tissue temperature is a dynamic balance between heat generation from metabolism, passive loss of energy to the environment, and thermoregulatory processes such as perfusion. Perinatal brain injuries, particularly neonatal encephalopathy, and seizures, have a significant impact on the metabolic and haemodynamic state of the developing brain, and thereby likely induce changes in brain temperature. In healthy newborn brains, brain temperature is higher than the core temperature. Magnetic resonance spectroscopy (MRS) has been used as a viable, non-invasive tool to measure temperature in the newborn brain with a reported accuracy of up to 0.2 degrees Celcius and a precision of 0.3 degrees Celcius. This measurement is based on the separation of chemical shifts between the temperature-sensitive water peaks and temperature-insensitive singlet metabolite peaks. MRS thermometry requires transport to an MRI scanner and a lengthy single-point measurement. Optical monitoring, using near infrared spectroscopy (NIRS), offers an alternative which overcomes this limitation in its ability to monitor newborn brain tissue temperature continuously at the cot side in real-time. Near infrared spectroscopy uses linear temperature-dependent changes in water absorption spectra in the near infrared range to estimate the tissue temperature. This review focuses on the currently available methodologies and their viability for accurate measurement, the potential benefits of monitoring newborn brain temperature in the neonatal intensive care unit, and the important challenges that still need to be addressed.
Collapse
Affiliation(s)
- Vinita Verma
- Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Alan Bainbridge
- Medical Physics and Engineering, University College London Hospital, London, United Kingdom
| | - Kelly Harvey-Jones
- Institute for Women's Health, University College London, London, United Kingdom
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
16
|
Hashem M, Wu Y, Dunn JF. Quantification of cytochrome c oxidase and tissue oxygenation using CW-NIRS in a mouse cerebral cortex. BIOMEDICAL OPTICS EXPRESS 2021; 12:7632-7656. [PMID: 35003857 PMCID: PMC8713667 DOI: 10.1364/boe.435532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 05/05/2023]
Abstract
We provide a protocol for measuring the absolute concentration of the oxidized and reduced state of cytochrome c oxidase (CCO) in the cerebral cortex of mice, using broadband continuous-wave NIRS. The algorithm (NIR-AQUA) allows for absolute quantification of CCO and deoxyhemoglobin. Combined with an anoxia pulse, this also allows for quantification of total hemoglobin, and tissue oxygen saturation. CCO in the cortex was 4.9 ± 0.1 μM (mean ± SD, n=6). In normoxia, 84% of CCO was oxidized. We include hypoxia and cyanide validation studies to show CCO can be quantified independently to hemoglobin. This can be applied to study oxidative metabolism in the many rodent models of neurological disease.
Collapse
Affiliation(s)
- Mada Hashem
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1, Canada
- Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1, Canada
| | - Ying Wu
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1, Canada
- Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1, Canada
| | - Jeff F. Dunn
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1, Canada
- Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1, Canada
| |
Collapse
|
17
|
Sudakou A, Lange F, Isler H, Lanka P, Wojtkiewicz S, Sawosz P, Ostojic D, Wolf M, Pifferi A, Tachtsidis I, Liebert A, Gerega A. Time-domain NIRS system based on supercontinuum light source and multi-wavelength detection: validation for tissue oxygenation studies. BIOMEDICAL OPTICS EXPRESS 2021; 12:6629-6650. [PMID: 34745761 PMCID: PMC8548017 DOI: 10.1364/boe.431301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 05/15/2023]
Abstract
We present and validate a multi-wavelength time-domain near-infrared spectroscopy (TD-NIRS) system that avoids switching wavelengths and instead exploits the full capability of a supercontinuum light source by emitting and acquiring signals for the whole chosen range of wavelengths. The system was designed for muscle and brain oxygenation monitoring in a clinical environment. A pulsed supercontinuum laser emits broadband light and each of two detection modules acquires the distributions of times of flight of photons (DTOFs) for 16 spectral channels (used width 12.5 nm / channel), providing a total of 32 DTOFs at up to 3 Hz. Two emitting fibers and two detection fiber bundles allow simultaneous measurements at two positions on the tissue or at two source-detector separations. Three established protocols (BIP, MEDPHOT, and nEUROPt) were used to quantitatively assess the system's performance, including linearity, coupling, accuracy, and depth sensitivity. Measurements were performed on 32 homogeneous phantoms and two inhomogeneous phantoms (solid and liquid). Furthermore, measurements on two blood-lipid phantoms with a varied amount of blood and Intralipid provide the strongest validation for accurate tissue oximetry. The retrieved hemoglobin concentrations and oxygen saturation match well with the reference values that were obtained using a commercially available NIRS system (OxiplexTS) and a blood gas analyzer (ABL90 FLEX), except a discrepancy occurs for the lowest amount of Intralipid. In-vivo measurements on the forearm of three healthy volunteers during arterial (250 mmHg) and venous (60 mmHg) cuff occlusions provide an example of tissue monitoring during the expected hemodynamic changes that follow previously well-described physiologies. All results, including quantitative parameters, can be compared to other systems that report similar tests. Overall, the presented TD-NIRS system has an exemplary performance evaluated with state-of-the-art performance assessment methods.
Collapse
Affiliation(s)
- Aleh Sudakou
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Helene Isler
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pranav Lanka
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | | | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Daniel Ostojic
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Wolf
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| |
Collapse
|
18
|
Tsow F, Kumar A, Hosseini SMH, Bowden A. A low-cost, wearable, do-it-yourself functional near-infrared spectroscopy (DIY-fNIRS) headband. HARDWAREX 2021; 10:e00204. [PMID: 34734152 PMCID: PMC8562714 DOI: 10.1016/j.ohx.2021.e00204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 05/27/2023]
Abstract
Neuromonitoring in naturalistic environments is of increasing interest for a variety of research fields including psychology, economics, and productivity. Among functional neuromonitoring modalities, functional near-infrared spectroscopy (fNIRS) is well regarded for its potential for miniaturization, good spatial and temporal resolutions, and resilience to motion artifacts. Historically, the large size and high cost of fNIRS systems have precluded widespread adoption of the technology. In this article, we describe the first open source, fully integrated wireless fNIRS headband system with a single LED-pair source and four detectors. With ease of operation and comfort in mind, the system is encased in a soft, lightweight cloth and silicone enclosure. Accompanying computer and smartphone data collection software have also been provided, and the hardware has been validated using classic fNIRS tasks. This wear-and-go design can easily be scaled to accommodate a larger number of fNIRS channels and opens the door to easily collecting fNIRS data during routine activities in naturalistic conditions.
Collapse
Affiliation(s)
- Francis Tsow
- Biophotonics Center, Vanderbilt University, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Anupam Kumar
- Biophotonics Center, Vanderbilt University, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - SM Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Audrey Bowden
- Biophotonics Center, Vanderbilt University, Nashville, TN 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| |
Collapse
|
19
|
Giannoni L, Lange F. A hyperspectral imaging system for mapping haemoglobin and cytochrome-c-oxidase concentration changes in the exposed cerebral cortex. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2021; 27:7400411. [PMID: 33716586 PMCID: PMC7116887 DOI: 10.1109/jstqe.2021.3053634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present a novel hyperspectral imaging (HSI) system using visible and near-infrared (NIR) light on the exposed cerebral cortex of animals, to monitor and quantify in vivo changes in the oxygenation of haemoglobin and in cellular metabolism via measurement of the redox states of cytochrome-c-oxidase (CCO). The system, named hNIR, is based on spectral scanning illumination at 11 bands (600, 630, 665, 784, 800, 818, 835, 851, 868, 881 and 894 nm), using a supercontinuum laser coupled with a rotating Pellin-Broca prism. Image reconstruction is performed with the aid of a Monte Carlo framework for photon pathlength estimation and post-processing correction of partial volume effects. The system is validated on liquid optical phantoms mimicking brain tissue haemodynamics and metabolism, and finally applied in vivo on the exposed cortex of mice undergoing alternating oxygenation challenges. The results of the study demonstrate the capacity of hNIR to map and quantify the haemodynamic and metabolic states of the exposed cortex at microvascular levels. This represents (to the best of our knowledge) the first example of simultaneous mapping and quantification of cerebral haemoglobin and CCO in vivo using visible and NIR HSI, which can potentially become a powerful tool for better understanding brain physiology.
Collapse
Affiliation(s)
- Luca Giannoni
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| |
Collapse
|
20
|
The Use of Supercontinuum Laser Sources in Biomedical Diffuse Optics: Unlocking the Power of Multispectral Imaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Optical techniques based on diffuse optics have been around for decades now and are making their way into the day-to-day medical applications. Even though the physics foundations of these techniques have been known for many years, practical implementation of these technique were hindered by technological limitations, mainly from the light sources and/or detection electronics. In the past 20 years, the developments of supercontinuum laser (SCL) enabled to unlock some of these limitations, enabling the development of system and methodologies relevant for medical use, notably in terms of spectral monitoring. In this review, we focus on the use of SCL in biomedical diffuse optics, from instrumentation and methods developments to their use for medical applications. A total of 95 publications were identified, from 1993 to 2021. We discuss the advantages of the SCL to cover a large spectral bandwidth with a high spectral power and fast switching against the disadvantages of cost, bulkiness, and long warm up times. Finally, we summarize the utility of using such light sources in the development and application of diffuse optics in biomedical sciences and clinical applications.
Collapse
|
21
|
Kovacsova Z, Bale G, Mitra S, Lange F, Tachtsidis I. Absolute quantification of cerebral tissue oxygen saturation with multidistance broadband NIRS in newborn brain. BIOMEDICAL OPTICS EXPRESS 2021; 12:907-925. [PMID: 33680549 PMCID: PMC7901317 DOI: 10.1364/boe.412088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 05/23/2023]
Abstract
Tissue oximetry with near-infrared spectroscopy (NIRS) is a technique for the measurement of absolute tissue oxygen saturation (StO2). Offering a real-time and non-invasive assessment of brain oxygenation and haemodynamics, StO2 has potential to be used for the assessment of newborn brain injury. Multiple algorithms have been developed to measure StO2, however, issues with low measurement accuracy or extracranial tissue signal contamination remain. In this work, we present a novel algorithm to recover StO2 in the neonate, broadband multidistance oximetry (BRUNO), based on a measurement of the gradient of attenuation against distance measured with broadband NIRS. The performance of the algorithm was compared to two other published algorithms, broadband fitting (BF) and spatially resolved spectroscopy (SRS). The median error when recovering StO2 in light transport simulations on a neonatal head mesh was 0.4% with BRUNO, 4.2% with BF and 9.5% with SRS. BRUNO was more sensitive to brain tissue oxygenation changes, shown in layered head model simulations. Comparison of algorithm performance during full oxygenation-deoxygenation cycles in a homogeneous dynamic blood phantom showed significant differences in the dynamic range of the algorithms; BRUNO recovered StO2 over 0-100%, BF over 0-90% and SRS over 39-80%. Recovering StO2 from data collected in a neonate treated at the neonatal intensive care showed different baseline values; mean StO2 was 64.9% with BRUNO, 67.2% with BF and 73.2% with SRS. These findings highlight the effect of StO2 algorithm selection on oxygenation recovery; applying BRUNO in the clinical care setting could reveal further insight into complex haemodynamic processes occurring during neonatal brain injury.
Collapse
Affiliation(s)
- Zuzana Kovacsova
- Department of Medical Physics & Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Gemma Bale
- Department of Medical Physics & Biomedical Engineering, University College London, London, WC1E 6BT, UK
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
- Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Subhabrata Mitra
- Institute for Women’s Health, University College London and Neonatal Unit, University College London Hospitals Trust, London, NW1 2BU, UK
| | - Frédéric Lange
- Department of Medical Physics & Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Ilias Tachtsidis
- Department of Medical Physics & Biomedical Engineering, University College London, London, WC1E 6BT, UK
| |
Collapse
|
22
|
Verhaeghe C, Lapage K, Moerman A. Quantitative assessment of cytochrome C oxidase patterns in muscle tissue by the use of near-infrared spectroscopy (NIRS) in healthy volunteers. J Clin Monit Comput 2021; 36:271-278. [PMID: 33459945 DOI: 10.1007/s10877-021-00648-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
Cytochrome C oxidase (CCO) acts as final electron acceptor in the respiratory chain, possibly providing information concerning cellular oxygenation. CCO is a chromophore with a broad absorption peak in the near-infrared spectrum in its reduced state (835 nm). However, this peak overlaps with deoxygenated haemoglobin (HHb; 755 nm) which is present in much higher concentrations. NIRO-300 measures CCO signals, but did not receive FDA approval for this use due to presumed lack of independency of the measured CCO changes. However, there is no proven evidence for this assumption. We hypothesized that the NIRO-300 provides a HHb independent measurement of CCO concentration changes. In this single-center crossover randomized controlled trial in healthy volunteers, subjects were randomized to receive arterial occlusion to the left arm and venous stasis on the right arm (n = 5) or vice versa (n = 5) during 5 min. After a resting period, the second part of the cross over study was performed. We placed the NIRO-300 optodes bilateral at the level of the brachioradial muscle in order to collect NIRS data continuously. Data was analysed using a generalized additive mixed model. HHb and CCO follow a significant different trend over time during the intervention period for both arterial occlusion (F = 20.645, edf = 3.419, p < 0.001) and venous stasis (F = 9.309, edf = 4.931, p < 0.001). Our data indicate that CCO concentration changes were not affected by HHb changes, thereby proving independency.Clinical trial registration: B670201732023 on June 28, 2017.
Collapse
Affiliation(s)
- Carl Verhaeghe
- Department of Anaesthesia, UZ Ghent, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Koen Lapage
- Department of Anaesthesia, ASZ Aalst, Aalst, Belgium
| | - Anneliese Moerman
- Department of Anaesthesia, UZ Ghent, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| |
Collapse
|
23
|
Prasuhn J, Davis RL, Kumar KR. Targeting Mitochondrial Impairment in Parkinson's Disease: Challenges and Opportunities. Front Cell Dev Biol 2021; 8:615461. [PMID: 33469539 PMCID: PMC7813753 DOI: 10.3389/fcell.2020.615461] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The underlying pathophysiology of Parkinson's disease is complex, but mitochondrial dysfunction has an established and prominent role. This is supported by an already large and rapidly growing body of evidence showing that the role of mitochondrial (dys)function is central and multifaceted. However, there are clear gaps in knowledge, including the dilemma of explaining why inherited mitochondriopathies do not usually present with parkinsonian symptoms. Many aspects of mitochondrial function are potential therapeutic targets, including reactive oxygen species production, mitophagy, mitochondrial biogenesis, mitochondrial dynamics and trafficking, mitochondrial metal ion homeostasis, sirtuins, and endoplasmic reticulum links with mitochondria. Potential therapeutic strategies may also incorporate exercise, microRNAs, mitochondrial transplantation, stem cell therapies, and photobiomodulation. Despite multiple studies adopting numerous treatment strategies, clinical trials to date have generally failed to show benefit. To overcome this hurdle, more accurate biomarkers of mitochondrial dysfunction are required to detect subtle beneficial effects. Furthermore, selecting study participants early in the disease course, studying them for suitable durations, and stratifying them according to genetic and neuroimaging findings may increase the likelihood of successful clinical trials. Moreover, treatments involving combined approaches will likely better address the complexity of mitochondrial dysfunction in Parkinson's disease. Therefore, selecting the right patients, at the right time, and using targeted combination treatments, may offer the best chance for development of an effective novel therapy targeting mitochondrial dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, Sydney, NSW, Australia.,Department of Neurogenetics, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
24
|
Harvey-Jones K, Lange F, Tachtsidis I, Robertson NJ, Mitra S. Role of Optical Neuromonitoring in Neonatal Encephalopathy-Current State and Recent Advances. Front Pediatr 2021; 9:653676. [PMID: 33898363 PMCID: PMC8062863 DOI: 10.3389/fped.2021.653676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Neonatal encephalopathy (NE) in term and near-term infants is a significant global health problem; the worldwide burden of disease remains high despite the introduction of therapeutic hypothermia. Assessment of injury severity and effective management in the neonatal intensive care unit (NICU) relies on multiple monitoring modalities from systemic to brain-specific. Current neuromonitoring tools provide information utilized for seizure management, injury stratification, and prognostication, whilst systemic monitoring ensures multi-organ dysfunction is recognized early and supported wherever needed. The neuromonitoring technologies currently used in NE however, have limitations in either their availability during the active treatment window or their reliability to prognosticate and stratify injury confidently in the early period following insult. There is therefore a real need for a neuromonitoring tool that provides cot side, early and continuous monitoring of brain health which can reliably stratify injury severity, monitor response to current and emerging treatments, and prognosticate outcome. The clinical use of near-infrared spectroscopy (NIRS) technology has increased in recent years. Research studies within this population have also increased, alongside the development of both instrumentation and signal processing techniques. Increasing use of commercially available cerebral oximeters in the NICU, and the introduction of advanced optical measurements using broadband NIRS (BNIRS), frequency domain NIRS (FDNIRS), and diffuse correlation spectroscopy (DCS) have widened the scope by allowing the direct monitoring of oxygen metabolism and cerebral blood flow, both key to understanding pathophysiological changes and predicting outcome in NE. This review discusses the role of optical neuromonitoring in NE and why this modality may provide the next significant piece of the puzzle toward understanding the real time state of the injured newborn brain.
Collapse
Affiliation(s)
- Kelly Harvey-Jones
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Nicola J Robertson
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom.,Edinburgh Neuroscience & Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Subhabrata Mitra
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
25
|
Woodward KE, de Jesus P, Esser MJ. Neuroinflammation and Precision Medicine in Pediatric Neurocritical Care: Multi-Modal Monitoring of Immunometabolic Dysfunction. Int J Mol Sci 2020; 21:E9155. [PMID: 33271778 PMCID: PMC7730047 DOI: 10.3390/ijms21239155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/17/2022] Open
Abstract
The understanding of molecular biology in neurocritical care (NCC) is expanding rapidly and recognizing the important contribution of neuroinflammation, specifically changes in immunometabolism, towards pathological disease processes encountered across all illnesses in the NCC. Additionally, the importance of individualized inflammatory responses has been emphasized, acknowledging that not all individuals have the same mechanisms contributing towards their presentation. By understanding cellular processes that drive disease, we can make better personalized therapy decisions to improve patient outcomes. While the understanding of these cellular processes is evolving, the ability to measure such cellular responses at bedside to make acute care decisions is lacking. In this overview, we review cellular mechanisms involved in pathological neuroinflammation with a focus on immunometabolic dysfunction and review non-invasive bedside tools that have the potential to measure indirect and direct markers of shifts in cellular metabolism related to neuroinflammation. These tools include near-infrared spectroscopy, transcranial doppler, elastography, electroencephalography, magnetic resonance imaging and spectroscopy, and cytokine analysis. Additionally, we review the importance of genetic testing in providing information about unique metabolic profiles to guide individualized interpretation of bedside data. Together in tandem, these modalities have the potential to provide real time information and guide more informed treatment decisions.
Collapse
Affiliation(s)
| | | | - Michael J. Esser
- Alberta Children’s Hospital, University of Calgary, Calgary, AB T3B 6A8, Canada; (K.E.W.); (P.d.J.)
| |
Collapse
|
26
|
Di Sieno L, Behera A, Rohilla S, Ferocino E, Contini D, Torricelli A, Krämer B, Koberling F, Pifferi A, Mora AD. Probe-hosted large area silicon photomultiplier and high-throughput timing electronics for enhanced performance time-domain functional near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:6389-6412. [PMID: 33282497 PMCID: PMC7687960 DOI: 10.1364/boe.400868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 05/06/2023]
Abstract
Two main bottlenecks prevent time-domain diffuse optics instruments to reach their maximum performances, namely the limited light harvesting capability of the detection chain and the bounded data throughput of the timing electronics. In this work, for the first time to our knowledge, we overcome both those limitations using a probe-hosted large area silicon photomultiplier detector coupled to high-throughput timing electronics. The system performances were assessed based on international protocols for diffuse optical imagers showing better figures with respect to a state-of-the-art device. As a first step towards applications, proof-of-principle in-vivo brain activation measurements demonstrated superior signal-to-noise ratio as compared to current technologies.
Collapse
Affiliation(s)
- L. Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - A. Behera
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - S. Rohilla
- PicoQuant Innovation GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - E. Ferocino
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - D. Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - A. Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - B. Krämer
- PicoQuant GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - F. Koberling
- PicoQuant GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - A. Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - A. Dalla Mora
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
27
|
Wabnitz H, Contini D, Spinelli L, Torricelli A, Liebert A. Depth-selective data analysis for time-domain fNIRS: moments vs. time windows. BIOMEDICAL OPTICS EXPRESS 2020; 11:4224-4243. [PMID: 32923038 PMCID: PMC7449728 DOI: 10.1364/boe.396585] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 05/10/2023]
Abstract
Time-domain measurements facilitate the elimination of the influence of extracerebral, systemic effects, a key problem in functional near-infrared spectroscopy (fNIRS) of the adult human brain. The analysis of measured time-of-flight distributions of photons often relies on moments or time windows. However, a systematic and quantitative characterization of the performance of these measurands is still lacking. Based on perturbation simulations for small localized absorption changes, we compared spatial sensitivity profiles and depth selectivity for moments (integral, mean time of flight and variance), photon counts in time windows and their ratios for different time windows. The influence of the instrument response function (IRF) was investigated for all measurands and for various source-detector separations. Variance exhibits the highest depth selectivity among the moments. Ratios of photon counts in different late time windows can achieve even higher selectivity. An advantage of moments is their robustness against the shape of the IRF and instrumental drifts.
Collapse
Affiliation(s)
- Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin, Germany
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
28
|
Chen WL, Wagner J, Heugel N, Sugar J, Lee YW, Conant L, Malloy M, Heffernan J, Quirk B, Zinos A, Beardsley SA, Prost R, Whelan HT. Functional Near-Infrared Spectroscopy and Its Clinical Application in the Field of Neuroscience: Advances and Future Directions. Front Neurosci 2020; 14:724. [PMID: 32742257 PMCID: PMC7364176 DOI: 10.3389/fnins.2020.00724] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/17/2020] [Indexed: 01/20/2023] Open
Abstract
Similar to functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS) detects the changes of hemoglobin species inside the brain, but via differences in optical absorption. Within the near-infrared spectrum, light can penetrate biological tissues and be absorbed by chromophores, such as oxyhemoglobin and deoxyhemoglobin. What makes fNIRS more advantageous is its portability and potential for long-term monitoring. This paper reviews the basic mechanisms of fNIRS and its current clinical applications, the limitations toward more widespread clinical usage of fNIRS, and current efforts to improve the temporal and spatial resolution of fNIRS toward robust clinical usage within subjects. Oligochannel fNIRS is adequate for estimating global cerebral function and it has become an important tool in the critical care setting for evaluating cerebral oxygenation and autoregulation in patients with stroke and traumatic brain injury. When it comes to a more sophisticated utilization, spatial and temporal resolution becomes critical. Multichannel NIRS has improved the spatial resolution of fNIRS for brain mapping in certain task modalities, such as language mapping. However, averaging and group analysis are currently required, limiting its clinical use for monitoring and real-time event detection in individual subjects. Advances in signal processing have moved fNIRS toward individual clinical use for detecting certain types of seizures, assessing autonomic function and cortical spreading depression. However, its lack of accuracy and precision has been the major obstacle toward more sophisticated clinical use of fNIRS. The use of high-density whole head optode arrays, precise sensor locations relative to the head, anatomical co-registration, short-distance channels, and multi-dimensional signal processing can be combined to improve the sensitivity of fNIRS and increase its use as a wide-spread clinical tool for the robust assessment of brain function.
Collapse
Affiliation(s)
- Wei-Liang Chen
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Neurology, Children's Hospital of Wisconsin, Milwaukee, WI, United States.,School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Wagner
- Department of Biochemical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nicholas Heugel
- Department of Biochemical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey Sugar
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yu-Wen Lee
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Neurology, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Lisa Conant
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marsha Malloy
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Neurology, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Joseph Heffernan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brendan Quirk
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anthony Zinos
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biochemical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Scott A Beardsley
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biochemical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert Prost
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Harry T Whelan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Neurology, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
29
|
Papadimitriou KI, Vidal Rosas EE, Zhang E, Cooper RJ, Hebden JC, Arridge SR, Powell S. Dual wavelength spread-spectrum time-resolved diffuse optical instrument for the measurement of human brain functional responses. BIOMEDICAL OPTICS EXPRESS 2020; 11:3477-3490. [PMID: 33014545 PMCID: PMC7510926 DOI: 10.1364/boe.393586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Near-infrared spectroscopy has proven to be a valuable method to monitor tissue oxygenation and haemodynamics non-invasively and in real-time. Quantification of such parameters requires measurements of the time-of-flight of light through tissue, typically achieved using picosecond pulsed lasers, with their associated cost, complexity, and size. In this work, we present an alternative approach that employs spread-spectrum excitation to enable the development of a small, low-cost, dual-wavelength system using vertical-cavity surface-emitting lasers. Since the optimal wavelengths and drive parameters for optical spectroscopy are not served by commercially available modules as used in our previous single-wavelength demonstration platform, we detail the design of a custom instrument and demonstrate its performance in resolving haemodynamic changes in human subjects during apnoea and cognitive task experiments.
Collapse
Affiliation(s)
- Konstantinos I. Papadimitriou
- Department of Computer Science, University College London, London, WC1E 6BT, UK
- These authors contributed equally to this work
| | - Ernesto E. Vidal Rosas
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
- These authors contributed equally to this work
| | - Edward Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Robert J. Cooper
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Jeremy C. Hebden
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Simon R. Arridge
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Samuel Powell
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
30
|
Giannoni L, Lange F, Tachtsidis I. Investigation of the quantification of hemoglobin and cytochrome-c-oxidase in the exposed cortex with near-infrared hyperspectral imaging: a simulation study. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-25. [PMID: 32239847 PMCID: PMC7109387 DOI: 10.1117/1.jbo.25.4.046001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/12/2020] [Indexed: 05/04/2023]
Abstract
SIGNIFICANCE We present a Monte Carlo (MC) computational framework that simulates near-infrared (NIR) hyperspectral imaging (HSI) aimed at assisting quantification of the in vivo hemodynamic and metabolic states of the exposed cerebral cortex in small animal experiments. This can be done by targeting the NIR spectral signatures of oxygenated (HbO2) and deoxygenated (HHb) hemoglobin for hemodynamics as well as the oxidative state of cytochrome-c-oxidase (oxCCO) for measuring tissue metabolism. AIM The aim of this work is to investigate the performances of HSI for this specific application as well as to assess key factors for the future design and operation of a benchtop system. APPROACH The MC framework, based on Mesh-based Monte Carlo (MMC), reproduces a section of the exposed cortex of a mouse from an in vivo image and replicates hyperspectral illumination and detection at multiple NIR wavelengths (up to 121). RESULTS The results demonstrate: (1) the fitness of the MC framework to correctly simulate hyperspectral data acquisition; (2) the capability of HSI to reconstruct spatial changes in the concentrations of HbO2, HHb, and oxCCO during a simulated hypoxic condition; (3) that eight optimally selected wavelengths between 780 and 900 nm provide minimal differences in the accuracy of the hyperspectral results, compared to the "gold standard" of 121 wavelengths; and (4) the possibility to mitigate partial pathlength effects in the reconstructed data and to enhance quantification of the hemodynamic and metabolic responses. CONCLUSIONS The MC framework is proved to be a flexible and useful tool for simulating HSI also for different applications and targets.
Collapse
Affiliation(s)
- Luca Giannoni
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Address all correspondence to Luca Giannoni, E-mail:
| | - Frédéric Lange
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
31
|
Pinti P, Tachtsidis I, Hamilton A, Hirsch J, Aichelburg C, Gilbert S, Burgess PW. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann N Y Acad Sci 2020; 1464:5-29. [PMID: 30085354 PMCID: PMC6367070 DOI: 10.1111/nyas.13948] [Citation(s) in RCA: 528] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 01/11/2023]
Abstract
The past few decades have seen a rapid increase in the use of functional near-infrared spectroscopy (fNIRS) in cognitive neuroscience. This fast growth is due to the several advances that fNIRS offers over the other neuroimaging modalities such as functional magnetic resonance imaging and electroencephalography/magnetoencephalography. In particular, fNIRS is harmless, tolerant to bodily movements, and highly portable, being suitable for all possible participant populations, from newborns to the elderly and experimental settings, both inside and outside the laboratory. In this review we aim to provide a comprehensive and state-of-the-art review of fNIRS basics, technical developments, and applications. In particular, we discuss some of the open challenges and the potential of fNIRS for cognitive neuroscience research, with a particular focus on neuroimaging in naturalistic environments and social cognitive neuroscience.
Collapse
Affiliation(s)
- Paola Pinti
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Antonia Hamilton
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Joy Hirsch
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Department of PsychiatryYale School of MedicineNew HavenConnecticut
- Department of NeuroscienceYale School of MedicineNew HavenConnecticut
- Comparative MedicineYale School of MedicineNew HavenConnecticut
| | | | - Sam Gilbert
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Paul W. Burgess
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| |
Collapse
|
32
|
Islam MN, Guo K, Zhai T, Memmini AK, Martinez R, Meah CN, Kovelman I, Weissman D, Hu X, Kim J, Broglio S, Beard D, VAN DEN Bergh F, Alam H, Russo R. Brain Metabolism Monitoring through CCO Measurements Using All-Fiber-Integrated Super-Continuum Source. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11234. [PMID: 34168393 DOI: 10.1117/12.2550137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
For monitoring of concussion, brain function, organ condition and other medical applications, what is needed is a non-invasive method of monitoring tissue metabolism. MRI-based functional imaging technology detects changes in blood oxygenation, a correlate of neural activity, and thus may offer a prediction of prognosis in cases of concussion and other cerebral traumas. Yet, potential relationships between perturbations to cerebral metabolism and patient outcomes cannot be effectively exploited clinically because we lack a practical, low-cost, non-invasive means to monitor cerebral oxygenation and metabolism in the emergency department, operating room, or medical facilities. We have developed a device to optically assay the redox state of Cytochrome-C-Oxidase (CCO), the mitochondrial enzyme responsible for the last step of the electron transport chain. Changes in CCO redox reflect changes in respiratory flux, and thus changes in the rate of oxidative adenosine triphosphate (ATP) synthesis. In other words, changes in CCO reflect brain cell's metabolic activity more directly than the traditional blood oxygenation measurement methods. To non-invasively measure changes in CCO as well as blood oxygenation, we have developed a Super-Continuum Infrared Spectroscopy of Cytochrome-C-Oxidase (SCISCCO) system that uses an all-fiber integrated, super-continuum light source to simultaneously measure both of the new (CCO) and the traditional (blood oxygenation) markers of neural metabolism. The SCISCCO system is validated by confirming the near-infrared spectrum of CCO in vitro. To demonstrate in vivo feasibility, the measured responses of oxygenation and CCO responses to acute ischemia (e.g., blood pressure tests) in human participants are compared to data from the literature. Furthermore, we show that the new device's measurements of oxygenated (HbO) and deoxygenated (HbR) hemoglobin in response to breath hold challenges are principled and consistent with previously reported findings. The validated SCISCCO system is finally applied to measure cerebral oxygenation and the redox state of CCO in participants during an attention test protocol. Twenty-five healthy adults completed an attention task that included nine 60-second periods of attention task, interleaved with 60-s periods of resting baseline. It has been well established that the frontal lobe of the human brain is active during tasks of attention. We therefore predicted that attention task should elicit an increase in HbO concentration accompanied by a decrease in redox state of CCO (e.g., ratio of oxidized CCO to reduced CCO) in frontal lobe brain regions as measured with the SCISCCO system. Our findings are consistent with our predictions: HbO concentration increases while CCO concentration decreases during the attention blocks relative to the resting baseline, thereby indicating an increase in oxidative metabolism of the frontal lobe brain regions of interest. Our systematic, multi-method approach thus validates the new device as well as the validity of the metabolic biomarkers that it measures. The SCISCCO system could be a new tool for monitoring brain and organ metabolism, which could be invaluable for screening concussion patients or use in an operating or emergency room to gauge patient's organ response to treatments.
Collapse
Affiliation(s)
- Mohammed N Islam
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.,Omni Sciences Inc., 2125 Bishop Circle West Dexter MI 48130
| | - Kaiwen Guo
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tianqu Zhai
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Allyssa K Memmini
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ramon Martinez
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Cynthia N Meah
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ioulia Kovelman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daniel Weissman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaosu Hu
- School of Dentistry, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jessica Kim
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Steven Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daniel Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Francoise VAN DEN Bergh
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hasan Alam
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Rachel Russo
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA.,United States Air Force, Medical Corps, Travis, AFB 94533
| |
Collapse
|
33
|
Broadband Time Domain Diffuse Optical Reflectance Spectroscopy: A Review of Systems, Methods, and Applications. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review presents recent developments and a wide overview of broadband time domain diffuse optical spectroscopy (TD-DOS). Various topics including physics of photon migration, advanced instrumentation, methods of analysis, applications covering multiple domains (tissue chromophore, in vivo studies, food, wood, pharmaceutical industry) are elaborated. The key role of standardization and recent studies in that direction are discussed. Towards the end, a brief outlook is presented on the current status and future trends in broadband TD-DOS.
Collapse
|
34
|
Saha S, Lu Y, Lesage F, Sawan M. Wearable SiPM-Based NIRS Interface Integrated With Pulsed Laser Source. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1313-1323. [PMID: 31689208 DOI: 10.1109/tbcas.2019.2951539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present the design of a miniaturized probe integrating silicon photomultiplier and light-pulsing electronics in a single 2 × 2 mm2 complementary metal-oxide-semiconductor (CMOS) chip which includes functional blocks such as a fast pulse-laser driver and synchronized single-photon detection circuit. The photon pulses can be either counted on-chip or processed by an external high-speed electronic module such as time-corelated single photon counting (TCSPC) unit. The integrated circuit was assembled on a printed circuit board (PCB) and also on a 2.5D silicon interposer platform of size 1 cm and interfaced with a silicon photomultiplier (SiPM), vertical cavity surface emitting laser (VCSEL) and other ancillary components such as capacitors and resistors. Our approach of integrating an optical interface to optimize light collection on the small active area and light emission from the vertical-cavity surface-emitting laser (VSCEL) will facilitate clinical adoption in many applications and change the landscape of Near Infrared Spectroscopy (NIRS) hardware commercially due to significant optode-size reduction and the elimination of optical fibers.
Collapse
|
35
|
Sudakou A, Wojtkiewicz S, Lange F, Gerega A, Sawosz P, Tachtsidis I, Liebert A. Depth-resolved assessment of changes in concentration of chromophores using time-resolved near-infrared spectroscopy: estimation of cytochrome-c-oxidase uncertainty by Monte Carlo simulations. BIOMEDICAL OPTICS EXPRESS 2019; 10:4621-4635. [PMID: 31565513 PMCID: PMC6757481 DOI: 10.1364/boe.10.004621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Time-resolved near-infrared spectroscopy (TR-NIRS) measurements can be used to recover changes in concentrations of tissue constituents ( Δ C ) by applying the moments method and the Beer-Lambert law. In this work we carried out the error propagation analysis allowing to calculate the standard deviations of uncertainty in estimation of the Δ C . Here, we show the process of choosing wavelengths for the evaluation of hemodynamic (oxy-, deoxyhemoglobin) and metabolic (cytochrome-c-oxidase (CCO)) responses within the brain tissue as measured with an in-house developed TR-NIRS multi-wavelength system, which measures at 16 consecutive wavelengths separated by 12.5 nm and placed between 650 and 950 nm. Data generated with Monte Carlo simulations on three-layered model (scalp, skull, brain) for wavelengths range from 650 to 950 nm were used to carry out the error propagation analysis for varying choices of wavelengths. For a detector with a spectrally uniform responsivity, the minimal standard deviation of the estimated changes in CCO within the brain layer, σ Δ C CCO brain = 0.40 µM, was observed for the 16 consecutive wavelengths from 725 to 912.5 nm. For realistic a detector model, i.e. the spectral responsivity characteristic is considered, the minimum, σ Δ C CCO brain = 0.47 µM, was observed at the 16 consecutive wavelengths from 688 to 875 nm. We introduce the method of applying the error propagation analysis to data as measured with spectral TR-NIRS systems to calculate uncertainty of recovery of tissue constituents concentrations.
Collapse
Affiliation(s)
- Aleh Sudakou
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Stanislaw Wojtkiewicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
- School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
36
|
A Mini-Review on Functional Near-Infrared Spectroscopy (fNIRS): Where Do We Stand, and Where Should We Go? PHOTONICS 2019. [DOI: 10.3390/photonics6030087] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This mini-review is aimed at briefly summarizing the present status of functional near-infrared spectroscopy (fNIRS) and predicting where the technique should go in the next decade. This mini-review quotes 33 articles on the different fNIRS basics and technical developments and 44 reviews on the fNIRS applications published in the last eight years. The huge number of review articles about a wide spectrum of topics in the field of cognitive and social sciences, functional neuroimaging research, and medicine testifies to the maturity achieved by this non-invasive optical vascular-based functional neuroimaging technique. Today, fNIRS has started to be utilized on healthy subjects while moving freely in different naturalistic settings. Further instrumental developments are expected to be done in the near future to fully satisfy this latter important aspect. In addition, fNIRS procedures, including correction methods for the strong extracranial interferences, need to be standardized before using fNIRS as a clinical tool in individual patients. New research avenues such as interactive neurosciences, cortical activation modulated by different type of sport performance, and cortical activation during neurofeedback training are highlighted.
Collapse
|
37
|
Wojtkiewicz S, Gerega A, Zanoletti M, Sudakou A, Contini D, Liebert A, Durduran T, Dehghani H. Self-calibrating time-resolved near infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:2657-2669. [PMID: 31149386 PMCID: PMC6524598 DOI: 10.1364/boe.10.002657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 05/09/2023]
Abstract
Time-resolved near infrared spectroscopy is considered to be a gold standard technique when measuring absolute values of tissue optical properties, as it provides separable and independent information about both tissue absorption and scattering. However, time-resolved instruments require an accurate characterization by measuring the instrument response function in order to decouple the contribution of the instrument itself from the measurement. In this work, a new approach to the methodology of analysing time-resolved data is presented where the influence of instrument response function is eliminated from the data and a self-calibrating analysis is proposed. The proposed methodology requires an instrument to provide at least two wavelengths and allows spectral parameters recovery (optical properties or constituents concentrations and reduced scatter amplitude and power). Phantom and in-vivo data from two different time-resolved systems are used to validate the accuracy of the proposed self-calibrating approach, demonstrating that parameters recovery compared to the conventional curve fitting approach is within 10% and benefits from introducing a spectral constraint to the reconstruction problem. It is shown that a multi-wavelength time-resolved data can be used for parameters recovery directly without prior calibration (instrument response function measurement).
Collapse
Affiliation(s)
- Stanislaw Wojtkiewicz
- School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Trojdena 4, 02-109, Poland
| | - Marta Zanoletti
- Politecnico di Milano Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Aleh Sudakou
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Trojdena 4, 02-109, Poland
| | - Davide Contini
- Politecnico di Milano Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133, Milano, Italy
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Trojdena 4, 02-109, Poland
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Hamid Dehghani
- School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
38
|
Clinical Brain Monitoring with Time Domain NIRS: A Review and Future Perspectives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081612] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Near-infrared spectroscopy (NIRS) is an optical technique that can measure brain tissue oxygenation and haemodynamics in real-time and at the patient bedside allowing medical doctors to access important physiological information. However, despite this, the use of NIRS in a clinical environment is hindered due to limitations, such as poor reproducibility, lack of depth sensitivity and poor brain-specificity. Time domain NIRS (or TD-NIRS) can resolve these issues and offer detailed information of the optical properties of the tissue, allowing better physiological information to be retrieved. This is achieved at the cost of increased instrument complexity, operation complexity and price. In this review, we focus on brain monitoring clinical applications of TD-NIRS. A total of 52 publications were identified, spanning the fields of neonatal imaging, stroke assessment, traumatic brain injury (TBI) assessment, brain death assessment, psychiatry, peroperative care, neuronal disorders assessment and communication with patient with locked-in syndrome. In all the publications, the advantages of the TD-NIRS measurement to (1) extract absolute values of haemoglobin concentration and tissue oxygen saturation, (2) assess the reduced scattering coefficient, and (3) separate between extra-cerebral and cerebral tissues, are highlighted; and emphasize the utility of TD-NIRS in a clinical context. In the last sections of this review, we explore the recent developments of TD-NIRS, in terms of instrumentation and methodologies that might impact and broaden its use in the hospital.
Collapse
|
39
|
Lange F, Peyrin F, Montcel B. Broadband time-resolved multi-channel functional near-infrared spectroscopy system to monitor in vivo physiological changes of human brain activity. APPLIED OPTICS 2018; 57:6417-6429. [PMID: 30117872 DOI: 10.1364/ao.57.006417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/21/2018] [Indexed: 05/18/2023]
Abstract
We have developed a broadband time-resolved multi-channel near-infrared spectroscopy system that can monitor the physiological responses of the adult human brain. This system is composed of a supercontinuum laser for the source part and of an intensified charge-coupled device camera coupled with an imaging spectrometer for the detection part. It allows the detection of the spectral, from 600 to 900 nm, and spatial dimensions as well as the arrival time of photon information simultaneously. We describe the setup and its characterization in terms of temporal instrument response function, wavelength sensitivity, and stability. The ability of the system to detect the hemodynamic response is then demonstrated. First, an in vivo experiment on an adult volunteer was performed to monitor the response in the arm during a cuff occlusion. Second, the response in the brain during a cognitive task was monitored on a group of five healthy volunteers. Moreover, looking at the response at different time windows, we could monitor the hemodynamic response in depth, enhancing the detection of the cortical activation. Those first results demonstrate the ability of our system to discriminate between the responses of superficial and deep tissues, addressing an important issue in functional near-infrared spectroscopy.
Collapse
|