1
|
Liu H, Jin X, Liu S, Liu X, Pei X, Sun K, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. Recent advances in self-targeting natural product-based nanomedicines. J Nanobiotechnology 2025; 23:31. [PMID: 39833846 PMCID: PMC11749302 DOI: 10.1186/s12951-025-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Natural products, recognized for their potential in disease prevention and treatment, have been integrated with advanced nano-delivery systems to create natural product-based nanomedicines, offering innovative approaches for various diseases. Natural products derived from traditional Chinese medicine have their own targeting effect and remarkable therapeutic effect on many diseases, but there are some shortcomings such as poor physical and chemical properties. The construction of nanomedicines using the active ingredients of natural products has become a key step in the modernization research process, which could be used to make up for the defects of natural products such as low solubility, large dosage, poor bioavailability and poor targeting. Nanotechnology enhances the safety, selectivity, and efficacy of natural products, positioning natural product-based nanomedicines as promising candidates in medicine. This review outlines the current status of development, the application in different diseases, and safety evaluation of natural product-based nanomedicines, providing essential insights for further exploration of the synergy between natural products and nano-delivery systems in disease treatment.
Collapse
Affiliation(s)
- Haifan Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xingyue Jin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinyue Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Pei
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Kunhui Sun
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Roussel T, Cruz-Dubois T, Louis B, Laurini E, Ding L, Balasse L, Nail V, Dignat-George F, Giorgio S, Pricl S, Guillet B, Garrigue P, Peng L. Impact of inner hydrophobicity of dendrimer nanomicelles on biodistribution: a PET imaging study. J Mater Chem B 2024. [PMID: 39699216 DOI: 10.1039/d4tb01266f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Self-assembly is a powerful strategy for building nanosystems for biomedical applications. We have recently developed small amphiphilic dendrimers capable of self-assembling into nanomicelles for tumor imaging. In this context, we studied the impact of increased hydrophobicity of the amphiphilic dendrimer on hydrophilic/hydrophobic balance and consequently on the self-assembly and subsequent biodistribution. Remarkably, despite maintaining the exact same surface chemistry, similar zeta potential, and small size, the altered and enlarged hydrophobic component within the amphiphilic dendrimer led to enhanced stability of the self-assembled nanomicelles, with prolonged circulation time and massive accumulation in the liver. This study reveals that even structural alteration within the interior of nanomicelles can dramatically impact biodistribution profiles. This finding highlights the deeper complexity of rational design for nanomedicine and the need to consider factors other than surface charge and chemistry, as well as size, all of which significantly impact the biodistribution of self-assembling nanosystems.
Collapse
Affiliation(s)
- Tom Roussel
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Twiany Cruz-Dubois
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Beatrice Louis
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory, Department of Engineering and Architectures, University of Trieste, Trieste 34127, Italy
| | - Ling Ding
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Laure Balasse
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Vincent Nail
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | | | - Suzanne Giorgio
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory, Department of Engineering and Architectures, University of Trieste, Trieste 34127, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-136, Poland
| | - Benjamin Guillet
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Philippe Garrigue
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Ling Peng
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| |
Collapse
|
3
|
Shree Harini K, Ezhilarasan D. Flavonoids-based nanomedicines for the treatment of liver fibrosis: A recent progress. J Drug Deliv Sci Technol 2024; 93:105467. [DOI: 10.1016/j.jddst.2024.105467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Angjelova A, Jovanova E, Polizzi A, Santonocito S, Lo Giudice A, Isola G. The Potential of Nano-Based Photodynamic Treatment as a Therapy against Oral Leukoplakia: A Narrative Review. J Clin Med 2023; 12:6819. [PMID: 37959284 PMCID: PMC10649116 DOI: 10.3390/jcm12216819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Oral leukoplakia is a predominantly white lesion of the oral mucosa that cannot be classified as any other definable lesion with the risk of progressing into malignancy. Despite the advancements in conventional therapy, the rates of malignant transformation remain notably high, affecting 4.11% of adults, due to the difficulty of accurate diagnosis and indistinct treatment. Photodynamic therapy (PDT), being a minimally invasive surgical intervention, employs a variety of factors, including light, nano-photosensitizers (PSs) and oxygen in the management of precancerous lesions. PDT faces limitations in administering photosensitizers (PSs) because of their low water solubility. However, these challenges could be effectively resolved through the incorporation of PSs in nanostructured drug delivery systems, such as gold nanoparticles, micelles, liposomes, metal nanoparticles, dendrimers and quantum dots. This review will give an overview of the different innovative PS approaches in the management of premalignant lesions, highlighting the most recent advancements. From a clinical perspective, it is expected that nanotechnology will overcome barriers faced by traditional therapeutics and will address critical gaps in clinical cancer care.
Collapse
Affiliation(s)
- Angela Angjelova
- University Dental Clinical Center St. Pantelejmon, Skopje, Faculty of Dentistry, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia; (A.A.); (E.J.)
| | - Elena Jovanova
- University Dental Clinical Center St. Pantelejmon, Skopje, Faculty of Dentistry, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia; (A.A.); (E.J.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (S.S.); (A.L.G.); (G.I.)
| |
Collapse
|
5
|
Crintea A, Motofelea AC, Șovrea AS, Constantin AM, Crivii CB, Carpa R, Duțu AG. Dendrimers: Advancements and Potential Applications in Cancer Diagnosis and Treatment-An Overview. Pharmaceutics 2023; 15:pharmaceutics15051406. [PMID: 37242648 DOI: 10.3390/pharmaceutics15051406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and the main treatment methods for this condition are surgery, chemotherapy, and radiotherapy. These treatment methods are invasive and can cause severe adverse reactions among organisms, so nanomaterials are increasingly used as structures for anticancer therapies. Dendrimers are a type of nanomaterial with unique properties, and their production can be controlled to obtain compounds with the desired characteristics. These polymeric molecules are used in cancer diagnosis and treatment through the targeted distribution of some pharmacological substances. Dendrimers have the ability to fulfill several objectives in anticancer therapy simultaneously, such as targeting tumor cells so that healthy tissue is not affected, controlling the release of anticancer agents in the tumor microenvironment, and combining anticancer strategies based on the administration of anticancer molecules to potentiate their effect through photothermal therapy or photodynamic therapy. The purpose of this review is to summarize and highlight the possible uses of dendrimers regarding the diagnosis and treatment of oncological conditions.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Alina Simona Șovrea
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Carmen-Bianca Crivii
- Department of Morphological Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Alina Gabriela Duțu
- Department of Molecular Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Soni A, Bhandari MP, Tripathi GK, Bundela P, Khiriya PK, Khare PS, Kashyap MK, Dey A, Vellingiri B, Sundaramurthy S, Suresh A, Pérez de la Lastra JM. Nano-biotechnology in tumour and cancerous disease: A perspective review. J Cell Mol Med 2023; 27:737-762. [PMID: 36840363 PMCID: PMC10002932 DOI: 10.1111/jcmm.17677] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 02/26/2023] Open
Abstract
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood-brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood-brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.
Collapse
Affiliation(s)
- Ambikesh Soni
- School of NanotechnologyRajiv Gandhi Proudyogiki VishwavidyalayaBhopalIndia
| | | | | | - Priyavand Bundela
- School of NanotechnologyRajiv Gandhi Proudyogiki VishwavidyalayaBhopalIndia
| | | | | | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical SchoolAmity University HaryanaHaryanaIndia
| | - Abhijit Dey
- Department of Life SciencesPresidency UniversityWest BengalKolkataIndia
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational ResearchDepartment of ZoologySchool of Basic Sciences, Central University of PunjabMaulana Azad National Institute of TechnologyBathindaIndia
| | - Suresh Sundaramurthy
- Department of Chemical EngineeringMaulana Azad National Institute of TechnologyMadhya PradeshBhopalIndia
| | - Arisutha Suresh
- Department of EnergyMaulana Azad National Institute of Technology & M/s Eco Science & TechnologyMadhya PradeshBhopalIndia
| | - José M. Pérez de la Lastra
- Biotecnología de macromoléculasInstituto de Productos Naturales y Agrobiología, (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| |
Collapse
|
7
|
Talukdar D, Kumar P, Sharma D, Balaramnavar VM, Afzal O, Altamimi ASA, Kazmi I, Al-Abbasi FA, Alzarea SI, Gupta G, Gupta MM. Anticancer Phytochemical-Based Nanoformulations: Therapeutic Intervention in Cancer Cell Lines. J Environ Pathol Toxicol Oncol 2023; 42:79-93. [PMID: 36734954 DOI: 10.1615/jenvironpatholtoxicoloncol.2022044317] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phytochemicals have the potential to treat resistant cancer. They are delivered to the target site via nano-based carriers. Promising results are seen in preclinical and in vitro models, as phytochemical-based nanoformulations have improved cell cytotoxicity compared to single agents. They can synergistically inhibit cancer cell growth through p53 apoptosis in MCF-7 breast cancer cell lines. Moreover, synergic viability in reproducible glioma models at half inhibitory concentrations has been shown. Through caspase activation, phytochemical-based nanoformulations also increase cell death in 4T1 breast cancer cell lines. They have shown improved cytotoxicity at half inhibitory concentrations compared to single-agent drugs in cervical cancer. In terms of colorectal cancer, they have the potential to arrest cells in the S phase of the cell cycle and synergistically inhibit cell proliferation. In squamous cell carcinoma of the tongue, they inhibit protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathways. This review reports on developments in the therapeutic management of various cancers using phytochemical-based nanoformulations, which have shown potential benefits in the clinical management of cancer patients, halting/slowing the progression of the disease and ameliorating chemotherapy-induced toxicities.
Collapse
Affiliation(s)
- Debjyoti Talukdar
- Department of Medical Research, Armenian Russian International University "Mkhitar Gosh," Yerevan, Armenia
| | | | - Deepak Sharma
- Department of Pharmaceutical Technology, SOMS, Adamas University, Kolkata, West Bengal, India
| | | | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| |
Collapse
|
8
|
González-Méndez I, Loera-Loera E, Sorroza-Martínez K, Vonlanthen M, Cuétara-Guadarrama F, Bernad-Bernad MJ, Rivera E, Gracia-Mora J. Synthesis of β-Cyclodextrin-Decorated Dendritic Compounds Based on EDTA Core: A New Class of PAMAM Dendrimer Analogs. Pharmaceutics 2022; 14:2363. [PMID: 36365180 PMCID: PMC9697223 DOI: 10.3390/pharmaceutics14112363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 10/15/2023] Open
Abstract
In this work, two dendritic molecules containing an ethylenediaminetetraacetic acid (EDTA) core decorated with two and four β-cyclodextrin (βCD) units were synthesized and fully characterized. Copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click chemistry under microwave irradiation was used to obtain the target compounds with yields up to 99%. The classical ethylenediamine (EDA) core present in PAMAM dendrimers was replaced by an EDTA core, obtaining platforms that increase the water solubility at least 80 times compared with native βCD. The synthetic methodology presented here represents a convenient alternative for the rapid and efficient construction of PAMAM analogs. These molecules are envisaged for future applications as drug carriers.
Collapse
Affiliation(s)
- Israel González-Méndez
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City CP 04510, Mexico
| | - Esteban Loera-Loera
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City CP 04510, Mexico
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3000, Coyoacán, Mexico City CP 04910, Mexico
| | - Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City CP 04510, Mexico
| | - Mireille Vonlanthen
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City CP 04510, Mexico
| | - Fabián Cuétara-Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City CP 04510, Mexico
| | - María Josefa Bernad-Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City CP 04510, Mexico
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City CP 04510, Mexico
| | - Jesús Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City CP 04510, Mexico
| |
Collapse
|
9
|
Ebrahimi A, Pirali Hamedani M, Mohammadzadeh P, Safari M, Esmaeil Sadat Ebrahimi S, Seyed Hamzeh M, Shafiee Ardestani M, Masoumeh Ghoreishi S. 99mTc- Anionic dendrimer targeted vascular endothelial growth factor as a novel nano-radiotracer for in-vivo breast cancer imaging. Bioorg Chem 2022; 128:106085. [PMID: 35964502 DOI: 10.1016/j.bioorg.2022.106085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
Since breast cancer is the commonly cause of death among women around the world, diagnosis at the early stages is significantly important to prevent the metastasis of the cancer. Among the various growth factors that are involved in angiogenesis, vascular endothelial growth factor (VEGF) is believed to be the most important factor. Overexpressed VEGF receptor on tumors surface, is particularly interesting for cancer cells targeting purposes. In this study, citric acid dendrimer conjugated with VEGF antagonist peptide was synthesized. The obtained product was confirmed by FT-IR, TEM, DLS, and EDS. In vitro cytotoxicity assay showed no toxicity on normal cells and indicated the notably dose-dependence toxicity on cancer cells. Box-Behnken software as a computational method was used to determine the optimum amount of radiolabeling parameters. Optimized parameters for reducing agent, dendrimer-anti-VEGF, and time were 1.4 mg, 17.5 mg, and about 30 min respectively. Radiochemical purity of radio-labeled conjugated dendrimer was determined about 90 percent. SPECT imaging was done to observe the in vivo accumulation of dendrimer-anti-VEGF in the tumor site. Images showed high accumulation of radio-tracer in the tumor region. All in all, obtained results confirmed our hypothesis that the dendrimer-anti-VEGF can be a good radio-tracer for diagnosis of cancer.
Collapse
Affiliation(s)
- Aida Ebrahimi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Pirali Hamedani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pardis Mohammadzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Safari
- Department of Pharmaceutics & Medical Nanotechnology, Branch of Pharmaceutical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Seyed Hamzeh
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Masoumeh Ghoreishi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
10
|
davoodikia B, Pirali Hamedani M, Saffari M, Esmaeil Sadat Ebrahimi S, Seyyed hamzeh M, Hashemi S, Shafiee Ardestani M, Masoumeh Ghoreishi S. Synthesis of Novel Nano-Radiotracer for In-vivo Bone Imaging: 99mTc- Citric Acid Based PEG Dendrimer and Its Conjugation with Alendronate. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
11
|
Gibbens-Bandala B, Trujillo-Nolasco M, Cruz-Nova P, Aranda-Lara L, Ocampo-García B. Dendrimers as Targeted Systems for Selective Gene and Drug Delivery. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:361-397. [DOI: 10.1007/978-3-031-12658-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Filik H, Avan AA. Electrochemical and Electrochemiluminescence Dendrimer-based Nanostructured Immunosensors for Tumor Marker Detection: A Review. Curr Med Chem 2021; 28:3490-3513. [PMID: 33076797 DOI: 10.2174/0929867327666201019143647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 01/27/2023]
Abstract
The usage of dendrimers or cascade molecules in the biomedical area has recently attracted much attention worldwide. Furthermore, dendrimers are interesting in clinical and pre-clinical applications due to their unique characteristics. Cancer is one of the most widespread challenges and important diseases, which has the highest mortality rate. In this review, the recent advances and developments (from 2009 up to 2019) in the field of electrochemical and electroluminescence immunosensors for detection of the cancer markers are presented. Moreover, this review covers the basic fabrication principles and types of electrochemical and electrochemiluminescence dendrimer-based immunosensors. In this review, we have categorized the current dendrimer based-electrochemical/ electroluminescence immunosensors into five groups: dendrimer/ magnetic particles, dendrimer/ferrocene, dendrimer/metal nanoparticles, thiol-containing dendrimer, and dendrimer/quantum dots based-immunosensors.
Collapse
Affiliation(s)
- Hayati Filik
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul, Turkey
| | - Asiye Aslıhan Avan
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul, Turkey
| |
Collapse
|
13
|
Dendrimers: A New Race of Pharmaceutical Nanocarriers. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8844030. [PMID: 33644232 PMCID: PMC7902124 DOI: 10.1155/2021/8844030] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/12/2020] [Accepted: 01/24/2021] [Indexed: 01/29/2023]
Abstract
Dendrimers are nanosized, symmetrical molecules in which a small atom or group of atoms is surrounded by the symmetric branches known as dendrons. The structure of dendrimers possesses the greatest impact on their physical and chemical properties. They grow outwards from the core-shell which further reacts with monomers having one reactive or two dormant molecules. Dendrimers' unique characteristics such as hyperbranching, well-defined spherical structure, and high compatibility with the biological systems are responsible for their wide range of applications including medical and biomedical areas. Particularly, the dendrimers' three-dimensional structure can incorporate a wide variety of drugs to form biologically active drug conjugates. In this review, we focus on the synthesis, mechanism of drug encapsulations in dendrimers, and their wide applications in drug delivery.
Collapse
|
14
|
Vanza JD, Patel RB, Patel MR. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
16
|
Hassanpour S, Kim HJ, Saadati A, Tebon P, Xue C, van den Dolder FW, Thakor J, Baradaran B, Mosafer J, Baghbanzadeh A, de Barros NR, Hashemzaei M, Lee KJ, Lee J, Zhang S, Sun W, Cho HJ, Ahadian S, Ashammakhi N, Dokmeci MR, Mokhtarzadeh A, Khademhosseini A. Thrombolytic Agents: Nanocarriers in Controlled Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001647. [PMID: 32790000 PMCID: PMC7702193 DOI: 10.1002/smll.202001647] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Thrombosis is a life-threatening pathological condition in which blood clots form in blood vessels, obstructing or interfering with blood flow. Thrombolytic agents (TAs) are enzymes that can catalyze the conversion of plasminogen to plasmin to dissolve blood clots. The plasmin formed by TAs breaks down fibrin clots into soluble fibrin that finally dissolves thrombi. Several TAs have been developed to treat various thromboembolic diseases, such as pulmonary embolisms, acute myocardial infarction, deep vein thrombosis, and extensive coronary emboli. However, systemic TA administration can trigger non-specific activation that can increase the incidence of bleeding. Moreover, protein-based TAs are rapidly inactivated upon injection resulting in the need for large doses. To overcome these limitations, various types of nanocarriers have been introduced that enhance the pharmacokinetic effects by protecting the TA from the biological environment and targeting the release into coagulation. The nanocarriers show increasing half-life, reducing side effects, and improving overall TA efficacy. In this work, the recent advances in various types of TAs and nanocarriers are thoroughly reviewed. Various types of nanocarriers, including lipid-based, polymer-based, and metal-based nanoparticles are described, for the targeted delivery of TAs. This work also provides insights into issues related to the future of TA development and successful clinical translation.
Collapse
Affiliation(s)
- Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, Olomouc, 77146, Czech Republic
| | - Han-Jun Kim
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Arezoo Saadati
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, 516614731, Iran
| | - Peyton Tebon
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Chengbin Xue
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Floor W van den Dolder
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Division Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - Jai Thakor
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 516614731, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, 9519633787, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 516614731, Iran
| | - Natan Roberto de Barros
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, 9861618335, Iran
| | - Kang Ju Lee
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Junmin Lee
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiming Zhang
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Wujin Sun
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Hyun-Jong Cho
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Samad Ahadian
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology and Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Mehmet R Dokmeci
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology and Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 516614731, Iran
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology and Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
17
|
Almughem FA, Aldossary AM, Tawfik EA, Alomary MN, Alharbi WS, Alshahrani MY, Alshehri AA. Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics 2020; 12:E616. [PMID: 32630625 PMCID: PMC7407299 DOI: 10.3390/pharmaceutics12070616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), an autosomal recessive genetic disease, is caused by a mutation in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). This mutation reduces the release of chloride ions (Cl-) in epithelial tissues, and hyperactivates the epithelial sodium channels (ENaC) which aid in the absorption of sodium ions (Na+). Consequently, the mucus becomes dehydrated and thickened, making it a suitable medium for microbial growth. CF causes several chronic lung complications like thickened mucus, bacterial infection and inflammation, progressive loss of lung function, and ultimately, death. Until recently, the standard of clinical care in CF treatment had focused on preventing and treating the disease complications. In this review, we have summarized the current knowledge on CF pathogenesis and provided an outlook on the current therapeutic approaches relevant to CF (i.e., CFTR modulators and ENaC inhibitors). The enormous potential in targeting bacterial biofilms using antibiofilm peptides, and the innovative therapeutic strategies in using the CRISPR/Cas approach as a gene-editing tool to repair the CFTR mutation have been reviewed. Finally, we have discussed the wide range of drug delivery systems available, particularly non-viral vectors, and the optimal properties of nanocarriers which are essential for successful drug delivery to the lungs.
Collapse
Affiliation(s)
- Fahad A. Almughem
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Ahmad M. Aldossary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Essam A. Tawfik
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (A.M.A.); (M.N.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia;
| | - Abdullah A. Alshehri
- National Centre for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (F.A.A.); (E.A.T.)
| |
Collapse
|
18
|
Technetium-99 m-PEGylated dendrimer-G 2-(Dabcyle-Lys 6,Phe 7)-pHBSP: A novel Nano-Radiotracer for molecular and early detecting of cardiac ischemic region. Bioorg Chem 2020; 98:103731. [PMID: 32171100 DOI: 10.1016/j.bioorg.2020.103731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/24/2023]
Abstract
In cardiac ischemic disorder, pyroglutamate helix B surface peptide (pHBSP) which derived from erythropoietin causes to increase cell stability. To improve the serum stability of pHBSP, two lipophilic amino acids Arg6, Ala7 were replaced with Fmoc-(Dabcyle)-Lys-OH and Fmoc-Phe-OH during the peptide synthesis. This peptide was subsequently conjugated to PEGylated dendrimer-G2 and labeled with 99mTcO4- to detect cardiac ischemic region. Radiochemical purity (RCP) of 99mTc-PEGylated dendrimer-G2-(Dabcyle-Lys6,Phe7)-pHBSP was evaluated by ITLC method. In addition, the radiopeptide was investigated for stability in human serum and binding affinity to hypoxic cells in myocardium H9c2 cell lines. Biodistribution and SPECT/CT scintigraphy were assessed in cardiac ischemic rats. Radiochemical yield indicated that the anionic dendrimer has a very high potential to complex formation with 99mTcO-4 (RCP > 94%) which was stable in human serum with RCP 89% up to 6 h. The binding of 99mTc- nanoconjugate to hypoxic cells was significantly more than normoxic cells (3-fold higher compared to normoxic cells at 1 h). In biodistribution studies, erythropoietin receptor-Beta common receptor (EPO-BcR)-positive uptake in the cardiac ischemic region was 3.62 ± 0.44% ID/g 30 min post injection. SPECT imaging showed a prominent uptake of 99mTc-nanoconjugate in EPO-BcR expressing ischemic heart.
Collapse
|
19
|
Ardestani MS, Bitarafan-Rajabi A, Mohammadzadeh P, Mortazavi-Derazkola S, Sabzevari O, Azar AD, Kazemi S, Hosseini SR, Ghoreishi SM. Synthesis and characterization of novel 99mTc-DGC nano-complexes for improvement of heart diagnostic. Bioorg Chem 2020; 96:103572. [DOI: 10.1016/j.bioorg.2020.103572] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/29/2019] [Accepted: 01/04/2020] [Indexed: 12/28/2022]
|
20
|
Stojceski F, Grasso G, Pallante L, Danani A. Molecular and Coarse-Grained Modeling to Characterize and Optimize Dendrimer-Based Nanocarriers for Short Interfering RNA Delivery. ACS OMEGA 2020; 5:2978-2986. [PMID: 32095720 PMCID: PMC7033960 DOI: 10.1021/acsomega.9b03908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Dendrimer nanocarriers are unique hyper-branched polymers with biomolecule-like properties, representing a promising prospect as a nucleic acid delivery system. The design of effective dendrimer-based gene carriers requires considering several parameters, such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity. In detail, the rational design of the dendrimer surface chemistry has been ascertained to play a crucial role on the efficiency of interaction with nucleic acids. Within this framework, advances in the field of organic chemistry have allowed us to design dendrimers with even small difference in the chemical structure of their surface terminals. In this study, we have selected two different cationic phosphorus dendrimers of generation 3 functionalized, respectively, with pyrrolidinium (DP) and morpholinium (DM) surface groups, which have demonstrated promising potential for short interfering RNA (siRNA) delivery. Despite DP and DM differing only for one atom in their chemical structure, in vitro and in vivo experiments have highlighted several differences between them in terms of siRNA complexation properties. In this context, we have employed coarse-grained molecular dynamics simulation techniques to shed light on the supramolecular characteristics of dendrimer-siRNA complexation, the so-called dendriplex formations. Our data provide important information on self-assembly dynamics driven by surface chemistry and competition mechanisms.
Collapse
Affiliation(s)
- Filip Stojceski
- Istituto
Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera
Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| | - Gianvito Grasso
- Istituto
Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera
Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| | - Lorenzo Pallante
- PolitoBIOMed
Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Andrea Danani
- Istituto
Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Scuola Universitaria Professionale della Svizzera
Italiana (SUPSI), Università della Svizzera Italiana (USI), Centro Galleria 2, Manno CH-6928, Switzerland
| |
Collapse
|
21
|
Pinto LF, Lloveras V, Zhang S, Liko F, Veciana J, Muñoz-Gómez JL, Vidal-Gancedo J. Fully Water-Soluble Polyphosphorhydrazone-Based Radical Dendrimers Functionalized with Tyr-PROXYL Radicals as Metal-Free MRI T1 Contrast Agents. ACS APPLIED BIO MATERIALS 2019; 3:369-376. [DOI: 10.1021/acsabm.9b00855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Luiz F. Pinto
- Institut de Ciència de Materials de Barcelona ICMAB−CSIC; Campus UAB, E-08193 Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, E-08193, Barcelona, Spain
| | - Vega Lloveras
- Institut de Ciència de Materials de Barcelona ICMAB−CSIC; Campus UAB, E-08193 Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, E-08193, Barcelona, Spain
| | - Songbai Zhang
- Institut de Ciència de Materials de Barcelona ICMAB−CSIC; Campus UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Flonja Liko
- Institut de Ciència de Materials de Barcelona ICMAB−CSIC; Campus UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona ICMAB−CSIC; Campus UAB, E-08193 Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, E-08193, Barcelona, Spain
| | - José L. Muñoz-Gómez
- Institut de Ciència de Materials de Barcelona ICMAB−CSIC; Campus UAB, E-08193 Bellaterra, Barcelona, Spain
| | - José Vidal-Gancedo
- Institut de Ciència de Materials de Barcelona ICMAB−CSIC; Campus UAB, E-08193 Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, E-08193, Barcelona, Spain
| |
Collapse
|
22
|
Mohammadzadeh P, Shafiee Ardestani M, Mortazavi-Derazkola S, Bitarafan-Rajabi A, Ghoreishi SM. PEG-Citrate dendrimer second generation: is this a good carrier for imaging agents In Vitro and In Vivo? IET Nanobiotechnol 2019; 13:560-564. [PMID: 31432786 PMCID: PMC8676229 DOI: 10.1049/iet-nbt.2018.5360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 11/21/2023] Open
Abstract
While cancer is the leading cause of human's deaths worldwide, finding an imaging agent which can detect cancer tumours is needed for cancer diagnosis. In the present study, PEG-citrate dendrimer-G2 was used as a nano-carrier of FITC dye and Iohexol to help passive targeting and uptake of both imaging agents in cancer cells/tumour in vitro and in vivo. Dendrimer was synthesisedand the product characterised using LC-MS, FT-IR, DLS, ELS, AFM, and 1HNMR. After FITC loading into dendrimer, MTT was performed to determine the cytotoxicity of formulation on HEK-293 and MCF-7 cells. In vitro imaging using dendrimer-FITC was done via fluorescent microscope thereafter. Moreover, CT imaging using Iohexol was employed to show the targeting nature and ability of the complex to use as imaging agent in vivo. Data yielded in this study corroborate the notion that the promised dendrimer was synthesised properly and had no toxicity along with FITC on normal cell. Furthermore, CT and fluorescent images showed the targeting nature and imaging ability of Iohexol/FITC loaded dendrimer in vitro and in vivo. Overall, results showed promising characteristics of the novel complexes using dendrimer-G2 both in vitro and in vivo.
Collapse
Affiliation(s)
- Pardis Mohammadzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sobhan Mortazavi-Derazkola
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Bitarafan-Rajabi
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Masoumeh Ghoreishi
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran.
| |
Collapse
|
23
|
Helal NA, Eassa HA, Amer AM, Eltokhy MA, Edafiogho I, Nounou MI. Nutraceuticals' Novel Formulations: The Good, the Bad, the Unknown and Patents Involved. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 13:105-156. [PMID: 31577201 PMCID: PMC6806606 DOI: 10.2174/1872211313666190503112040] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Traditional nutraceuticals and cosmeceuticals hold pragmatic nature with respect to their definitions, claims, purposes and marketing strategies. Their definitions are not well established worldwide. They also have different regulatory definitions and registration regulatory processes in different parts of the world. Global prevalence of nutraceuticals and cosmeceuticals is noticeably high with large market share with minimal regulation compared to traditional drugs. The global market is flooded with nutraceuticals and cosmeceuticals claiming to be of natural origin and sold with a therapeutic claim by major online retail stores such as Amazon and eBay. Apart from the traditional formulations, many manufacturers and researchers use novel formulation technologies in nutraceutical and cosmeceutical formulations for different reasons and objectives. Manufacturers tend to differentiate their products with novel formulations to increase market appeal and sales. On the other hand, researchers use novel strategies to enhance nutraceuticals and cosmeceuticals activity and safety. The objective of this review is to assess the current patents and research adopting novel formulation strategies in nutraceuticals and cosmeceuticals. Patents and research papers investigating nutraceutical and cosmeceutical novel formulations were surveyed for the past 15 years. Various nanosystems and advanced biotechnology systems have been introduced to improve the therapeutic efficacy, safety and market appeal of nutraceuticals and cosmeceuticals, including liposomes, polymeric micelles, quantum dots, nanoparticles, and dendrimers. This review provides an overview of nutraceuticals and cosmeceuticals current technologies, highlighting their pros, cons, misconceptions, regulatory definitions and market. This review also aims in separating the science from fiction in the nutraceuticals and cosmeceuticals development, research and marketing.
Collapse
Affiliation(s)
- Nada A. Helal
- Both authors contributed equality to this manuscript
| | - Heba A. Eassa
- Both authors contributed equality to this manuscript
| | | | | | | | - Mohamed I. Nounou
- Address correspondence to this author at the Department of Pharmaceutical Sciences (DPS), School of Pharmacy and Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, CT, 06103, USA;
E-mail:
| |
Collapse
|
24
|
Wu Y, Fan Q, Zeng F, Zhu J, Chen J, Fan D, Li X, Duan W, Guo Q, Cao Z, Briley-Saebo K, Li C, Tao X. Peptide-Functionalized Nanoinhibitor Restrains Brain Tumor Growth by Abrogating Mesenchymal-Epithelial Transition Factor (MET) Signaling. NANO LETTERS 2018; 18:5488-5498. [PMID: 30067910 DOI: 10.1021/acs.nanolett.8b01879] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Malignant gliomas are the most common primary brain tumors and are associated with aggressive growth, high morbidity, and mortality. Aberrant mesenchymal-epithelial transition factor (MET) activation occurs in approximately 30% of glioma patients and correlates with poor prognosis, elevated invasion, and increased drug resistance. Therefore, MET has emerged as an attractive target for glioma therapy. In this study, we developed a novel nanoinhibitor by conjugating MET-targeting cMBP peptides on the G4 dendrimer. Compared to the binding affinity of the free peptide ( KD = 3.96 × 10-7 M), the binding affinity of the nanoinhibitor to MET increased 3 orders of magnitude to 1.32 × 10-10 M. This nanoinhibitor efficiently reduced the proliferation and invasion of human glioblastoma U87MG cells in vitro by blocking MET signaling with remarkably attenuated levels of phosphorylated MET ( pMET) and its downstream signaling proteins, such as pAKT and pERK1/2. Although no obvious therapeutic effect was observed after treatment with free cBMP peptide, in vivo T2-weighted magnetic resonance imaging (MRI) showed a significant delay in tumor growth after intravenous injection of the nanoinhibitor. The medium survival in mouse models was extended by 59%, which is similar to the effects of PF-04217903, a small molecule MET inhibitor currently in clinical trials. Immunoblotting studies of tumor homogenate verified that the nanoinhibitor restrained glioma growth by blocking MET downstream signaling. pMET and its downstream proteins pAKT and pERK1/2, which are involved in the survival and invasion of cancer cells, decreased in the nanoinhibitor-treated group by 44.2%, 62.2%, and 32.3%, respectively, compared with those in the control group. In summary, we developed a peptide-functionalized MET nanoinhibitor that showed extremely high binding affinity to MET and effectively inhibited glioma growth by blocking MET downstream signaling. To the best of our knowledge, this is the first report of therapeutic inhibition of glioma growth by blocking MET signaling with a novel nanoinhibitor. Compared to antibodies and chemical inhibitors in clinical trials, the nanoinhibitor blocks MET signaling and provides a new approach for the treatment of glioma with the advantages of high efficiency, affordability, and, most importantly, potentially reduced drug resistance.
Collapse
Affiliation(s)
- Yingwei Wu
- Department of Radiology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University , Shanghai 200011 , China
| | - Qi Fan
- Department of Radiology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University , Shanghai 200011 , China
| | - Feng Zeng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Jinyu Zhu
- Department of Radiology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University , Shanghai 200011 , China
| | - Jian Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Dandan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Xinwei Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Wenjia Duan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Qinghua Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Zhonglian Cao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Karen Briley-Saebo
- Department of Radiology , the Ohio State University Wexner Medical Center, Wright Center of Innovation in Biomedical Imaging , Columbus , Ohio 43210 , United States
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University , Shanghai 200011 , China
| |
Collapse
|
25
|
Wang B, Sun Y, Davis TP, Ke PC, Wu Y, Ding F. Understanding Effects of PAMAM Dendrimer Size and Surface Chemistry on Serum Protein Binding with Discrete Molecular Dynamics Simulations. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2018; 6:11704-11715. [PMID: 30881771 PMCID: PMC6413314 DOI: 10.1021/acssuschemeng.8b01959] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Polyamidoamine (PAMAM) dendrimers, a class of polymeric nanoparticles (NPs) with highly-controllable sizes and surface chemistry, are promising candidates for many biomedical applications, including drug and gene delivery, imaging, and inhibition of amyloid aggregation. In circulation, binding of serum proteins with dendritic NPs renders the formation of protein corona and alters the biological identity of the NP core, which may subsequently elicit immunoresponse and cytotoxicity. Understanding the effects of PAMAM size and surface chemistry on serum protein binding is, therefore, crucial to enable their broad biomedical applications. Here, by applying atomistic discrete molecular dynamics (DMD) simulations, we first uncovered the binding of PAMAM with HSA and Ig and detailed the dependences of such binding on PAMAM size and surface modification. Compared to either anionic or cationic surfaces, modifications with neutral phosphorylcholine (PC), polyethylene glycol (PEG), and hydroxyls (OH) significantly reduced binding with proteins. The relatively strong binding between proteins and PAMAM dendrimers with charged surface groups was mainly driven by electrostatic interactions as well as hydrophobic interactions. Using steered DMD (SDMD) simulations, we conducted a force-pulling experiment in silico estimating the critical forces separating PAMAM-protein complexes and deriving the corresponding free energy barriers for dissociation. The SDMD-derived HSA-binding affinities were consistent with existing experimental measurements. Our results highlighted the association dynamics of protein-dendrimer interactions and binding affinities, whose implications range from fundamental nanobio interfacial phenomena to the development of "stealth NPs".
Collapse
Affiliation(s)
- Bo Wang
- department of Physics and Astronomy, Clemson University,
Clemson, SC 29634, USA
- Department of Systems and Computational Biology, Albert
Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yunxiang Sun
- department of Physics and Astronomy, Clemson University,
Clemson, SC 29634, USA
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and
Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, VIC 3052, Australia
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and
Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, VIC 3052, Australia
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert
Einstein College of Medicine, Bronx, NY 10461, USA
| | - Feng Ding
- department of Physics and Astronomy, Clemson University,
Clemson, SC 29634, USA
| |
Collapse
|
26
|
Ghoreishi SM, Khalaj A, Sabzevari O, Badrzadeh L, Mohammadzadeh P, Mousavi Motlagh SS, Bitarafan-Rajabi A, Shafiee Ardestani M. Technetium-99m chelator-free radiolabeling of specific glutamine tumor imaging nanoprobe: in vitro and in vivo evaluations. Int J Nanomedicine 2018; 13:4671-4683. [PMID: 30154653 PMCID: PMC6103604 DOI: 10.2147/ijn.s157426] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction Nowadays, molecular imaging radiopharmaceuticals', nanoparticles', and/or small-molecule biomarkers' applications are increasing rapidly worldwide. Thus, researchers focus on providing the novel, safe, and cost-effective ones. Materials and methods In the present experiment, technetium-99m (99mTc)-labeled PEG-citrate dendrimer-G2 conjugated with glutamine (nanoconjugate) was designed and assessed as a novel tumor imaging probe both in vitro and in vivo. Nanoconjugate was synthesized and the synthesis was confirmed by Fourier transform infrared, proton nuclear magnetic resonance, liquid chromatography-mass spectrometry, dynamic light scattering, and static light scattering techniques. The toxicity was assessed by XTT and apoptosis and necrosis methods. Results Radiochemical purity indicates that the anionic dendrimer has a very high potential to complex formation with 99mTc and is also very stable in the human serum in different times. Results from the imaging procedures showed potential ability of nanoconjugates to detect tumor site. Conclusion Suitable features of the anionic dendrimer show that it is a promising agent to improve nanoradiopharmaceuticals.
Collapse
Affiliation(s)
- Seyedeh Masoumeh Ghoreishi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, .,Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Khalaj
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Omid Sabzevari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Badrzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Pardis Mohammadzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, .,Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ahmad Bitarafan-Rajabi
- Echocardiography Research Center, Cardiovascular Interventional Research Center, Department of Nuclear Medicine, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran,
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
27
|
Tassano M, Oddone N, Fernández M, Porcal W, García MF, Martínez-López W, Benech JC, Cabral P. Evaluation of chromosomal aberrations induced by 188Re-dendrimer nanosystem on B16f1 melanoma cells. Int J Radiat Biol 2018; 94:664-670. [PMID: 29775404 DOI: 10.1080/09553002.2018.1478161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To study the rhenium-188 labeling of polyamidoamine (PAMAM) generation 4 (G4) dendrimer and its evaluation on biodistribution and chromosomal aberrations in melanoma cells induced by ionizing radiation as potential treatment agent. MATERIALS AND METHODS Dendrimers were first conjugated with Suc-HYNIC (succinimidyl 6-hydrazinopyridine-3-carboxylic acid hydrochloride). Dendrimer-HYNIC was then incubated with 188ReO4-. Biodistribution was performed administrating 188Re-dendrimer to normal (NM) or melanoma-bearing mice (MBM). Chromosome aberration test was conducted in order to measure treatment capacity of 188Re-dendrimer in melanoma cells. RESULTS Radiolabeling yield of dendrimer was approx. 70%. Biodistribution studies in NM showed blood clearance with hepatic and renal depuration. MBM showed a similar pattern of biodistribution with tumor uptake of 6% of injected dose. Aberrant metaphases quantified in control cells were 7%, increasing to 29.5% in cells treated with 15μCi (0.555 MBq) of 188Re-dendrimer for 24 h. CONCLUSIONS 188Re-dendrimer can produce double-stranded breaks in DNA induced by ionizing radiation in melanoma cells in vitro.
Collapse
Affiliation(s)
- Marcos Tassano
- a Area de Radiofarmacia, Facultad de Ciencias , Centro de Investigaciones Nucleares, Universidad de la República , Montevideo , Uruguay
| | - Natalia Oddone
- b Laboratorio de Señalización Celular y Nanobiología , Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura , Montevideo , Uruguay
| | - Marcelo Fernández
- a Area de Radiofarmacia, Facultad de Ciencias , Centro de Investigaciones Nucleares, Universidad de la República , Montevideo , Uruguay
| | - Williams Porcal
- d Departamento de Química Orgánica, Facultad de Química , Universidad de la República , Montevideo , Uruguay
| | - María Fernanda García
- a Area de Radiofarmacia, Facultad de Ciencias , Centro de Investigaciones Nucleares, Universidad de la República , Montevideo , Uruguay
| | - Wilner Martínez-López
- c Laboratorio de Epigenética e Inestabilidad Genómica , Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura , Montevideo , Uruguay
| | - Juan Claudio Benech
- b Laboratorio de Señalización Celular y Nanobiología , Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura , Montevideo , Uruguay
| | - Pablo Cabral
- a Area de Radiofarmacia, Facultad de Ciencias , Centro de Investigaciones Nucleares, Universidad de la República , Montevideo , Uruguay
| |
Collapse
|
28
|
Deriu MA, Tsapis N, Noiray M, Grasso G, El Brahmi N, Mignani S, Majoral JP, Fattal E, Danani A. Elucidating the role of surface chemistry on cationic phosphorus dendrimer-siRNA complexation. NANOSCALE 2018; 10:10952-10962. [PMID: 29850714 DOI: 10.1039/c8nr01928b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the field of dendrimers targeting small interfering RNA (siRNA) delivery, dendrimer structural properties, such as the flexibility/rigidity ratio, play a crucial role in the efficiency of complexation. However, advances in organic chemistry have enabled the development of dendrimers that differ only by a single atom on their surface terminals. This is the case for cationic phosphorus dendrimers functionalized with either pyrrolidinium (DP) or morpholinium (DM) terminal groups. This small change was shown to strongly affect the dendrimer-siRNA complexation, leading to more efficient anti-inflammatory effects in the case of DP. Reasons for this different behavior can hardly be inferred only by biological in vitro and in vivo experiments due to the high number of variables and complexity of the investigated biological system. However, an understanding of how small chemical surface changes may completely modify the overall dendrimer-siRNA complexation is a significant breakthrough towards the design of efficient dendrimers for nucleic acid delivery. Herein, we present experimental and computational approaches based on isothermal titration calorimetry and molecular dynamics simulations to elucidate the molecular reasons behind different efficiencies and activities of DP and DM. Results of the present research highlight how chemical surface modifications may drive the overall dendrimer-siRNA affinity by influencing enthalpic and entropic contributions of binding free energy. Moreover, this study elucidates molecular reasons related to complexation stoichiometry that may be crucial in determining the dendrimer complexation efficiency.
Collapse
Affiliation(s)
- Marco A Deriu
- Istituto Dalle Molle di studi sull'Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Centro Galleria 2, Manno, CH-6928, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yan H, Gao X, Zhang Y, Chang W, Li J, Li X, Du Q, Li C. Imaging Tiny Hepatic Tumor Xenografts via Endoglin-Targeted Paramagnetic/Optical Nanoprobe. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17047-17057. [PMID: 29708329 DOI: 10.1021/acsami.8b02648] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Surgery is the mainstay for treating hepatocellular carcinoma (HCC). However, it is a great challenge for surgeons to identify HCC in its early developmental stage. The diagnostic sensitivity for a tiny HCC with a diameter less than 1.0 cm is usually as low as 10-33% for computed tomography (CT) and 29-43% for magnetic resonance imaging (MRI). Although MRI is the preferred imaging modality for detecting HCC, with its unparalleled spatial resolution for soft tissue, the commercially available contrast agent, such as Gd3+-DTPA, cannot accurately define HCC because of its short circulation lifetime and lack of tumor-targeting specificity. Endoglin (CD105), a type I membrane glycoprotein, is highly expressed both in HCC cells and in the endothelial cells of neovasculature, which are abundant at the tumor periphery. In this work, a novel single-stranded DNA oligonucleotide-based aptamer was screened by systematic evolution of ligands in an exponential enrichment assay and showed a high binding affinity ( KD = 98 pmol/L) to endoglin. Conjugating the aptamers and imaging reporters on a G5 dendrimer created an HCC-targeting nanoprobe that allowed the successful visualization of orthotopic HCC xenografts with diameters as small as 1-4 mm. Significantly, the invasive tumor margin was clearly delineated, with a tumor to normal ratio of 2.7 by near-infrared (NIR) fluorescence imaging and 2.1 by T1-weighted MRI. This multimodal nanoprobe holds promise not only for noninvasively defining tiny HCC by preoperative MRI but also for guiding tumor excision via intraoperative NIR fluorescence imaging, which will probably gain benefit for the patient's therapeutic response and improve the survival rate.
Collapse
Affiliation(s)
- Huihui Yan
- Department of Gastroenterology, The Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , Zhejiang Province 310009 , China
| | - Xihui Gao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
- Department of Laboratory Medicine & Central Laboratory , Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus , Shanghai 201499 , China
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yunfei Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Wenju Chang
- Department of General Surgery, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Jianhui Li
- Ningbo No. 2 Hospital , No. 41 Northwest Street , Ningbo , Zhejiang Province 315010 , China
| | - Xinwei Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| | - Qin Du
- Department of Gastroenterology, The Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , Zhejiang Province 310009 , China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy , Fudan University , Shanghai 201203 , China
| |
Collapse
|
30
|
Complexation of nicotinic acid with first generation poly(amidoamine) dendrimers: A microscopic view from density functional theory. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.06.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Perspectives on dendritic architectures and their biological applications: From core to cell. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:61-83. [PMID: 28564631 DOI: 10.1016/j.jphotobiol.2017.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
The challenges of medicine today include the increasing stipulation for sensitive and effective systems that can improve the pathological responses with a simultaneous reduction in accumulation and drug side effects. The demand can be fulfilled through the advancements in nanomedicine that includes nanostructures and nanodevices for diagnosing, treating, and prevention of various diseases. In this respect, the nanoscience provides various novel techniques with carriers such as micelles, dendrimers, particles and vesicles for the transportation of active moieties. Further, an efficient way to improve these systems is through stimuli a responsive system that utilizes supramolecular hyperbranched structures to meet the above criteria. The stimuli-responsive dendritic architectures exhibit spatial, temporal, convenient, effective, safety and controlled drug release in response to specific trigger through electrostatic interactions plus π stacking. The stimuli-responsive systems are capable of sequestering the drug molecules underneath a predefined set of conditions and discharge them in a different environment through either exogenous or endogenous stimulus. The incorporation of photoresponsive moieties at various components of dendrimer such as core, branches or at the peripheral end exaggerates its significance in various allied fields of nanotechnology which includes sensors, photoswitch, electronic widgets and in drug delivery systems. This is due to the light instigated geometrical modifications at the core or at the surface molecules which generates huge conformational changes throughout the hyperbranched structure. Further, numerous synthetic methodologies have been investigated for utilization of dendrimers in therapeutic drug delivery and its applicability towards stimuli responsive systems such as photo-instigated, thermal-instigated, and pH-instigated hyperbranched structures and their advancement in the field of nanomedicine. This paper highlights the fascinating theoretical advances and principal mechanisms of dendrimer synthesis and their ability to capture light that strengthens its applicability from radiant energy to medical photonics.
Collapse
|
32
|
PAMAM Dendrimers Cross the Blood-Brain Barrier When Administered through the Carotid Artery in C57BL/6J Mice. Int J Mol Sci 2017; 18:ijms18030628. [PMID: 28335421 PMCID: PMC5372641 DOI: 10.3390/ijms18030628] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 01/29/2023] Open
Abstract
Drug delivery into the central nervous system (CNS) is challenging due to the blood–brain barrier (BBB) and drug delivery into the brain overcoming the BBB can be achieved using nanoparticles such as dendrimers. The conventional cationic dendrimers used are highly toxic. Therefore, the present study investigates the role of novel mixed surface dendrimers, which have potentially less toxicity and can cross the BBB when administered through the carotid artery in mice. In vitro experiments investigated the uptake of amine dendrimers (G1-NH2 and G4-NH2) and novel dendrimers (G1-90/10 and G4-90/10) by primary cortical cultures. In vivo experiments involved transplantation of G4-90/10 into mice through (1) invasive intracranial injections into the striatum; and (2) less invasive carotid injections. The animals were sacrificed 24-h and 1-week post-transplantations and their brains were analyzed. In vivo experiments proved that the G4-90/10 can cross the BBB when injected through the carotid artery and localize within neurons and glial cells. The dendrimers were found to migrate through the corpus callosum 1-week post intracranial injection. Immunohistochemistry showed that the migrating cells are the dendrimer-infected glial cells. Overall, our results suggest that poly-amidoamine (PAMAM) dendrimers may be used as a minimally invasive means to deliver biomolecules for treating neurological diseases or disorders
Collapse
|
33
|
Li F, Yan H, Wang J, Li C, Wu J, Wu S, Rao S, Gao X, Jin Q. Non-invasively differentiating extent of liver fibrosis by visualizing hepatic integrin αvβ3 expression with an MRI modality in mice. Biomaterials 2016; 102:162-74. [DOI: 10.1016/j.biomaterials.2016.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/20/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
|
34
|
Mekuria SL, Debele TA, Tsai HC. PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents. RSC Adv 2016. [DOI: 10.1039/c6ra12895e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the last several decades, researchers have focused on developing suitable drug carriers to deliver pharmaceutical agents to treat cancer diseases.
Collapse
Affiliation(s)
- Shewaye Lakew Mekuria
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| | - Tilahun Ayane Debele
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Republic of China
| |
Collapse
|
35
|
Kovacs L, Tassano M, Cabrera M, Zamboni CB, Fernández M, Anjos RM, Cabral P. Development of 177Lu-DOTA-Dendrimer and Determination of Its Effect on Metal and Ion Levels in Tumor Tissue. Cancer Biother Radiopharm 2015; 30:405-9. [DOI: 10.1089/cbr.2014.1675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Luciana Kovacs
- Centro do Reator de Pesquisas (CRPq), Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN - SP), São Paulo, Brasil
| | - Marcos Tassano
- Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Universidad de la República, Montevideo, Uruguay
| | - Mirel Cabrera
- Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Universidad de la República, Montevideo, Uruguay
| | - Cibele B. Zamboni
- Centro do Reator de Pesquisas (CRPq), Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN - SP), São Paulo, Brasil
| | - Marcelo Fernández
- Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Universidad de la República, Montevideo, Uruguay
| | - Roberto M. Anjos
- Instituto de Física, Universidade Federal Fluminense, Niterói, Brasil
| | - Pablo Cabral
- Departamento de Radiofarmacia, Centro de Investigaciones Nucleares, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
36
|
The Diels–Alder reaction: A powerful tool for the design of drug delivery systems and biomaterials. Eur J Pharm Biopharm 2015; 97:438-53. [DOI: 10.1016/j.ejpb.2015.06.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 01/06/2023]
|
37
|
Bi X, Amie Luckanagul J, Allen A, Ramaboli M, Campbell E, West D, Maturavongsadit P, Brummett K, Wang Q. Synthesis of PAMAM dendrimer-based fast cross-linking hydrogel for biofabrication. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:669-82. [PMID: 26023858 DOI: 10.1080/09205063.2015.1056716] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogels possess great potential in biofabrication because they allow cell encapsulation and proliferation in a highly hydrated three-dimensional environment, and they provide biologically relevant chemical and physical signals. However, development of hydrogel systems that mimic the complexity of natural extracellular matrix remains a challenge. In this study, we report the development of a binary hydrogel system containing a synthetic poly(amido amine) (PAMAM) dendrimer and a natural polymer, i.e., hyaluronic acid (HA), to form a fast cross-linking hydrogel. Live cell staining experiment and cell viability assay of bone marrow stem cells demonstrated that cells were viable and proliferating in the in situ formed PAMAM/HA hydrogel system. Furthermore, introduction of a Arginylglycylaspartic acid (RGD) peptide into the hydrogel system significantly improved the cell viability, proliferation, and attachment. Therefore, this PAMAM/HA hydrogel system could be a promising platform for various applications in biofabrication.
Collapse
Affiliation(s)
- Xiangdong Bi
- a Department of Physical Sciences , Charleston Southern University , Charleston , SC , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Erdem A, Congur G, Mese F. Electrochemical Detection of Activated Protein C Using an Aptasensor Based on PAMAM Dendrimer Modified Pencil Graphite Electrodes. ELECTROANAL 2014. [DOI: 10.1002/elan.201400354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Gao X, Qian J, Zheng S, Changyi Y, Zhang J, Ju S, Zhu J, Li C. Overcoming the blood-brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS NANO 2014; 8:3678-89. [PMID: 24673594 DOI: 10.1021/nn5003375] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The extremely low permeability of the blood-brain barrier (BBB) poses the greatest impediment in the treatment of central nervous system (CNS) diseases. Recent work indicated that BBB permeability can be up-regulated by activating A2A adenosine receptor (AR), which temporarily increases intercellular spaces between the brain capillary endothelial cells. However, due to transient circulation lifetime of adenosine-based agonists, their capability to enhance brain delivery of drugs, especially macromolecular drugs, is limited. In this work, a series of nanoagonists (NAs) were developed by labeling different copies of A2A AR activating ligands on dendrimers. In vitro transendothelial electrical resistance measurements demonstrated that the NAs increased permeability of the endothelial cell monolayer by compromising the tightness of tight junctions, the key structure that restricts the entry of blood-borne molecules into the brain. In vivo imaging studies indicated the remarkably up-regulated brain uptake of a macromolecular model drug (45 kDa) after intravenous injection of NAs. Autoradiographic imaging showed that the BBB opening time-window can be tuned in a range of 0.5-2.0 h by the NAs labeled with different numbers of AR-activating ligands. By choosing a suitable NA, it is possible to maximize brain drug delivery and minimize the uncontrollable BBB leakage by matching the BBB opening time-window with the pharmacokinetics of a therapeutic agent. The NA-mediated brain drug delivery strategy holds promise for the treatment of CNS diseases with improved therapeutic efficiency and reduced side-effects.
Collapse
Affiliation(s)
- Xihui Gao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Taghavi Pourianazar N, Mutlu P, Gunduz U. Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. JOURNAL OF NANOPARTICLE RESEARCH 2014; 16:2342. [DOI: 10.1007/s11051-014-2342-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
42
|
|
43
|
Longmire MR, Ogawa M, Choyke PL, Kobayashi H. Dendrimers as high relaxivity MR contrast agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:155-62. [PMID: 24155241 DOI: 10.1002/wnan.1250] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Dendrimers are versatile macromolecules with tremendous potential as magnetic resonance imaging (MRI) contrast agents. Dendrimer-based agents provide distinct advantages over low-molecular-weight gadolinium chelates, including enhanced r1 relaxivity due to slow rotational dynamics, tunable pharmacokinetics that can be adapted for blood pool, liver, kidney, and lymphatic imaging, the ability to be a drug carrier, and flexibility for labeling due to their inherent multivalency. Clinical applications are increasingly being developed, particularly in lymphatic imaging. Herein we present a broad overview of dendrimer-based MRI contrast agents with attention to the unique chemistry and physical properties as well as emerging clinical applications.
Collapse
Affiliation(s)
- Michelle R Longmire
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
44
|
Tsuchimochi M, Hayama K, Toyama M, Sasagawa I, Tsubokawa N. Dual-modality imaging with 99mTc and fluorescent indocyanine green using surface-modified silica nanoparticles for biopsy of the sentinel lymph node: an animal study. EJNMMI Res 2013; 3:33. [PMID: 23618132 PMCID: PMC3639813 DOI: 10.1186/2191-219x-3-33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/05/2013] [Indexed: 12/25/2022] Open
Abstract
Background We propose a new approach to facilitate sentinel node biopsy examination by multimodality imaging in which radioactive and near-infrared (NIR) fluorescent nanoparticles depict deeply situated sentinel nodes and fluorescent nodes with anatomical resolution in the surgical field. For this purpose, we developed polyamidoamine (PAMAM)-coated silica nanoparticles loaded with technetium-99m (99mTc) and indocyanine green (ICG). Methods We conducted animal studies to test the feasibility and utility of this dual-modality imaging probe. The mean diameter of the PAMAM-coated silica nanoparticles was 30 to 50 nm, as evaluated from the images of transmission electron microscopy and scanning electron microscopy. The combined labeling with 99mTc and ICG was verified by thin-layer chromatography before each experiment. A volume of 0.1 ml of the nanoparticle solution (7.4 MBq, except for one rat that was injected with 3.7 MBq, and 1 μg of an ICG derivative [ICG-sulfo-OSu]) was injected submucosally into the tongue of six male Wistar rats. Results Scintigraphic images showed increased accumulation of 99mTc in the neck of four of the six rats. Nineteen lymph nodes were identified in the dissected neck of the six rats, and a contact radiographic study showed three nodes with a marked increase in uptake and three nodes with a weak uptake. NIR fluorescence imaging provided real-time clear fluorescent images of the lymph nodes in the neck with anatomical resolution. Six lymph nodes showed weak (+) to strong (+++) fluorescence, whereas other lymph nodes showed no fluorescence. Nodes showing increased radioactivity coincided with the fluorescent nodes. The radioactivity of 15 excised lymph nodes from the four rats was assayed using a gamma well counter. Comparisons of the levels of radioactivity revealed a large difference between the high-fluorescence-intensity group (four lymph nodes; mean, 0.109% ± 0.067%) and the low- or no-fluorescence-intensity group (11 lymph nodes; mean, 0.001% ± 0.000%, p < 0.05). Transmission electron microscopy revealed that small black granules were localized to and dispersed within the cytoplasm of macrophages in the lymph nodes. Conclusion Although further studies are needed to determine the appropriate dose of the dual-imaging nanoparticle probe for effective sensitivity and safety, the results of this animal study revealed a novel method for improved node detection by a dual-modality approach for sentinel lymph node biopsy.
Collapse
Affiliation(s)
- Makoto Tsuchimochi
- Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, Niigata, 951-8580, Japan.
| | | | | | | | | |
Collapse
|
45
|
Gao X, Qian J, Zheng S, Xiong Y, Man J, Cao B, Wang L, Ju S, Li C. Up-regulating blood brain barrier permeability of nanoparticles via multivalent effect. Pharm Res 2013; 30:2538-48. [PMID: 23494145 DOI: 10.1007/s11095-013-1004-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/06/2013] [Indexed: 12/17/2022]
Abstract
PURPOSE To investigate the multivalent effect for up-regulating the intracerebral delivery of nanoparticles via receptor-mediated transcytosis. METHODS Nanoparticles labeled with near-infrared (NIR) fluorophore and different numbers of angiopep-2 peptides that specifically target low-density lipoprotein receptor-related protein (LRP) on the brain capillary endothelial cells were developed. Bio-distribution studies quantified the intracerebral uptakes of these nanoparticles at 2 and 24 h after intravenous injection. In vivo NIR fluorescence imaging, ex vivo autoradiographic imaging and 3D reconstructed NIR fluorescence imaging revealed the nanoparticle distribution pattern in brain. Fluorescence microscopic imaging identified the nanoparticle locations at the cellular level. RESULTS The multimetirc association between the angiopep-2 peptides labeled on the nanoparticle and the LRP receptors on the brain capillary endothelial cells significantly increased the intracerebral uptake of the nanoparticles. Nanoparticle Den-Angio4 labeled four angiopep-2 peptides achieved the highest BBB traverse efficacy. After penetrating the BBB, Den-Angio4 distributed heterogeneously and mainly located at hippocampus, striatum and cerebellum in the brains. CONCLUSIONS The multivalent effect significantly enhances the BBB permeability of nanoparticles. Den-Angio4 as a nanoparticle prototype provides a two order targeted strategy for diagnosis or treatment of central nerver system diseases by first traversing the BBB via receptor-mediated endocytosis and secondly targeting the leisions with high receptor expression level.
Collapse
Affiliation(s)
- Xihui Gao
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA School of Pharmacy, Fudan University, Shanghai, 201203, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Caballero J, Poblete H, Navarro C, Alzate-Morales JH. Association of nicotinic acid with a poly(amidoamine) dendrimer studied by molecular dynamics simulations. J Mol Graph Model 2013; 39:71-8. [DOI: 10.1016/j.jmgm.2012.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 11/16/2022]
|
47
|
Nolting DD, Nickels ML, Guo N, Pham W. Molecular imaging probe development: a chemistry perspective. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2012; 2:273-306. [PMID: 22943038 PMCID: PMC3430472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/29/2012] [Indexed: 06/01/2023]
Abstract
Molecular imaging is an attractive modality that has been widely employed in many aspects of biomedical research; especially those aimed at the early detection of diseases such as cancer, inflammation and neurodegenerative disorders. The field emerged in response to a new research paradigm in healthcare that seeks to integrate detection capabilities for the prediction and prevention of diseases. This approach made a distinct impact in biomedical research as it enabled researchers to leverage the capabilities of molecular imaging probes to visualize a targeted molecular event non-invasively, repeatedly and continuously in a living system. In addition, since such probes are inherently compact, robust, and amenable to high-throughput production, these probes could potentially facilitate screening of preclinical drug discovery, therapeutic assessment and validation of disease biomarkers. They could also be useful in drug discovery and safety evaluations. In this review, major trends in the chemical synthesis and development of positron emission tomography (PET), optical and magnetic resonance imaging (MRI) probes are discussed.
Collapse
Affiliation(s)
- Donald D Nolting
- Vanderbilt University Institute of Imaging ScienceNashville, TN, USA
| | - Michael L Nickels
- Vanderbilt University Institute of Imaging ScienceNashville, TN, USA
| | - Ning Guo
- Vanderbilt University Institute of Imaging ScienceNashville, TN, USA
| | - Wellington Pham
- Vanderbilt University Institute of Imaging ScienceNashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt UniversityNashville, TN, USA
- Vanderbilt Ingram Cancer CenterNashville, TN, USA
| |
Collapse
|
48
|
Tu C, Louie AY. Nanoformulations for molecular MRI. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:448-57. [PMID: 22488901 DOI: 10.1002/wnan.1170] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoscale contrast agents have shown the ability to increase the detection sensitivity of magnetic resonance imaging (MRI) by several orders of magnitude, endowing this traditionally macroscopic modality with the ability to observe unique molecular signatures. Herein, we describe three types of nanoparticulate contrast agents: iron oxide nanoparticles, gadolinium-based nanoparticles, and bio-essential manganese, cobalt, nickel, and copper ion-containing nanoformulations. Some of these agents have been approved for clinical use, but more are still under development for medical imaging. The advantages and disadvantages of each nanoformulation, in terms of intrinsic magnetism, ease of synthesis, biodistribution, etc. are discussed.
Collapse
Affiliation(s)
- Chuqiao Tu
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, USA.
| | | |
Collapse
|
49
|
Patel V, Papineni RVL, Gupta S, Stoyanova R, Ahmed MM. A realistic utilization of nanotechnology in molecular imaging and targeted radiotherapy of solid tumors. Radiat Res 2012; 177:483-95. [PMID: 22404738 DOI: 10.1667/rr2597.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Precise dose delivery to malignant tissue in radiotherapy is of paramount importance for treatment efficacy while minimizing morbidity of surrounding normal tissues. Current conventional imaging techniques, such as magnetic resonance imaging (MRI) and computerized tomography (CT), are used to define the three-dimensional shape and volume of the tumor for radiation therapy. In many cases, these radiographic imaging (RI) techniques are ambiguous or provide limited information with regard to tumor margins and histopathology. Molecular imaging (MI) modalities, such as positron emission tomography (PET) and single photon-emission computed-tomography (SPECT) that can characterize tumor tissue, are rapidly becoming routine in radiation therapy. However, their inherent low spatial resolution impedes tumor delineation for the purposes of radiation treatment planning. This review will focus on applications of nanotechnology to synergize imaging modalities in order to accurately highlight, as well as subsequently target, tumor cells. Furthermore, using such nano-agents for imaging, simultaneous coupling of novel therapeutics including radiosensitizers can be delivered specifically to the tumor to maximize tumor cell killing while sparing normal tissue.
Collapse
Affiliation(s)
- Vivek Patel
- Department of Radiation Oncology, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
50
|
Yan H, Wang L, Wang J, Weng X, Lei H, Wang X, Jiang L, Zhu J, Lu W, Wei X, Li C. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS NANO 2012; 6:410-420. [PMID: 22148835 DOI: 10.1021/nn203749v] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surgical resection is a mainstay of brain tumor treatments. However, the completed excision of malignant brain tumor is challenged by its infiltrative nature. Contrast enhanced magnetic resonance imaging is widely used for defining brain tumor in clinic. However its ability in tumor visualization is hindered by the transient circulation lifetime, nontargeting specificity, and poor blood brain barrier (BBB) permeability of the commercially available MR contrast agents. In this work, we developed a two-order targeted nanoprobe in which MR/optical imaging reporters, tumor vasculature targeted cyclic [RGDyK] peptides, and BBB-permeable Angiopep-2 peptides are labeled on the PAMAM-G5 dendrimer. This nanoprobe is supposed to first target the α(V)β(3) integrin on tumor vasculatures. Increased local concentration of nanoprobe facilitates the association between BBB-permeable peptides and the low-density lipoprotein receptor-related protein (LRP) receptors on the vascular endothelial cells, which further accelerates BBB transverse of the nanoprobe via LRP receptor-mediated endocytosis. The nanoprobes that have penetrated the BBB secondly target the brain tumor because both α(V)β(3) integrin and LRP receptor are highly expressed on the tumor cells. In vivo imaging studies demonstrated that this nanoprobe not only efficiently crossed intact BBB in normal mice, but also precisely delineated the boundary of the orthotropic U87MG human glioblastoma xenograft with high target to background signal ratio. Overall, this two-order targeted nanoprobe holds the promise to noninvasively visualize brain tumors with uncompromised BBB and provides the possibility for real-time optical-image-guided brain tumor resection during surgery.
Collapse
Affiliation(s)
- Huihui Yan
- Department of Gastroenterology, Zhongshan Hospital affiliated with Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|