1
|
Chawla HS, Chen Y, Wu M, Nikitin P, Gutierrez J, Mohan C, Singh M, Aglyamov SR, Assassi S, Larin KV. Assessment of skin fibrosis in a murine model of systemic sclerosis with multifunctional optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:036007. [PMID: 40151216 PMCID: PMC11949416 DOI: 10.1117/1.jbo.30.3.036007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Significance Systemic sclerosis (SSc) is a chronic idiopathic disease that causes immune dysregulation, vasculopathy, and organ fibrosis that affects more than 3 million people in the US alone. The modified Rodnan skin score (mRSS) is the current gold standard for diagnosing and staging skin fibrosis in SSc. However, mRSS is subjective, requires extensive training, and has high observer variability. Aim We aim to provide a quantitative method for the assessment of fibrosis. Approach We utilized optical coherence tomography (OCT), its extensions, optical coherence elastography (OCE), and OCT angiography (OCTA) to evaluate SSc-like fibrosis and therapy response in a mouse model. Results We showed stiffness differences between fibrotic and normal mouse skin by week 4 ( p = 0.02 ) during the longitudinal study. In the treatment response study, OCE recorded higher elastic wave velocity in untreated fibrotic skin ( p = 0.04 ). Treated fibrotic skin stiffness was between normal and fibrotic levels. OCTA indicated significantly dilated microvasculature in fibrotic skin versus control ( p ≪ 0.01 ), with more dilation in the treatment group ( p ≪ 0.01 ) than in normal skin. Conclusions Our results indicate that OCT and its extensions effectively analyze dermal fibrosis. OCE revealed increased stiffness in fibrotic skin, OCTA showed vessel dilation, and OCT noted morphological changes in fibrosis tissue.
Collapse
Affiliation(s)
| | - Yanping Chen
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Minghua Wu
- University of Texas Health Science Center at Houston (UTHealth Houston), Division of Rheumatology, Department of Medicine, Houston, Texas, United States
| | - Pavel Nikitin
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Jessica Gutierrez
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Chandra Mohan
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Manmohan Singh
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Salavat R. Aglyamov
- University of Houston, Mechanical and Aerospace Engineering, Houston, Texas, United States
| | - Shervin Assassi
- University of Houston, Mechanical and Aerospace Engineering, Houston, Texas, United States
| | - Kirill V. Larin
- University of Texas Health Science Center at Houston (UTHealth Houston), Division of Rheumatology, Department of Medicine, Houston, Texas, United States
- Baylor College of Medicine, Integrative Physiology, Houston, Texas, United States
| |
Collapse
|
2
|
Sun X, Chang CF, Zhang J, Zeng Y, Li B, Sun Y, Kang H, Liu HC, Zhou Q. Four-Dimensional (4D) Ultrasound Shear Wave Elastography Using Sequential Excitation. IEEE Trans Biomed Eng 2025; 72:786-793. [PMID: 39356609 PMCID: PMC11875905 DOI: 10.1109/tbme.2024.3472689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
OBJECTIVE Current shear wave elastography methods primarily focus on 2D imaging. To explore mechanical properties of biological tissues in 3D, a four-dimensional (4D, x, y, z, t) ultrasound shear wave elastography is required. However, 4D ultrasound shear wave elastography is still challenging due to the limitation of the hardware of standard ultrasound acquisition systems. In this study, we introduce a novel method to achieve 4D shear wave elastography, named sequential-based excitation shear wave elastography (SE-SWE). This method can achieve 4D elastography implemented by a 1024-element 2D array with a standard ultrasound 256-channel system. METHODS The SE-SWE method employs sequential excitation to generate shear waves, and utilizes a 2D array, dividing it into four sub-sections, to capture shear waves across multiple planes. This process involves sequentially exciting each sub-section to capture shear waves, followed by compounding the acquired data from these subsections. RESULTS The phantom studies showed strong concordance between the shear wave speeds (SWS) measured by SE-SWE and expected values, confirming the accuracy of this method and potential to differentiate tissues by stiffness. In ex vivo chicken breast experiments, SE-SWE effectively distinguished between orientations relative to muscle fibers, highlighting its ability to capture the anisotropic properties of tissues. CONCLUSION The SE-SWE method advances shear wave elastography significantly by using a 2D array divided into four subsections and sequential excitation, achieving high-resolution volumetric imaging at 1.6mm resolution. SIGNIFICANCE The SE-SWE method offers a straightforward and effective approach for 3D shear volume imaging of tissue biological properties.
Collapse
|
3
|
Xu H, Xia Q, Shu C, Lan J, Wang X, Gao W, Lv S, Lin R, Xie Z, Xiong X, Li F, Zhang J, Gong X. In vivo endoscopic optical coherence elastography based on a miniature probe. BIOMEDICAL OPTICS EXPRESS 2024; 15:4237-4252. [PMID: 39022537 PMCID: PMC11249679 DOI: 10.1364/boe.521154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Optical coherence elastography (OCE) is a functional extension of optical coherence tomography (OCT). It offers high-resolution elasticity assessment with nanoscale tissue displacement sensitivity and high quantification accuracy, promising to enhance diagnostic precision. However, in vivo endoscopic OCE imaging has not been demonstrated yet, which needs to overcome key challenges related to probe miniaturization, high excitation efficiency and speed. This study presents a novel endoscopic OCE system, achieving the first endoscopic OCE imaging in vivo. The system features the smallest integrated OCE probe with an outer diameter of only 0.9 mm (with a 1.2-mm protective tube during imaging). Utilizing a single 38-MHz high-frequency ultrasound transducer, the system induced rapid deformation in tissues with enhanced excitation efficiency. In phantom studies, the OCE quantification results match well with compression testing results, showing the system's high accuracy. The in vivo imaging of the rat vagina demonstrated the system's capability to detect changes in tissue elasticity continually and distinguish between normal tissue, hematomas, and tissue with increased collagen fibers precisely. This research narrows the gap for the clinical implementation of the endoscopic OCE system, offering the potential for the early diagnosis of intraluminal diseases.
Collapse
Affiliation(s)
- Haoxing Xu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qingrong Xia
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Medical Imaging, University of South China, Hengyang 421001, China
- Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Chengyou Shu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiale Lan
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiatian Wang
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wen Gao
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shengmiao Lv
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Riqiang Lin
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhihua Xie
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaohui Xiong
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jinke Zhang
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaojing Gong
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Latus S, Grube S, Eixmann T, Neidhardt M, Gerlach S, Mieling R, Huttmann G, Lutz M, Schlaefer A. A Miniature Dual-Fiber Probe for Quantitative Optical Coherence Elastography. IEEE Trans Biomed Eng 2023; 70:3064-3072. [PMID: 37167045 DOI: 10.1109/tbme.2023.3275539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
OBJECTIVE Optical coherence elastography (OCE) allows for high resolution analysis of elastic tissue properties. However, due to the limited penetration of light into tissue, miniature probes are required to reach structures inside the body, e.g., vessel walls. Shear wave elastography relates shear wave velocities to quantitative estimates of elasticity. Generally, this is achieved by measuring the runtime of waves between two or multiple points. For miniature probes, optical fibers have been integrated and the runtime between the point of excitation and a single measurement point has been considered. This approach requires precise temporal synchronization and spatial calibration between excitation and imaging. METHODS We present a miniaturized dual-fiber OCE probe of 1 mm diameter allowing for robust shear wave elastography. Shear wave velocity is estimated between two optics and hence independent of wave propagation between excitation and imaging. We quantify the wave propagation by evaluating either a single or two measurement points. Particularly, we compare both approaches to ultrasound elastography. RESULTS Our experimental results demonstrate that quantification of local tissue elasticities is feasible. For homogeneous soft tissue phantoms, we obtain mean deviations of 0.15 ms-1 and 0.02 ms-1 for single-fiber and dual-fiber OCE, respectively. In inhomogeneous phantoms, we measure mean deviations of up to 0.54 ms-1 and 0.03 ms-1 for single-fiber and dual-fiber OCE, respectively. CONCLUSION We present a dual-fiber OCE approach that is much more robust in inhomogeneous tissues. Moreover, we demonstrate the feasibility of elasticity quantification in ex-vivo coronary arteries. SIGNIFICANCE This study introduces an approach for robust elasticity quantification from within the tissue.
Collapse
|
5
|
Caenen A, Keijzer L, Bézy S, Duchenne J, Orlowska M, Van Der Steen AFW, De Jong N, Bosch JG, Voigt JU, D'hooge J, Vos HJ. Continuous shear wave measurements for dynamic cardiac stiffness evaluation in pigs. Sci Rep 2023; 13:17660. [PMID: 37848474 PMCID: PMC10582168 DOI: 10.1038/s41598-023-44588-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Ultrasound-based shear wave elastography is a promising technique to non-invasively assess the dynamic stiffness variations of the heart. The technique is based on tracking the propagation of acoustically induced shear waves in the myocardium of which the propagation speed is linked to tissue stiffness. This measurement is repeated multiple times across the cardiac cycle to assess the natural variations in wave propagation speed. The interpretation of these measurements remains however complex, as factors such as loading and contractility affect wave propagation. We therefore applied transthoracic shear wave elastography in 13 pigs to investigate the dependencies of wave speed on pressure-volume derived indices of loading, myocardial stiffness, and contractility, while altering loading and inducing myocardial ischemia/reperfusion injury. Our results show that diastolic wave speed correlates to a pressure-volume derived index of operational myocardial stiffness (R = 0.75, p < 0.001), suggesting that both loading and intrinsic properties can affect diastolic wave speed. Additionally, the wave speed ratio, i.e. the ratio of systolic and diastolic speed, correlates to a pressure-volume derived index of contractility, i.e. preload-recruitable stroke work (R = 0.67, p < 0.001). Measuring wave speed ratio might thus provide a non-invasive index of contractility during ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Annette Caenen
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
- Cardiovascular Imaging and Dynamics Lab, KU Leuven, Leuven, Belgium.
- Institute for Biomedical Engineering and Technology, Ghent University, Ghent, Belgium.
| | - Lana Keijzer
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stéphanie Bézy
- Cardiovascular Imaging and Dynamics Lab, KU Leuven, Leuven, Belgium
| | - Jürgen Duchenne
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Marta Orlowska
- Cardiovascular Imaging and Dynamics Lab, KU Leuven, Leuven, Belgium
| | | | - Nico De Jong
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Johan G Bosch
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Jan D'hooge
- Cardiovascular Imaging and Dynamics Lab, KU Leuven, Leuven, Belgium
| | - Hendrik J Vos
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
6
|
Gubarkova EV, Sovetsky AA, Matveev LA, Matveyev AL, Vorontsov DA, Plekhanov AA, Kuznetsov SS, Gamayunov SV, Vorontsov AY, Sirotkina MA, Gladkova ND, Zaitsev VY. Nonlinear Elasticity Assessment with Optical Coherence Elastography for High-Selectivity Differentiation of Breast Cancer Tissues. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3308. [PMID: 35591642 PMCID: PMC9099511 DOI: 10.3390/ma15093308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/05/2022]
Abstract
Soft biological tissues, breast cancer tissues in particular, often manifest pronounced nonlinear elasticity, i.e., strong dependence of their Young’s modulus on the applied stress. We showed that compression optical coherence elastography (C-OCE) is a promising tool enabling the evaluation of nonlinear properties in addition to the conventionally discussed Young’s modulus in order to improve diagnostic accuracy of elastographic examination of tumorous tissues. The aim of this study was to reveal and quantify variations in stiffness for various breast tissue components depending on the applied pressure. We discussed nonlinear elastic properties of different breast cancer samples excised from 50 patients during breast-conserving surgery. Significant differences were found among various subtypes of tumorous and nontumorous breast tissues in terms of the initial Young’s modulus (estimated for stress < 1 kPa) and the nonlinearity parameter determining the rate of stiffness increase with increasing stress. However, Young’s modulus alone or the nonlinearity parameter alone may be insufficient to differentiate some malignant breast tissue subtypes from benign. For instance, benign fibrous stroma and fibrous stroma with isolated individual cancer cells or small agglomerates of cancer cells do not yet exhibit significant difference in the Young’s modulus. Nevertheless, they can be clearly singled out by their nonlinearity parameter, which is the main novelty of the proposed OCE-based discrimination of various breast tissue subtypes. This ability of OCE is very important for finding a clean resection boundary. Overall, morphological segmentation of OCE images accounting for both linear and nonlinear elastic parameters strongly enhances the correspondence with the histological slices and radically improves the diagnostic possibilities of C-OCE for a reliable clinical outcome.
Collapse
Affiliation(s)
- Ekaterina V. Gubarkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia; (A.A.P.); (M.A.S.); (N.D.G.)
| | - Aleksander A. Sovetsky
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia; (A.A.S.); (L.A.M.); (A.L.M.); (V.Y.Z.)
| | - Lev A. Matveev
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia; (A.A.S.); (L.A.M.); (A.L.M.); (V.Y.Z.)
| | - Aleksander L. Matveyev
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia; (A.A.S.); (L.A.M.); (A.L.M.); (V.Y.Z.)
| | - Dmitry A. Vorontsov
- Nizhny Novgorod Regional Oncologic Hospital, 11/1 Delovaya St., 603126 Nizhny Novgorod, Russia; (D.A.V.); (S.S.K.); (S.V.G.); (A.Y.V.)
| | - Anton A. Plekhanov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia; (A.A.P.); (M.A.S.); (N.D.G.)
| | - Sergey S. Kuznetsov
- Nizhny Novgorod Regional Oncologic Hospital, 11/1 Delovaya St., 603126 Nizhny Novgorod, Russia; (D.A.V.); (S.S.K.); (S.V.G.); (A.Y.V.)
- Department of Pathology, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Sergey V. Gamayunov
- Nizhny Novgorod Regional Oncologic Hospital, 11/1 Delovaya St., 603126 Nizhny Novgorod, Russia; (D.A.V.); (S.S.K.); (S.V.G.); (A.Y.V.)
| | - Alexey Y. Vorontsov
- Nizhny Novgorod Regional Oncologic Hospital, 11/1 Delovaya St., 603126 Nizhny Novgorod, Russia; (D.A.V.); (S.S.K.); (S.V.G.); (A.Y.V.)
| | - Marina A. Sirotkina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia; (A.A.P.); (M.A.S.); (N.D.G.)
| | - Natalia D. Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia; (A.A.P.); (M.A.S.); (N.D.G.)
| | - Vladimir Y. Zaitsev
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova St., 603950 Nizhny Novgorod, Russia; (A.A.S.); (L.A.M.); (A.L.M.); (V.Y.Z.)
| |
Collapse
|
7
|
Gubarkova EV, Sovetsky AA, Vorontsov DA, Buday PA, Sirotkina MA, Plekhanov AA, Kuznetsov SS, Matveyev AL, Matveev LA, Gamayunov SV, Vorontsov AY, Zaitsev VY, Gladkova ND. Compression optical coherence elastography versus strain ultrasound elastography for breast cancer detection and differentiation: pilot study. BIOMEDICAL OPTICS EXPRESS 2022; 13:2859-2881. [PMID: 35774307 PMCID: PMC9203088 DOI: 10.1364/boe.451059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 05/20/2023]
Abstract
The aims of this study are (i) to compare ultrasound strain elastography (US-SE) and compression optical coherence elastography (C-OCE) in characterization of elastically linear phantoms, (ii) to evaluate factors that can cause discrepancy between the results of the two elastographic techniques in application to real tissues, and (iii) to compare the results of US-SE and C-OCE in the differentiation of benign and malignant breast lesions. On 22 patients, we first used standard US-SE for in vivo assessment of breast cancer before and then after the lesion excision C-OCE was applied for intraoperative visualization of margins of the tumors and assessment of their type/grade using fresh lumpectomy specimens. For verification, the tumor grades and subtypes were determined histologically. We show that in comparison to US-SE, quantitative C-OCE has novel capabilities due to its ability to locally control stress applied to the tissue and obtain local stress-strain curves. For US-SE, we demonstrate examples of malignant tumors that were erroneously classified as benign and vice versa. For C-OCE, all lesions are correctly classified in agreement with the histology. The revealed discrepancies between the strain ratio given by US-SE and ratio of tangent Young's moduli obtained for the same samples by C-OCE are explained. Overall, C-OCE enables significantly improved specificity in breast lesion differentiation and ability to precisely visualize margins of malignant tumors compared. Such results confirm high potential of C-OCE as a high-speed and accurate method for intraoperative assessment of breast tumors and detection of their margins.
Collapse
Affiliation(s)
| | | | | | - Pavel A. Buday
- Nizhny Novgorod Regional Oncologic Hospital, Nizhny Novgorod, Russia
| | | | | | | | | | - Lev A. Matveev
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
| | | | | | - Vladimir Y. Zaitsev
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Equally contributed
| | - Natalia D. Gladkova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Equally contributed
| |
Collapse
|
8
|
Singh M, Zvietcovich F, Larin KV. Introduction to optical coherence elastography: tutorial. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:418-430. [PMID: 35297425 PMCID: PMC10052825 DOI: 10.1364/josaa.444808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/25/2022] [Indexed: 06/03/2023]
Abstract
Optical coherence elastography (OCE) has seen rapid growth since its introduction in 1998. The past few decades have seen tremendous advancements in the development of OCE technology and a wide range of applications, including the first clinical applications. This tutorial introduces the basics of solid mechanics, which form the foundation of all elastography methods. We then describe how OCE measurements of tissue motion can be used to quantify tissue biomechanical parameters. We also detail various types of excitation methods, imaging systems, acquisition schemes, and data processing algorithms and how various parameters associated with each step of OCE imaging can affect the final quantitation of biomechanical properties. Finally, we discuss the future of OCE, its potential, and the next steps required for OCE to become an established medical imaging technology.
Collapse
Affiliation(s)
- Manmohan Singh
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Fernando Zvietcovich
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima 15088, Peru
| | - Kirill V. Larin
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|