1
|
Demirhan Aydin G, Akar OS, Akin T. Wafer Level Vacuum Packaging of MEMS-Based Uncooled Infrared Sensors. MICROMACHINES 2024; 15:935. [PMID: 39203586 PMCID: PMC11356317 DOI: 10.3390/mi15080935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 09/03/2024]
Abstract
This paper introduces a cost-effective, high-performance approach to achieving wafer level vacuum packaging (WLVP) for MEMS-based uncooled infrared sensors. Reliable and hermetic packages for MEMS devices are achieved using a cap wafer that is formed using two silicon wafers, where one wafer has precise grating/moth-eye structures on both sides of a double-sided polished wafer for improved transmission of over 80% in the long-wave infrared (LWIR) wavelength region without the need for an AR coating, while the other wafer is used to form a cavity. The two wafers are bonded using Au-In transient liquid phase (TLP) bonding at low temperature to form the cap wafer, which is then bondelectrical and Electronics d to the sensor wafer using glass frit bonding at high temperature to activate the getter inside the cavity region. The bond quality is assessed using three methods, including He-leak tests, cap deflection, and Pirani vacuum gauges. Hermeticity is confirmed through He-leak tests according to MIL-STD 883, yielding values as low as 0.1 × 10-9 atm·cc/s. The average shear strength is measured as 23.38 MPa. The package pressure varies from 133-533 Pa without the getter usage to as low as 0.13 Pa with the getter usage.
Collapse
Affiliation(s)
- Gulsah Demirhan Aydin
- METU MEMS Centre, Middle East Technical University, Ankara 06530, Turkey
- Electrical and Electronics Engineering Department, Baskent University, Ankara 06790, Turkey
| | - Orhan Sevket Akar
- METU MEMS Centre, Middle East Technical University, Ankara 06530, Turkey
| | - Tayfun Akin
- MikroSens Elektronik San ve Tic A.S., Ankara 06530, Turkey
- Electrical and Electronics Engineering Department, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
2
|
Jin Q, Guo T, Pérez N, Yang N, Jiang X, Nielsch K, Reith H. On-Chip Micro Temperature Controllers Based on Freestanding Thermoelectric Nano Films for Low-Power Electronics. NANO-MICRO LETTERS 2024; 16:126. [PMID: 38376667 PMCID: PMC10879069 DOI: 10.1007/s40820-024-01342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024]
Abstract
Multidimensional integration and multifunctional component assembly have been greatly explored in recent years to extend Moore's Law of modern microelectronics. However, this inevitably exacerbates the inhomogeneity of temperature distribution in microsystems, making precise temperature control for electronic components extremely challenging. Herein, we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50 × 50 μm2, which are fabricated from dense and flat freestanding Bi2Te3-based thermoelectric nano films deposited on a newly developed nano graphene oxide membrane substrate. Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics. A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445 μW, resulting in an ultrahigh temperature control capability over 100 K mW-1. Moreover, an ultra-fast cooling rate exceeding 2000 K s-1 and excellent reliability of up to 1 million cycles are observed. Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.
Collapse
Affiliation(s)
- Qun Jin
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany.
| | - Tianxiao Guo
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nicolás Pérez
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Kornelius Nielsch
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany.
- Institute of Applied Physics, Technical University of Dresden, 01069, Dresden, Germany.
- Institute of Materials Science, Technical University of Dresden, 01069, Dresden, Germany.
| | - Heiko Reith
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany.
| |
Collapse
|
3
|
Jin Q, Zhao Y, Long X, Jiang S, Qian C, Ding F, Wang Z, Li X, Yu Z, He J, Song Y, Yu H, Wan Y, Tai K, Gao N, Tan J, Liu C, Cheng HM. Flexible Carbon Nanotube-Epitaxially Grown Nanocrystals for Micro-Thermoelectric Modules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304751. [PMID: 37533116 DOI: 10.1002/adma.202304751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Indexed: 08/04/2023]
Abstract
Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high-spatial-resolution thermal management. However, a high-performance flexible micro-thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals-coupling, to fabricate freestanding and flexible hybrids comprised of single-wall carbon nanotubes and ordered (Bi,Sb)2 Te3 nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m-1 K-2 in the temperature range of 300-480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro-TED module consisting of two p-n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm-2 under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm-2 .
Collapse
Affiliation(s)
- Qun Jin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Shenyang, 110016, China
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Yang Zhao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Xuehao Long
- Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation, Shandong University, Qingdao, 266000, China
- School of Science, Hunan University of Technology, Zhuzhou, 412000, China
| | - Song Jiang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Shenyang, 110016, China
| | - Cheng Qian
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Feng Ding
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
- Faculty of Materials Science and Energy Engineering Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China
| | - Ziqiang Wang
- Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation, Shandong University, Qingdao, 266000, China
- Key Laboratory of Bionic Engineering Ministry of Education, Jilin University, Changchun, 130000, China
| | - Xiaoqi Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Zhi Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Juan He
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Yujie Song
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Hailong Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Ye Wan
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang, 110016, China
| | - Kaiping Tai
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
- Ji Hua Laboratory, Advanced Manufacturing Science and Technology Guangdong Laboratory, Foshan, 528000, China
| | - Ning Gao
- Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation, Shandong University, Qingdao, 266000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jun Tan
- Ji Hua Laboratory, Advanced Manufacturing Science and Technology Guangdong Laboratory, Foshan, 528000, China
- Foshan Univerisity, Foshan, 528000, China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- Faculty of Materials Science and Energy Engineering Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China
| |
Collapse
|
7
|
Ghaffari S, Chandorkar SA, Wang S, Ng EJ, Ahn CH, Hong V, Yang Y, Kenny TW. Quantum limit of quality factor in silicon micro and nano mechanical resonators. Sci Rep 2013; 3:3244. [PMID: 24247809 PMCID: PMC3832850 DOI: 10.1038/srep03244] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/01/2013] [Indexed: 11/09/2022] Open
Abstract
Micromechanical resonators are promising replacements for quartz crystals for timing and frequency references owing to potential for compactness, integrability with CMOS fabrication processes, low cost, and low power consumption. To be used in high performance reference application, resonators should obtain a high quality factor. The limit of the quality factor achieved by a resonator is set by the material properties, geometry and operating condition. Some recent resonators properly designed for exploiting bulk-acoustic resonance have been demonstrated to operate close to the quantum mechanical limit for the quality factor and frequency product (Q-f). Here, we describe the physics that gives rise to the quantum limit to the Q-f product, explain design strategies for minimizing other dissipation sources, and present new results from several different resonators that approach the limit.
Collapse
Affiliation(s)
- Shirin Ghaffari
- Stanford University, Mechanical Engineering Department, 440 Escondido Mall, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sutanto J, Anand S, Patel C, Muthuswamy J. Novel First-Level Interconnect Techniques for Flip Chip on MEMS Devices. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2011; 21:132-144. [PMID: 24504168 PMCID: PMC3913265 DOI: 10.1109/jmems.2011.2171326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Flip-chip packaging is desirable for microelectro-mechanical systems (MEMS) devices because it reduces the overall package size and allows scaling up the number of MEMS chips through 3-D stacks. In this report, we demonstrate three novel techniques to create first-level interconnect (FLI) on MEMS: 1) Dip and attach technology for Ag epoxy; 2) Dispense technology for solder paste; 3) Dispense, pull, and attach technology (DPAT) for solder paste. The above techniques required no additional microfabrication steps, produced no visible surface contamination on the MEMS active structures, and generated high-aspect-ratio interconnects. The developed FLIs were successfully tested on MEMS moveable microelectrodes microfabricated by SUMMiTVTM process producing no apparent detrimental effect due to outgassing. The bumping processes were successfully applied on Al-deposited bond pads of 100 μm × 100 μm with an average bump height of 101.3 μm for Ag and 184.8 μm for solder (63Sn, 37Pb). DPAT for solder paste produced bumps with the aspect ratio of 1.8 or more. The average shear strengths of Ag and solder bumps were 78 MPa and 689 kPa, respectively. The electrical test on Ag bumps at 794 A/cm2 demonstrated reliable electrical interconnects with negligible resistance. These scalable FLI technologies are potentially useful for MEMS flip-chip packaging and 3-D stacking.
Collapse
Affiliation(s)
- Jemmy Sutanto
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709 USA
| | - Sindhu Anand
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709 USA
| | - Chetan Patel
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709 USA
| | - Jit Muthuswamy
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709 USA
| |
Collapse
|