1
|
Hossein FS, Naghavi N, Sazgarnia A, Noghreiyan AV. Modeling synergy and individual effects of X-ray induced photodynamic therapy components. Sci Rep 2025; 15:453. [PMID: 39748114 PMCID: PMC11696517 DOI: 10.1038/s41598-024-84766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
X-ray induced photodynamic therapy (XPDT) utilizes self-lighting nanoparticles to combine the benefits of radiotherapy and photodynamic therapy. These nanomaterials transform X-ray to visible light that can be absorbed by nearby photosensitizers and in the presence of surrounding oxygen molecules generates reactive oxygen species, which are very toxic to the cells. Despite many studies conducted on modelling XPDT, little focused on the contribution of each component as well as their synergy effects. We developed a multiscale physicochemical model of XPDT to incorporate the key role of molecular oxygen in PDT component efficiency. Simultaneously, the effects of RT in the presence of TiO2 nanoscintillators evaluated experimentally on HT-29 cell line. Simulation results predicted necrosis and apoptosis death of cancerous cells and estimated the minimum XPDT efficiency under specific conditions. The calculated synergism index estimated a synergism ratio greater than one indicated that tumor growth inhibition in XPDT is greater than the sum of each treatment component alone.
Collapse
Affiliation(s)
- Farideh S Hossein
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nadia Naghavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
2
|
Yamagishi M, Miyata K, Kamatani T, Kabata H, Baba R, Tanaka Y, Suzuki N, Matsusaka M, Motomura Y, Kiniwa T, Koga S, Goda K, Ohara O, Funatsu T, Fukunaga K, Moro K, Uemura S, Shirasaki Y. Quantitative live-cell imaging of secretion activity reveals dynamic immune responses. iScience 2024; 27:109840. [PMID: 38779479 PMCID: PMC11109006 DOI: 10.1016/j.isci.2024.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Quantification of cytokine secretion has facilitated advances in the field of immunology, yet the dynamic and varied secretion profiles of individual cells, particularly those obtained from limited human samples, remain obscure. Herein, we introduce a technology for quantitative live-cell imaging of secretion activity (qLCI-S) that enables high-throughput and dual-color monitoring of secretion activity at the single-cell level over several days, followed by transcriptome analysis of individual cells based on their phenotype. The efficacy of qLCI-S was demonstrated by visualizing the characteristic temporal pattern of cytokine secretion of group 2 innate lymphoid cells, which constitute less than 0.01% of human peripheral blood mononuclear cells, and by revealing minor subpopulations with enhanced cytokine production. The underlying mechanism of this feature was linked to the gene expression of stimuli receptors. This technology paves the way for exploring gene expression signatures linked to the spatiotemporal dynamic nature of various secretory functions.
Collapse
Affiliation(s)
- Mai Yamagishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Live Cell Diagnosis, Ltd., Saitama 351-0022, Japan
| | - Kaede Miyata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Kamatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of AI Technology Development, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Division of Precision Cancer Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Rie Baba
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yumiko Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nobutake Suzuki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masako Matsusaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasutaka Motomura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Kiniwa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Satoshi Koga
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Keisuke Goda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
| | - Osamu Ohara
- KAZUSA DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuyo Moro
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka Shirasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Hosseini FS, Naghavi N, Sazgarnia A. A physicochemical model of X-ray induced photodynamic therapy (X-PDT) with an emphasis on tissue oxygen concentration and oxygenation. Sci Rep 2023; 13:17882. [PMID: 37857727 PMCID: PMC10587104 DOI: 10.1038/s41598-023-44734-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
X-PDT is one of the novel cancer treatment approaches that uses high penetration X-ray radiation to activate photosensitizers (PSs) placed in deep seated tumors. After PS activation, some reactive oxygen species (ROS) like singlet oxygen (1O2) are produced that are very toxic for adjacent cells. Efficiency of X-PDT depends on 1O2 quantum yield as well as X-ray mortality rate. Despite many studies have been modeled X-PDT, little is known about the investigation of tissue oxygen content in treatment outcome. In the present study, we predicted X-PDT efficiency through a feedback of physiological parameters of tumor microenvironment includes tissue oxygen and oxygenation properties. The introduced physicochemical model of X-PDT estimates 1O2 production in a vascularized and non-vascularized tumor under different tissue oxygen levels to predict cell death probability in tumor and adjacent normal tissue. The results emphasized the importance of molecular oxygen and the presence of a vascular network in predicting X-PDT efficiency.
Collapse
Affiliation(s)
- Farideh S Hosseini
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nadia Naghavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Barrett JN, Barrett EF, Rajguru SM. Mitochondrial responses to intracellular Ca 2+ release following infrared stimulation. J Neurophysiol 2023; 129:700-716. [PMID: 36752512 PMCID: PMC10026987 DOI: 10.1152/jn.00293.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Many studies of Ca2+ effects on mitochondrial respiration in intact cells have used electrical and/or chemical stimulation to elevate intracellular [Ca2+], and have reported increases in [NADH] and increased ADP/ATP ratios as dominant controllers of respiration. This study tested a different form of stimulation: brief temperature increases produced by pulses of infrared light (IR, 1,863 nm, 8-10°C for ∼5 s). Fluorescence imaging techniques applied to single PC-12 cells in low µM extracellular [Ca2+] revealed IR stimulation-induced increases in both cytosolic (fluo5F) and mitochondrial (rhod2) [Ca2+]. IR stimulation increased O2 consumption (porphyrin fluorescence), and produced an alkaline shift in mitochondrial matrix pH (Snarf1), indicating activation of the electron transport chain (ETC). The increase in O2 consumption persisted in oligomycin, and began during a decrease in NADH, suggesting that the initial increase in ETC activity was not driven by increased ATP synthase activity or an increased fuel supply to ETC complex I. Imaging with two potentiometric dyes [tetramethyl rhodamine methyl ester (TMRM) and R123] indicated a depolarizing shift in ΔΨm that persisted in high [K+] medium. High-resolution fluorescence imaging disclosed large, reversible mitochondrial depolarizations that were inhibited by cyclosporin A (CSA), consistent with the opening of transient mitochondrial permeability transition pores. IR stimulation also produced a Ca2+-dependent increase in superoxide production (MitoSox) that was not inhibited by CSA, indicating that the increase in superoxide did not require transition pore opening. Thus, the intracellular Ca2+ release that follows pulses of infrared light offers new insights into Ca2+-dependent processes controlling respiration and reactive oxygen species in intact cells.NEW & NOTEWORTHY Pulses of infrared light (IR) provide a novel method for rapidly transferring Ca2+ from the endoplasmic reticulum to mitochondria in intact cells. In PC12 cells the resulting ETC activation was not driven by increased ATP synthase activity or NADH. IR stimulation produced a Ca2+-dependent, reversible depolarization of ΔΨm that was partially blocked by cyclosporin A, and a Ca2+-dependent increase in superoxide that did not require transition pore opening.
Collapse
Affiliation(s)
- John N Barrett
- Department of Physiology and Biophysics, University of Miami, Florida, United States
- Neuroscience Program, University of Miami, Florida, United States
| | - Ellen F Barrett
- Department of Physiology and Biophysics, University of Miami, Florida, United States
- Neuroscience Program, University of Miami, Florida, United States
| | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, Florida, United States
- Department of Otolaryngology, University of Miami, Florida, United States
| |
Collapse
|
5
|
Manzoor AA, Romita L, Hwang DK. A review on microwell and microfluidic geometric array fabrication techniques and its potential applications in cellular studies. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ahmad Ali Manzoor
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| | - Lauren Romita
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering Ryerson University Toronto Ontario Canada
- Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto Ontario Canada
- Institute for Biomedical Engineering Science and Technology (iBEST) A partnership between Ryerson University and St. Michael's Hospital Toronto Ontario Canada
| |
Collapse
|
6
|
Grate JW, Liu B, Kelly RT, Anheier NC, Schmidt TM. Microfluidic Sensors with Impregnated Fluorophores for Simultaneous Imaging of Spatial Structure and Chemical Oxygen Gradients. ACS Sens 2019; 4:317-325. [PMID: 30609370 DOI: 10.1021/acssensors.8b00924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interior surfaces of polystyrene microfluidic structures were impregnated with the oxygen sensing dye Pt(II) tetra(pentafluorophenyl)porphyrin (PtTFPP) using a solvent-induced fluorophore impregnation (SIFI) method. Using this technique, microfluidic oxygen sensors are obtained that enable simultaneous imaging of both chemical oxygen gradients and the physical structure of the microfluidic interior. A gentle method of fluorophore impregnation using acetonitrile solutions of PtTFPP at 50 °C was developed leading to a 10-μm-deep region containing fluorophore. This region is localized at the surface to sense oxygen in the interior fluid during use. Regions of the device that do not contact the interior fluid pathways lack fluorophores and are dark in fluorescent imaging. The technique was demonstrated on straight microchannel and pore network devices, the latter having pillars of 300 μm diameter spaced center to center at 340 μm providing pore throats of 40 μm. Sensing within channels or pores and imaging across the pore network devices were performed using a Lambert LIFA-P frequency domain fluorescence lifetime imaging system on a Leica microscope platform. Calibrations of different devices prepared by the SIFI method were indistinguishable. Gradient imaging showed fluorescent regions corresponding to the fluid pore network, dark pillars, and fluorescent lifetime varying across the gradient, thus providing both physical and chemical imaging. More generally, the SIFI technique can impregnate the interior surfaces of other polystyrene containers, such as cuvettes or cell and tissue culture containers, to enable sensing of interior conditions.
Collapse
Affiliation(s)
- Jay W. Grate
- Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Bingwen Liu
- Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Ryan T. Kelly
- Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Norman C. Anheier
- Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Thomas M. Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Abstract
Functional and genomic heterogeneity of individual cells are central players in a broad spectrum of normal and disease states. Our knowledge about the role of cellular heterogeneity in tissue and organism function remains limited due to analytical challenges one encounters when performing single cell studies in the context of cell-cell interactions. Information based on bulk samples represents ensemble averages over populations of cells, while data generated from isolated single cells do not account for intercellular interactions. We describe a new technology and demonstrate two important advantages over existing technologies: first, it enables multiparameter energy metabolism profiling of small cell populations (<100 cells)—a sample size that is at least an order of magnitude smaller than other, commercially available technologies; second, it can perform simultaneous real-time measurements of oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and mitochondrial membrane potential (MMP)—a capability not offered by any other commercially available technology. Our results revealed substantial diversity in response kinetics of the three analytes in dysplastic human epithelial esophageal cells and suggest the existence of varying cellular energy metabolism profiles and their kinetics among small populations of cells. The technology represents a powerful analytical tool for multiparameter studies of cellular function.
Collapse
|
8
|
Kelbauskas L, Glenn H, Anderson C, Messner J, Lee KB, Song G, Houkal J, Su F, Zhang L, Tian Y, Wang H, Bussey K, Johnson RH, Meldrum DR. A platform for high-throughput bioenergy production phenotype characterization in single cells. Sci Rep 2017; 7:45399. [PMID: 28349963 PMCID: PMC5368665 DOI: 10.1038/srep45399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Driven by an increasing number of studies demonstrating its relevance to a broad variety of disease states, the bioenergy production phenotype has been widely characterized at the bulk sample level. Its cell-to-cell variability, a key player associated with cancer cell survival and recurrence, however, remains poorly understood due to ensemble averaging of the current approaches. We present a technology platform for performing oxygen consumption and extracellular acidification measurements of several hundreds to 1,000 individual cells per assay, while offering simultaneous analysis of cellular communication effects on the energy production phenotype. The platform comprises two major components: a tandem optical sensor for combined oxygen and pH detection, and a microwell device for isolation and analysis of single and few cells in hermetically sealed sub-nanoliter chambers. Our approach revealed subpopulations of cells with aberrant energy production profiles and enables determination of cellular response variability to electron transfer chain inhibitors and ion uncouplers.
Collapse
Affiliation(s)
- Laimonas Kelbauskas
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Honor Glenn
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Clifford Anderson
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Jacob Messner
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Kristen B. Lee
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Ganquan Song
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Jeff Houkal
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Fengyu Su
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Liqiang Zhang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Yanqing Tian
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Hong Wang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Kimberly Bussey
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Roger H. Johnson
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| | - Deirdre R. Meldrum
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001S. McAllister Ave., Tempe, AZ 85287, USA
| |
Collapse
|
9
|
Pham TD, Wallace DC, Burke PJ. Microchambers with Solid-State Phosphorescent Sensor for Measuring Single Mitochondrial Respiration. SENSORS 2016; 16:s16071065. [PMID: 27409618 PMCID: PMC4970112 DOI: 10.3390/s16071065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 11/16/2022]
Abstract
It is now well established that, even within a single cell, multiple copies of the mitochondrial genome may be present (genetic heteroplasmy). It would be interesting to develop techniques to determine if and to what extent this genetic variation results in functional variation from one mitochondrion to the next (functional heteroplasmy). Measuring mitochondrial respiration can reveal the organelles’ functional capacity for Adenosine triphosphate (ATP) production and determine mitochondrial damage that may arise from genetic or age related defects. However, available technologies require significant quantities of mitochondria. Here, we develop a technology to assay the respiration of a single mitochondrion. Our “micro-respirometer” consists of micron sized chambers etched out of borofloat glass substrates and coated with an oxygen sensitive phosphorescent dye Pt(II) meso-tetra(pentafluorophenyl)porphine (PtTFPP) mixed with polystyrene. The chambers are sealed with a polydimethylsiloxane layer coated with oxygen impermeable Viton rubber to prevent diffusion of oxygen from the environment. As the mitochondria consume oxygen in the chamber, the phosphorescence signal increases, allowing direct determination of the respiration rate. Experiments with coupled vs. uncoupled mitochondria showed a substantial difference in respiration, confirming the validity of the microchambers as single mitochondrial respirometers. This demonstration could enable future high-throughput assays of mitochondrial respiration and benefit the study of mitochondrial functional heterogeneity, and its role in health and disease.
Collapse
Affiliation(s)
- Ted D Pham
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Peter J Burke
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
- Department of Electrical Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
10
|
Abstract
Hypoxia is a common finding in advanced human tumors and is often associated with metastatic dissemination and poor prognosis. Cancer cells adapt to hypoxia by utilizing physiological adaptation pathways that promote a switch from oxidative to glycolytic metabolism. This promotes the conversion of glucose into lactate while limiting its transformation into acetyl coenzyme A (acetyl-CoA). The uptake of glucose and the glycolytic flux are increased under hypoxic conditions, mostly owing to the upregulation of genes encoding glucose transporters and glycolytic enzymes, a process that depends on hypoxia-inducible factor 1 (HIF-1). The reduced delivery of acetyl-CoA to the tricarboxylic acid cycle leads to a switch from glucose to glutamine as the major substrate for fatty acid synthesis in hypoxic cells. In addition, hypoxia induces (1) the HIF-1-dependent expression of BCL2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3) and BNIP3-like (BNIP3L), which trigger mitochondrial autophagy, thereby decreasing the oxidative metabolism of both fatty acids and glucose, and (2) the expression of the sodium-hydrogen exchanger NHE1, which maintains an alkaline intracellular pH. Here, we present a compendium of methods to study hypoxia-induced metabolic alterations.
Collapse
|
11
|
Sun S, Ungerböck B, Mayr T. Imaging of oxygen in microreactors and microfluidic systems. Methods Appl Fluoresc 2015; 3:034002. [DOI: 10.1088/2050-6120/3/3/034002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Malucelli E, Iotti S, Gianoncelli A, Fratini M, Merolle L, Notargiacomo A, Marraccini C, Sargenti A, Cappadone C, Farruggia G, Bukreeva I, Lombardo M, Trombini C, Maier JA, Lagomarsino S. Quantitative chemical imaging of the intracellular spatial distribution of fundamental elements and light metals in single cells. Anal Chem 2014; 86:5108-15. [PMID: 24734900 DOI: 10.1021/ac5008909] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a method that allows a complete quantitative characterization of whole single cells, assessing the total amount of carbon, nitrogen, oxygen, sodium, and magnesium and providing submicrometer maps of element molar concentration, cell density, mass, and volume. This approach allows quantifying elements down to 10(6) atoms/μm(3). This result was obtained by applying a multimodal fusion approach that combines synchrotron radiation microscopy techniques with off-line atomic force microscopy. The method proposed permits us to find the element concentration in addition to the mass fraction and provides a deeper and more complete knowledge of cell composition. We performed measurements on LoVo human colon cancer cells sensitive (LoVo-S) and resistant (LoVo-R) to doxorubicin. The comparison of LoVo-S and LoVo-R revealed different patterns in the maps of Mg concentration with higher values within the nucleus in LoVo-R and in the perinuclear region in LoVo-S cells. This feature was not so evident for the other elements, suggesting that Mg compartmentalization could be a significant trait of the drug-resistant cells.
Collapse
Affiliation(s)
- Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna , Bologna 40127, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Protein secretion, a key intercellular event for transducing cellular signals, is thought to be strictly regulated. However, secretion dynamics at the single-cell level have not yet been clarified because intercellular heterogeneity results in an averaging response from the bulk cell population. To address this issue, we developed a novel assay platform for real-time imaging of protein secretion at single-cell resolution by a sandwich immunoassay monitored by total internal reflection microscopy in sub-nanolitre-sized microwell arrays. Real-time secretion imaging on the platform at 1-min time intervals allowed successful detection of the heterogeneous onset time of nonclassical IL-1β secretion from monocytes after external stimulation. The platform also helped in elucidating the chronological relationship between loss of membrane integrity and IL-1β secretion. The study results indicate that this unique monitoring platform will serve as a new and powerful tool for analysing protein secretion dynamics with simultaneous monitoring of intracellular events by live-cell imaging.
Collapse
|
14
|
Shi X, Gao W, Wang J, Chao SH, Zhang W, Meldrum DR. Measuring gene expression in single bacterial cells: recent advances in methods and micro-devices. Crit Rev Biotechnol 2014; 35:448-60. [DOI: 10.3109/07388551.2014.899556] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Fitzgerald NS, Burgess LW, Yang JCY, Kim PJ, Jang SH, Jen AKY. Long-pulsed luminescence for the measurement of dissolved oxygen. APPLIED SPECTROSCOPY 2014; 68:315-323. [PMID: 24666948 DOI: 10.1366/13-07195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Thin-film luminescent sensors were used to measure dissolved oxygen in picoliter volumes for the purpose of monitoring single-cell oxygen consumption rates, and that work served as the motivation for the development of the method described here. A few different platinum porphyrin sensor materials were examined, with all measurements conducted microscopically. By employing convolution theory to understand observed responses, including an unexpected red luminescent emission from an optic, we developed a new, rapid method for the determination of exponential decay lifetime. This new method of long-pulsed luminescence offers substantially improved signal-to-noise ratios for detected signals as long as self-illumination sources are carefully controlled in the experimental set-up.
Collapse
Affiliation(s)
- Noel S Fitzgerald
- University of Washington, Department of Chemistry, Seattle, WA 98195 USA
| | - Lloyd W Burgess
- University of Washington, Department of Chemistry, Seattle, WA 98195 USA
| | - Jeffrey C-Y Yang
- University of Washington, Department of Chemistry, Seattle, WA 98195 USA
| | - Prince J Kim
- University of Washington, Department of Chemistry, Seattle, WA 98195 USA
| | - Sei-Hum Jang
- University of Washington, Department of Chemistry, Seattle, WA 98195 USA
| | - Alex K-Y Jen
- University of Washington, Department of Chemistry, Seattle, WA 98195 USA
| |
Collapse
|
16
|
Oxygen consumption rates of bacteria under nutrient-limited conditions. Appl Environ Microbiol 2013; 79:4921-31. [PMID: 23770901 DOI: 10.1128/aem.00756-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many environments on Earth experience nutrient limitation and as a result have nongrowing or very slowly growing bacterial populations. To better understand bacterial respiration under environmentally relevant conditions, the effect of nutrient limitation on respiration rates of heterotrophic bacteria was measured. The oxygen consumption and population density of batch cultures of Escherichia coli K-12, Shewanella oneidensis MR-1, and Marinobacter aquaeolei VT8 were tracked for up to 200 days. The oxygen consumption per CFU (QO2) declined by more than 2 orders of magnitude for all three strains as they transitioned from nutrient-abundant log-phase growth to the nutrient-limited early stationary phase. The large reduction in QO2 from growth to stationary phase suggests that nutrient availability is an important factor in considering environmental respiration rates. Following the death phase, during the long-term stationary phase (LTSP), QO2 values of the surviving population increased with time and more cells were respiring than formed colonies. Within the respiring population, a subpopulation of highly respiring cells increased in abundance with time. Apparently, as cells enter LTSP, there is a viable but not culturable population whose bulk community and per cell respiration rates are dynamic. This result has a bearing on how minimal energy requirements are met, especially in nutrient-limited environments. The minimal QO2 rates support the extension of Kleiber's law to the mass of a bacterium (100-fg range).
Collapse
|
17
|
Kelbauskas L, Ashili SP, Houkal J, Smith D, Mohammadreza A, Lee KB, Forrester J, Kumar A, Anis YH, Paulson TG, Youngbull CA, Tian Y, Holl MR, Johnson RH, Meldrum DR. Method for physiologic phenotype characterization at the single-cell level in non-interacting and interacting cells. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:037008. [PMID: 22502580 PMCID: PMC3602818 DOI: 10.1117/1.jbo.17.3.037008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 05/31/2023]
Abstract
Intercellular heterogeneity is a key factor in a variety of core cellular processes including proliferation, stimulus response, carcinogenesis, and drug resistance. However, cell-to-cell variability studies at the single-cell level have been hampered by the lack of enabling experimental techniques. We present a measurement platform that features the capability to quantify oxygen consumption rates of individual, non-interacting and interacting cells under normoxic and hypoxic conditions. It is based on real-time concentration measurements of metabolites of interest by means of extracellular optical sensors in cell-isolating microwells of subnanoliter volume. We present the results of a series of measurements of oxygen consumption rates (OCRs) of individual non-interacting and interacting human epithelial cells. We measured the effects of cell-to-cell interactions by using the system's capability to isolate two and three cells in a single well. The major advantages of the approach are: 1. ratiometric, intensity-based characterization of the metabolic phenotype at the single-cell level, 2. minimal invasiveness due to the distant positioning of sensors, and 3. ability to study the effects of cell-cell interactions on cellular respiration rates.
Collapse
|
18
|
Huang SH, Hsu YH, Wu CW, Wu CJ. Light-addressable measurements of cellular oxygen consumption rates in microwell arrays based on phase-based phosphorescence lifetime detection. BIOMICROFLUIDICS 2012; 6:44118. [PMID: 24348889 PMCID: PMC3555697 DOI: 10.1063/1.4772604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/04/2012] [Indexed: 05/02/2023]
Abstract
A digital light modulation system that utilizes a modified commercial digital micromirror device (DMD) projector, which is equipped with a UV light-emitting diode as a light modulation source, has been developed to spatially direct excited light toward a microwell array device to detect the oxygen consumption rate (OCR) of single cells via phase-based phosphorescence lifetime detection. The microwell array device is composed of a combination of two components: an array of glass microwells containing Pt(II) octaethylporphine (PtOEP) as the oxygen-sensitive luminescent layer and a microfluidic module with pneumatically actuated glass lids set above the microwells to controllably seal the microwells of interest. By controlling the illumination pattern on the DMD, the modulated excitation light can be spatially projected to only excite the sealed microwell for cellular OCR measurements. The OCR of baby hamster kidney-21 fibroblast cells cultivated on the PtOEP layer within a sealed microwell has been successfully measured at 104 ± 2.96 amol s(-1) cell(-1). Repeatable and consistent measurements indicate that the oxygen measurements did not adversely affect the physiological state of the measured cells. The OCR of the cells exhibited a good linear relationship with the diameter of the microwells, ranging from 400 to 1000 μm and containing approximately 480 to 1200 cells within a microwell. In addition, the OCR variation of single cells in situ infected by Dengue virus with a different multiplicity of infection was also successfully measured in real-time. This proposed platform provides the potential for a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery.
Collapse
Affiliation(s)
- Shih-Hao Huang
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2, Beining Rd., Keelung 202-24, Taiwan ; Center for Marine Bioenvironment and Biotechnology (CMBB), National Taiwan Ocean University, Keelung 202-24, Taiwan
| | - Yu-Hsuan Hsu
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2, Beining Rd., Keelung 202-24, Taiwan
| | - Chih-Wei Wu
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2, Beining Rd., Keelung 202-24, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202-24, Taiwan
| |
Collapse
|
19
|
Halevy R, Tormyshev V, Blank A. Microimaging of oxygen concentration near live photosynthetic cells by electron spin resonance. Biophys J 2010; 99:971-8. [PMID: 20682276 DOI: 10.1016/j.bpj.2010.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/13/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022] Open
Abstract
We present what is, to our knowledge, a new methodology for high-resolution three-dimensional imaging of oxygen concentration near live cells. The cells are placed in the buffer solution of a stable paramagnetic probe, and electron spin-resonance microimaging is employed to map out the probe's spin-spin relaxation time (T(2)). This information is directly linked to the concentration of the oxygen molecule. The method is demonstrated with a test sample and with a small amount of live photosynthetic cells (cyanobacteria), under conditions of darkness and light. Spatial resolution of approximately 30 x 30 x 100 microm is demonstrated, with approximately microM oxygen concentration sensitivity and sub-fmol absolute oxygen sensitivity per voxel. The use of electron spin-resonance microimaging for oxygen mapping near cells complements the currently available techniques based on microelectrodes or fluorescence/phosphorescence. Furthermore, with the proper paramagnetic probe, it will also be readily applicable for intracellular oxygen microimaging, a capability which other methods find very difficult to achieve.
Collapse
Affiliation(s)
- Revital Halevy
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
20
|
Vincent ME, Liu W, Haney EB, Ismagilov RF. Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals. Chem Soc Rev 2010; 39:974-84. [PMID: 20179819 PMCID: PMC2829723 DOI: 10.1039/b917851a] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Rare cells can be difficult to analyze because they either occur in low numbers or coexist with a more abundant cell type, yet their detection is crucial for diagnosing disease and maintaining human health. In this tutorial review, we introduce the concept of microfluidic stochastic confinement for use in detection and analysis of rare cells. Stochastic confinement provides two advantages: (1) it separates rare single cells from the bulk mixture and (2) it allows signals to locally accumulate to a higher concentration around a single cell than in the bulk mixture. Microfluidics is an attractive method for implementing stochastic confinement because it provides simple handling of small volumes. We present technologies for microfluidic stochastic confinement that utilize both wells and droplets for the detection and analysis of single cells. We address how these microfluidic technologies have been used to observe new behavior, increase speed of detection, and enhance cultivation of rare cells. We discuss potential applications of microfluidic stochastic confinement to fields such as human diagnostics and environmental testing.
Collapse
Affiliation(s)
- Meghan E Vincent
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
21
|
Single cell analytics: an overview. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 124:99-122. [PMID: 21072695 DOI: 10.1007/10_2010_96] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The research field of single cell analysis is rapidly expanding, driven by developments in flow cytometry, microscopy, lab-on-a-chip devices, and many other fields. The promises of these developments include deciphering cellular mechanisms and the quantification of cell-to-cell differences, ideally with spatio-temporal resolution. However, these promises are challenging as the analytical techniques have to cope with minute analyte amounts and concentrations. We formulate first these challenges and then present state-of-the-art analytical techniques available to investigate the different cellular hierarchies--from the genome to the phenome, i.e., the sum of all phenotypes.
Collapse
|
22
|
Lin LI, Chao SH, Meldrum DR. Practical, microfabrication-free device for single-cell isolation. PLoS One 2009; 4:e6710. [PMID: 19696926 PMCID: PMC2725298 DOI: 10.1371/journal.pone.0006710] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/30/2009] [Indexed: 11/18/2022] Open
Abstract
Microfabricated devices have great potential in cell-level studies, but are not easily accessible for the broad biology community. This paper introduces the Microscale Oil-Covered Cell Array (MOCCA) as a low-cost device for high throughput single-cell analysis that can be easily produced by researchers without microengineering knowledge. Instead of using microfabricated structures to capture cells, MOCCA isolates cells in discrete aqueous droplets that are separated by oil on patterned hydrophilic areas across a relatively more hydrophobic substrate. The number of randomly seeded Escherichia coli bacteria in each discrete droplet approaches single-cell levels. The cell distribution on MOCCA is well-fit with Poisson distribution. In this pioneer study, we created an array of 900-picoliter droplets. The total time needed to seed cells in ∼3000 droplets was less than 10 minutes. Compared to traditional microfabrication techniques, MOCCA dramatically lowers the cost of microscale cell arrays, yet enhances the fabrication and operational efficiency for single-cell analysis.
Collapse
Affiliation(s)
- Liang-I Lin
- Center for Ecogenomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Shih-hui Chao
- Center for Ecogenomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| | - Deirdre R. Meldrum
- Center for Ecogenomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
23
|
Boedicker J, Vincent M, Ismagilov R. Microfluidic Confinement of Single Cells of Bacteria in Small Volumes Initiates High-Density Behavior of Quorum Sensing and Growth and Reveals Its Variability. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901550] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Etzkorn JR, McQuaide SC, Anderson JB, Meldrum DR, Parviz BA. FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL. DIGEST OF TECHNICAL PAPERS. INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS, AND MICROSYSTEMS 2009; 2009:2374-2377. [PMID: 20694048 DOI: 10.1109/sensor.2009.5285450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing "single-cell" biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells.
Collapse
Affiliation(s)
- James R Etzkorn
- Electrical Engineering, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
25
|
Molter TW, McQuaide SC, Suchorolski MT, Strovas TJ, Burgess LW, Meldrum DR, Lidstrom ME. A microwell array device capable of measuring single-cell oxygen consumption rates. SENSORS AND ACTUATORS. B, CHEMICAL 2009; 135:678-686. [PMID: 20084089 PMCID: PMC2661028 DOI: 10.1016/j.snb.2008.10.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Due to interest in cell population heterogeneity, the development of new technology and methodologies for studying single cells has dramatically increased in recent years. The ideal single cell measurement system would be high throughput for statistical relevance, would measure the most important cellular parameters, and minimize disruption of normal cell function. We have developed a microwell array device capable of measuring single cell oxygen consumption rates (OCR). This OCR device is able to diffusionally isolate single cells and enables the quantitative measurement of oxygen consumed by a single cell with fmol/min resolution in a non-invasive and relatively high throughput manner. A glass microwell array format containing fixed luminescent sensors allows for future incorporation of additional cellular parameter sensing capabilities. To demonstrate the utility of the OCR device, we determined the oxygen consumption rates of a small group of single cells (12 to 18) for three different cells lines: murine macrophage cell line RAW264.7, human epithelial lung cancer cell line A549, and human Barrett's esophagus cell line CP-D.
Collapse
Affiliation(s)
- Timothy W Molter
- University of Washington, Benjamin Hall Research Building, 616 NE Northlake Pl. Rm. 440, Seattle, WA 98105
| | | | | | | | | | | | | |
Collapse
|
26
|
Boedicker JQ, Vincent ME, Ismagilov RF. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew Chem Int Ed Engl 2009; 48:5908-11. [PMID: 19565587 PMCID: PMC2748941 DOI: 10.1002/anie.200901550] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Rustem F. Ismagilov
- J. Q. Boedicker, M. E. Vincent, Prof. Dr. R. F. Ismagilov, Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637 (USA), Fax: (+1)773-834-3544, E-mail: , Homepage: http://ismagilovlab.uchicago.edu/index.html
| |
Collapse
|
27
|
Dragavon J, Molter T, Young C, Strovas T, McQuaide S, Holl M, Zhang M, Cookson B, Jen A, Lidstrom M, Meldrum D, Burgess L. A cellular isolation system for real-time single-cell oxygen consumption monitoring. J R Soc Interface 2008; 5 Suppl 2:S151-9. [PMID: 18522927 DOI: 10.1098/rsif.2008.0106.focus] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of a cellular isolation system (CIS) that enables the monitoring of single-cell oxygen consumption rates in real time is presented. The CIS was developed through a multidisciplinary effort within the Microscale Life Sciences Center (MLSC) at the University of Washington. The system comprises arrays of microwells containing Pt-porphyrin-embedded polystyrene microspheres as the reporter chemistry, a lid actuator system and a gated intensified imaging camera, all mounted on a temperature-stabilized confocal microscope platform. Oxygen consumption determination experiments were performed on RAW264.7 mouse macrophage cells as proof of principle. Repeatable and consistent measurements indicate that the oxygen measurements did not adversely affect the physiological state of the cells measured. The observation of physiological rates in real time allows studies of cell-to-cell heterogeneity in oxygen consumption rate to be performed. Such studies have implications in understanding the role of mitochondrial function in the progression of inflammatory-based diseases, and in diagnosing and treating such diseases.
Collapse
Affiliation(s)
- Joe Dragavon
- Department of Chemistry, University of Washington, Seattle, WA 98195-2180, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|