1
|
Leivaditis V, Beltsios E, Papatriantafyllou A, Grapatsas K, Mulita F, Kontodimopoulos N, Baikoussis NG, Tchabashvili L, Tasios K, Maroulis I, Dahm M, Koletsis E. Artificial Intelligence in Cardiac Surgery: Transforming Outcomes and Shaping the Future. Clin Pract 2025; 15:17. [PMID: 39851800 PMCID: PMC11763739 DOI: 10.3390/clinpract15010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Background: Artificial intelligence (AI) has emerged as a transformative technology in healthcare, with its integration into cardiac surgery offering significant advancements in precision, efficiency, and patient outcomes. However, a comprehensive understanding of AI's applications, benefits, challenges, and future directions in cardiac surgery is needed to inform its safe and effective implementation. Methods: A systematic review was conducted following PRISMA guidelines. Literature searches were performed in PubMed, Scopus, Cochrane Library, Google Scholar, and Web of Science, covering publications from January 2000 to November 2024. Studies focusing on AI applications in cardiac surgery, including risk stratification, surgical planning, intraoperative guidance, and postoperative management, were included. Data extraction and quality assessment were conducted using standardized tools, and findings were synthesized narratively. Results: A total of 121 studies were included in this review. AI demonstrated superior predictive capabilities in risk stratification, with machine learning models outperforming traditional scoring systems in mortality and complication prediction. Robotic-assisted systems enhanced surgical precision and minimized trauma, while computer vision and augmented cognition improved intraoperative guidance. Postoperative AI applications showed potential in predicting complications, supporting patient monitoring, and reducing healthcare costs. However, challenges such as data quality, validation, ethical considerations, and integration into clinical workflows remain significant barriers to widespread adoption. Conclusions: AI has the potential to revolutionize cardiac surgery by enhancing decision making, surgical accuracy, and patient outcomes. Addressing limitations related to data quality, bias, validation, and regulatory frameworks is essential for its safe and effective implementation. Future research should focus on interdisciplinary collaboration, robust testing, and the development of ethical and transparent AI systems to ensure equitable and sustainable advancements in cardiac surgery.
Collapse
Affiliation(s)
- Vasileios Leivaditis
- Department of Cardiothoracic and Vascular Surgery, WestpfalzKlinikum, 67655 Kaiserslautern, Germany; (V.L.); (A.P.); (M.D.)
| | - Eleftherios Beltsios
- Department of Anesthesiology and Intensive Care, Hannover Medical School, 30625 Hannover, Germany;
| | - Athanasios Papatriantafyllou
- Department of Cardiothoracic and Vascular Surgery, WestpfalzKlinikum, 67655 Kaiserslautern, Germany; (V.L.); (A.P.); (M.D.)
| | - Konstantinos Grapatsas
- Department of Thoracic Surgery and Thoracic Endoscopy, Ruhrlandklinik, West German Lung Center, University Hospital Essen, University Duisburg-Essen, 45141 Essen, Germany;
| | - Francesk Mulita
- Department of General Surgery, General University Hospital of Patras, 26504 Patras, Greece; (L.T.); (K.T.)
| | - Nikolaos Kontodimopoulos
- Department of Economics and Sustainable Development, Harokopio University, 17778 Athens, Greece;
| | - Nikolaos G. Baikoussis
- Department of Cardiac Surgery, Ippokrateio General Hospital of Athens, 11527 Athens, Greece;
| | - Levan Tchabashvili
- Department of General Surgery, General University Hospital of Patras, 26504 Patras, Greece; (L.T.); (K.T.)
| | - Konstantinos Tasios
- Department of General Surgery, General University Hospital of Patras, 26504 Patras, Greece; (L.T.); (K.T.)
| | - Ioannis Maroulis
- Department of General Surgery, General University Hospital of Patras, 26504 Patras, Greece; (L.T.); (K.T.)
| | - Manfred Dahm
- Department of Cardiothoracic and Vascular Surgery, WestpfalzKlinikum, 67655 Kaiserslautern, Germany; (V.L.); (A.P.); (M.D.)
| | - Efstratios Koletsis
- Department of Cardiothoracic Surgery, General University Hospital of Patras, 26504 Patras, Greece;
| |
Collapse
|
3
|
Zhong Q, Chen JY, Shang-Guan ZX, Liu ZY, Lin GT, Wu D, Jiang YM, Wang JB, Lin JX, Chen QY, Lin JL, Xie JW, Li P, Lu J, Huang CM, Zheng CH. Long-term oncological outcomes of 3D versus 2D laparoscopic gastrectomy for gastric cancer: a randomized clinical trial. Gastric Cancer 2024; 27:598-610. [PMID: 38379100 DOI: 10.1007/s10120-024-01470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Laparoscopy-assisted gastrectomy (LG) is rapidly gaining popularity owing to its minimal invasiveness. Previous studies have found that compared with two-dimensional (2D)-LG, three-dimensional (3D)-LG showed better short-term outcomes. However, the long-term oncological outcomes in patients with locally resectable gastric cancer (GC) remain controversial. METHODS In this noninferiority, open-label, randomized clinical trial, a total of 438 eligible GC participants were randomly assigned in a 1:1 ratio to either 3D-LG or 2D-LG from January 2015 to April 2016. The primary endpoint was operating time, while the secondary endpoints included 5-year overall survival (OS), disease-free survival (DFS), and recurrence pattern. RESULTS Data from 401 participants were included in the per-protocol analysis, with 204 patients in the 3D group and 197 patients in the 2D group. The 5-year OS and DFS rates were comparable between the 3D and 2D groups (5-year OS: 70.6% vs. 71.1%, Log-rank P = 0.743; 5-year DFS: 68.1% vs. 69.0%, log-rank P = 0.712). No significant differences were observed between the 3D and 2D groups in the 5-year recurrence rate (28.9% vs. 28.9%, P = 0.958) or recurrence time (mean time, 22.6 vs. 20.5 months, P = 0.412). Further stratified analysis based on the type of gastrectomy, postoperative pathological staging, and preoperative BMI showed that the 5-year OS, DFS, and recurrence rates of the 3D group in each subgroup were similar to those of the 2D group (all P > 0.05). CONCLUSIONS For patients with locally resectable GC, 3D-LG performed by experienced surgeons in high-volume professional institutions can achieve long-term oncological outcomes comparable to those of 2D-LG. REGISTRATION NUMBER NCT02327481 ( http://clinicaltrials.gov ).
Collapse
Affiliation(s)
- Qing Zhong
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jun-Yu Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Zhi-Xin Shang-Guan
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Zhi-Yu Liu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Guang-Tan Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Dong Wu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Yi-Ming Jiang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ju-Li Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|