1
|
Xing Y, Chen R, Zhang L, Chen Y, Zhang S, Diao X, Liu Y, Shi Y, Wei Z, Chang G. SLAM medical imaging enabled by pre-chirp and gain jointly managed Yb-fiber laser. BIOMEDICAL OPTICS EXPRESS 2024; 15:911-923. [PMID: 38404349 PMCID: PMC10890883 DOI: 10.1364/boe.506915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024]
Abstract
We demonstrate a pre-chirp and gain jointly managed Yb-fiber laser that drives simultaneous label-free autofluorescence-multiharmonic (SLAM) medical imaging. We show that a gain managed Yb-fiber amplifier produces high-quality compressed pulses when the seeding pulses exhibit proper negative pre-chirp. The resulting laser source can generate 43-MHz, 34-fs pulses centered at 1110 nm with more than 90-nJ energy. We apply this ultrafast source to SLAM imaging of cellular and extracellular components in various human tissues of intestinal adenocarcinoma, lung adenocarcinoma, and liver.
Collapse
Affiliation(s)
- Yuting Xing
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzhi Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihao Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaobing Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xincai Diao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yishi Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Zhiyi Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Guoqing Chang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
2
|
Fang YY, Lee JI, Wu NY, Chang CI, Huang MC, Lee CY, Huang JY, Lee GGC, Chen CS. Effect of a novel telehealth device for dietary cognitive behavioral intervention in overweight or obesity care. Sci Rep 2023; 13:6441. [PMID: 37081127 PMCID: PMC10116097 DOI: 10.1038/s41598-023-33238-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
Obesity has become a major public health issue which relate to numerous physical problems and highly comorbid with depression and anxiety. Recently, some studies of technology-based interventions for weight reduction emerged to overcome the barriers from time, cost and distance. Mood component and eating behavior related to obesity are less discussed so far with technology-based intervention though. This pilot study was aimed to investigate the effect of telehealth assisted intervention on weight reduction, mood status, and eating behavior change under a smartphone application (app) with novel 3D food picture recognition and incorporated with cognitive behavioral training programs. Adult aged 30-60 years old with overweight were recruited and randomly assigned to control-first group and intervention-first group. In period 1, control-first group had regular life and intervention-first group underwent app intervention; in period 2, two groups went crossover. Body composition and psychological/behavioral questionnaires were collected at baseline, end of period 1, and end of period 2. Nonparametric statistics was performed for data analyzing. A total of 20 participants were enrolled. In control-first group, there were statistically significant reduction in body weight (- 0.55 kg, p = 0.02) and change of body weight percentage (- 0.6%, p = 0.02) after App use. In intervention-first group, the fat percentage decreased by 0.4% after App use in period 1, and increased by 0.05% in period 2. The integrated crossover data revealed that subjects of App group had significant improvements in mindful eating behavior. This pilot study showed the effectiveness in using CogniNU app for weight control and eating behavior. The difference of short-term and long-term effectiveness of technology-based weight control intervention deserves more investigation in the future.Clinical Trial Registration: ISRCTN16082909.
Collapse
Affiliation(s)
- Yi-Ya Fang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-In Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Nai-Yuan Wu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chiao-I Chang
- Department of Public Health and Environmental Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Chuan Huang
- Division of Nutrition and Dietetics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Ying Lee
- Division of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jui-Yen Huang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Gwo Giun Chris Lee
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Sheng Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Wu PJ, Chen ST, Liao YH, Sun CK. In vivo harmonic generation microscopy for monitoring the height of basal keratinocytes in solar lentigines after laser depigmentation treatment. BIOMEDICAL OPTICS EXPRESS 2021; 12:6129-6142. [PMID: 34745726 PMCID: PMC8548006 DOI: 10.1364/boe.434789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 05/22/2023]
Abstract
The development of solar lentigines (SLs) is related to chronic ultraviolet exposure-induced cell senescence. We have previously demonstrated that basal keratinocyte enlargement is a morphological hallmark of skin senescence correlated to the process of skin aging, while clinical studies on the long-term monitoring of the cellular morphological changes in SLs after laser treatment are lacking. In this study, we have developed the harmonic generation microscopy (HGM) for in vivo monitoring the height of basal keratinocytes (HBK) and had administered Q-switched ruby laser or picosecond 532-nm Nd:YAG laser treatment on each side of the face of 25 Asian patients with facial SLs, respectively. In vivo HGM imaging was conducted to longitudinally analyze HBK and the horizontal cell size (HCS). Before treatment, the HBK was significantly higher in the SLs lesional area than that in the adjacent normal region, whereas there was no significant difference in the HCS. After treatment, the lesional HBK remained significantly higher than normal skin regardless of the laser treatment used. Our study indicates that the basal keratinocytes remain abnormal after laser treatment and demonstrates the capability of in vivo HGM for longitudinal, quantitative monitoring of cell senescence and therapeutic effect in SLs.
Collapse
Affiliation(s)
- Pei-Jhe Wu
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Tse Chen
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Zhang H, Chen Y, Cao D, Li W, Jing Y, Zhong H, Liu H, Zhu X. Optical biopsy of laryngeal lesions using femtosecond multiphoton microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:1308-1319. [PMID: 33796355 PMCID: PMC7984806 DOI: 10.1364/boe.414931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one of the most prevalent malignancy of the upper aerodigestive tract. Detection of early lesions in vivo could improve the survival rate significantly. In this study, we demonstrated that femtosecond multiphoton microscopy (MPM) is an effective tool to visualize the microscopic features within fixed laryngeal tissues, without sectioning, staining, or labeling. Accurate detection of lesions and determination of the tumor grading can be achieved, with excellent consistency with conventional histological examination. These results suggest that MPM may represent a powerful tool for in-vivo or fast ex-vivo diagnosis of laryngeal lesions at the point of care.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing 100730, China
- These authors contributed equally to this work
| | - Yan Chen
- Femtosecond Research Center (Guangzhou), A616 80 Lanyue Road, Guangzhou 510663, China
- These authors contributed equally to this work
| | - Dingfang Cao
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing 100730, China
| | - Wenjing Li
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing 100730, China
| | - Yanlei Jing
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing 100730, China
| | - Hua Zhong
- Femtosecond Research Center (Guangzhou), A616 80 Lanyue Road, Guangzhou 510663, China
| | - Honggang Liu
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Head and Neck Molecular Diagnostic Pathology, Beijing 100730, China
| | - Xin Zhu
- Femtosecond Research Center (Guangzhou), A616 80 Lanyue Road, Guangzhou 510663, China
| |
Collapse
|
5
|
van Huizen LMG, Radonic T, van Mourik F, Seinstra D, Dickhoff C, Daniels JMA, Bahce I, Annema JT, Groot ML. Compact portable multiphoton microscopy reveals histopathological hallmarks of unprocessed lung tumor tissue in real time. TRANSLATIONAL BIOPHOTONICS 2020; 2:e202000009. [PMID: 34341777 PMCID: PMC8311669 DOI: 10.1002/tbio.202000009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
During lung cancer operations a rapid and reliable assessment of tumor tissue can reduce operation time and potentially improve patient outcomes. We show that third harmonic generation (THG), second harmonic generation (SHG) and two-photon excited autofluorescence (2PEF) microscopy reveals relevant, histopathological information within seconds in fresh unprocessed human lung samples. We used a compact, portable microscope and recorded images within 1 to 3 seconds using a power of 5 mW. The generated THG/SHG/2PEF images of tumorous and nontumorous tissues are compared with the corresponding standard histology images, to identify alveolar structures and histopathological hallmarks. Cellular structures (tumor cells, macrophages and lymphocytes) (THG), collagen (SHG) and elastin (2PEF) are differentiated and allowed for rapid identification of carcinoid with solid growth pattern, minimally enlarged monomorphic cell nuclei with salt-and-pepper chromatin pattern, and adenocarcinoma with lipidic and micropapillary growth patterns. THG/SHG/2PEF imaging is thus a promising tool for clinical intraoperative assessment of lung tumor tissue.
Collapse
Affiliation(s)
- Laura M. G. van Huizen
- Faculty of Science, Department of Physics, LaserLabVrije Universiteit AmsterdamAmsterdamNetherlands
| | - Teodora Radonic
- Department of PathologyAmsterdam Universities Medical Center/VU University Medical CenterAmsterdamNetherlands
| | | | - Danielle Seinstra
- Department of PathologyAmsterdam Universities Medical Center/VU University Medical CenterAmsterdamNetherlands
| | - Chris Dickhoff
- Department of SurgeryAmsterdam Universities Medical CenterAmsterdamNetherlands
| | - Johannes M. A. Daniels
- Department of Pulmonary DiseasesAmsterdam Universities Medical CenterAmsterdamNetherlands
| | - Idris Bahce
- Department of Pulmonary DiseasesAmsterdam Universities Medical CenterAmsterdamNetherlands
| | - Jouke T. Annema
- Department of Pulmonary DiseasesAmsterdam Universities Medical CenterAmsterdamNetherlands
| | - Marie Louise Groot
- Faculty of Science, Department of Physics, LaserLabVrije Universiteit AmsterdamAmsterdamNetherlands
| |
Collapse
|
6
|
Sun CK, Wu PJ, Chen ST, Su YH, Wei ML, Wang CY, Gao HC, Sung KB, Liao YH. Slide-free clinical imaging of melanin with absolute quantities using label-free third-harmonic-generation enhancement-ratio microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:3009-3024. [PMID: 32637238 PMCID: PMC7316008 DOI: 10.1364/boe.391451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 05/21/2023]
Abstract
The capability to image the 3D distribution of melanin in human skin in vivo with absolute quantities and microscopic details will not only enable noninvasive histopathological diagnosis of melanin-related cutaneous disorders, but also make long term treatment assessment possible. In this paper, we demonstrate clinical in vivo imaging of the melanin distribution in human skin with absolute quantities on mass density and with microscopic details by using label-free third-harmonic-generation (THG) enhancement-ratio microscopy. As the dominant absorber in skin, melanin provides the strongest THG nonlinearity in human skin due to resonance enhancement. We show that the THG-enhancement-ratio (erTHG) parameter can be calibrated in vivo and can indicate the melanin mass density. With an unprecedented clinical imaging resolution, our study revealed erTHG-microscopy's unique capability for long-term treatment assessment and direct clinical observation of melanin's micro-distribution to shed light into the unknown pathway and regulation mechanism of melanosome transfer and translocation.
Collapse
Affiliation(s)
- Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Jhe Wu
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Tse Chen
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hsiang Su
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Liang Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Chiao-Yi Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Cheng Gao
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Kung-Bing Sung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| |
Collapse
|
7
|
Lin K, Liao Y, Wei M, Sun C. Comparative analysis of intrinsic skin aging between Caucasian and Asian subjects by slide-free in vivo harmonic generation microscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960063. [PMID: 31747129 PMCID: PMC7894538 DOI: 10.1002/jbio.201960063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 11/17/2019] [Indexed: 05/30/2023]
Abstract
Phenotypical and functional differences in the intrinsic skin aging process of individuals between Caucasians and Asians have generated considerable interest in dermatology and cosmetic industry. Most of the studies focused on the stratum corneum, and in some other studies inter-individual differences overwhelms the racial difference. None of the studies comparatively analyzes the difference from the histopathological point of view. Here we report our harmonic generation microscopy study to analyze the difference of intrinsic aging between Caucasian and Asian skin from a histopathological point of view. As a result, the cellular and nuclear areas of basal cells in Caucasian subjects were found to increase at the same rate as the Asian subjects, ideal for scoring age. The maximum thickness of the viable epidermis, the dermal papilla (DP) volume per unit area and the depth of the DP zone in Caucasians were found to decrease at faster rates than those in Asians.
Collapse
Affiliation(s)
- Kuan‐Hung Lin
- Graduate Institute of Biomedical Electronics and BioinformaticsNational Taiwan UniversityTaipeiTaiwan
| | - Yi‐Hua Liao
- Department of DermatologyNational Taiwan University Hospital and National Taiwan University College of MedicineTaipeiTaiwan
| | - Ming‐Liang Wei
- Graduate Institute of Biomedical Electronics and BioinformaticsNational Taiwan UniversityTaipeiTaiwan
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Chi‐Kuang Sun
- Graduate Institute of Biomedical Electronics and BioinformaticsNational Taiwan UniversityTaipeiTaiwan
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
8
|
You Z, Balbastre Y, Bouvier C, Hérard AS, Gipchtein P, Hantraye P, Jan C, Souedet N, Delzescaux T. Automated Individualization of Size-Varying and Touching Neurons in Macaque Cerebral Microscopic Images. Front Neuroanat 2019; 13:98. [PMID: 31920567 PMCID: PMC6929681 DOI: 10.3389/fnana.2019.00098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022] Open
Abstract
In biomedical research, cell analysis is important to assess physiological and pathophysiological information. Virtual microscopy offers the unique possibility to study the compositions of tissues at a cellular scale. However, images acquired at such high spatial resolution are massive, contain complex information, and are therefore difficult to analyze automatically. In this article, we address the problem of individualization of size-varying and touching neurons in optical microscopy two-dimensional (2-D) images. Our approach is based on a series of processing steps that incorporate increasingly more information. (1) After a step of segmentation of neuron class using a Random Forest classifier, a novel min-max filter is used to enhance neurons' centroids and boundaries, enabling the use of region growing process based on a contour-based model to drive it to neuron boundary and achieve individualization of touching neurons. (2) Taking into account size-varying neurons, an adaptive multiscale procedure aiming at individualizing touching neurons is proposed. This protocol was evaluated in 17 major anatomical regions from three NeuN-stained macaque brain sections presenting diverse and comprehensive neuron densities. Qualitative and quantitative analyses demonstrate that the proposed method provides satisfactory results in most regions (e.g., caudate, cortex, subiculum, and putamen) and outperforms a baseline Watershed algorithm. Neuron counts obtained with our method show high correlation with an adapted stereology technique performed by two experts (respectively, 0.983 and 0.975 for the two experts). Neuron diameters obtained with our method ranged between 2 and 28.6 μm, matching values reported in the literature. Further works will aim to evaluate the impact of staining and interindividual variability on our protocol.
Collapse
Affiliation(s)
- Zhenzhen You
- CEA-CNRS-UMR 9199, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
- School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China
| | - Yaël Balbastre
- CEA-CNRS-UMR 9199, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Clément Bouvier
- CEA-CNRS-UMR 9199, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- CEA-CNRS-UMR 9199, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Pauline Gipchtein
- CEA-CNRS-UMR 9199, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA-CNRS-UMR 9199, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Caroline Jan
- CEA-CNRS-UMR 9199, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Nicolas Souedet
- CEA-CNRS-UMR 9199, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Thierry Delzescaux
- CEA-CNRS-UMR 9199, Laboratoire des Maladies Neurodégénératives, MIRCen, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
9
|
Liao YH, Su YH, Shih YT, Chen WS, Jee SH, Sun CK. In vivo third-harmonic generation microscopy study on vitiligo patients. JOURNAL OF BIOMEDICAL OPTICS 2019; 25:1-13. [PMID: 31777224 PMCID: PMC7008507 DOI: 10.1117/1.jbo.25.1.014504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/11/2019] [Indexed: 05/25/2023]
Abstract
Melanin is known to provide strong third-harmonic generation (THG) contrast in human skin. With a high concentration in basal cell cytoplasm, THG contrast provided by melanin overshadows other THG sources in human skin studies. For better understanding of the THG signals in keratinocytes without the influence of melanin, an in vivo THG microscopy (THGM) study was first conducted on vitiliginous skin. As a result, the THG-brightness ratio between the melanin-lacking cytoplasm of basal cells and collagen fibers is about 1.106 at the dermal-epidermal junctions of vitiliginous skin, indicating high sensitivity of THGM for the presence of melanin. We further applied the in vivo THGM to assist evaluating the therapeutic outcome from the histopathological point of view for those showed no improvement under narrowband ultraviolet B therapy based on the seven-point Physician Global Assessment score. Our clinical study indicates the high potential of THGM to assist the histopathological assessment of the therapeutic efficacy of vitiligo treatments.
Collapse
Affiliation(s)
- Yi-Hua Liao
- National Taiwan University Hospital, National Taiwan University College of Medicine, Department of Dermatology, Taipei, Taiwan
| | - Yu-Hsiang Su
- National Taiwan University, Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, Taipei, Taiwan
| | - Yuan-Ta Shih
- National Taiwan University, Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, Taipei, Taiwan
| | - Wen-Shiang Chen
- National Taiwan University Hospital, National Taiwan University College of Medicine, Department of Physical Medicine and Rehabilitation, Taipei, Taiwan
| | - Shiou-Hwa Jee
- National Taiwan University Hospital, National Taiwan University College of Medicine, Department of Dermatology, Taipei, Taiwan
- Cathay General Hospital, Department of Dermatology, Taipei, Taiwan
| | - Chi-Kuang Sun
- National Taiwan University, Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, Taipei, Taiwan
| |
Collapse
|
10
|
Zhang Z, Groot ML, de Munck JC. Tensor regularized total variation for denoising of third harmonic generation images of brain tumors. JOURNAL OF BIOPHOTONICS 2019; 12:e201800129. [PMID: 29959831 PMCID: PMC7065612 DOI: 10.1002/jbio.201800129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Third harmonic generation (THG) microscopy shows great potential for instant pathology of brain tissue during surgery. However, the rich morphologies contained and the noise associated makes image restoration, necessary for quantification of the THG images, challenging. Anisotropic diffusion filtering (ADF) has been recently applied to restore THG images of normal brain, but ADF is hard-to-code, time-consuming and only reconstructs salient edges. This work overcomes these drawbacks by expressing ADF as a tensor regularized total variation model, which uses the Huber penalty and the L1 norm for tensor regularization and fidelity measurement, respectively. The diffusion tensor is constructed from the structure tensor of ADF yet the tensor decomposition is performed only in the non-flat areas. The resulting model is solved by an efficient and easy-to-code primal-dual algorithm. Tests on THG brain tumor images show that the proposed model has comparable denoising performance as ADF while it much better restores weak edges and it is up to 60% more time efficient.
Collapse
Affiliation(s)
- Zhiqing Zhang
- LaserLab Amsterdam, Department of Physics, Faculty of SciencesVU UniversityAmsterdamThe Netherlands
- Department of Radiology and Nuclear MedicineVU University Medical CenterAmsterdamThe Netherlands
- Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Marie L. Groot
- LaserLab Amsterdam, Department of Physics, Faculty of SciencesVU UniversityAmsterdamThe Netherlands
- Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Jan C. de Munck
- Department of Radiology and Nuclear MedicineVU University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
11
|
Xing F, Yang L. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review. IEEE Rev Biomed Eng 2016; 9:234-63. [PMID: 26742143 PMCID: PMC5233461 DOI: 10.1109/rbme.2016.2515127] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to interobserver variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literature. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast, fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation.
Collapse
|
12
|
Jay L, Bourget JM, Goyer B, Singh K, Brunette I, Ozaki T, Proulx S. Characterization of tissue-engineered posterior corneas using second- and third-harmonic generation microscopy. PLoS One 2015; 10:e0125564. [PMID: 25918849 PMCID: PMC4412819 DOI: 10.1371/journal.pone.0125564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional tissues, such as the cornea, are now being engineered as substitutes for the rehabilitation of vision in patients with blinding corneal diseases. Engineering of tissues for translational purposes requires a non-invasive monitoring to control the quality of the resulting biomaterial. Unfortunately, most current methods still imply invasive steps, such as fixation and staining, to clearly observe the tissue-engineered cornea, a transparent tissue with weak natural contrast. Second- and third-harmonic generation imaging are well known to provide high-contrast, high spatial resolution images of such tissues, by taking advantage of the endogenous contrast agents of the tissue itself. In this article, we imaged tissue-engineered corneal substitutes using both harmonic microscopy and classic histopathology techniques. We demonstrate that second- and third-harmonic imaging can non-invasively provide important information regarding the quality and the integrity of these partial-thickness posterior corneal substitutes (observation of collagen network, fibroblasts and endothelial cells). These two nonlinear imaging modalities offer the new opportunity of monitoring the engineered corneas during the entire process of production.
Collapse
Affiliation(s)
- Louis Jay
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Quebec, Canada
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, Quebec, Canada and Département d’ophtalmologie, Université de Montréal, Montréal, Quebec, Canada
| | - Jean-Michel Bourget
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, Quebec, Canada and Département d’ophtalmologie, Université de Montréal, Montréal, Quebec, Canada
| | - Benjamin Goyer
- Axe médecine régénératrice, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec, Québec, Quebec, Canada and Centre de recherche en organogénèse expérimentale de l’Université Laval / LOEX, Québec, Quebec, Canada
| | - Kanwarpal Singh
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Quebec, Canada
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, Quebec, Canada and Département d’ophtalmologie, Université de Montréal, Montréal, Quebec, Canada
| | - Isabelle Brunette
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, Quebec, Canada and Département d’ophtalmologie, Université de Montréal, Montréal, Quebec, Canada
| | - Tsuneyuki Ozaki
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Quebec, Canada
| | - Stéphanie Proulx
- Axe médecine régénératrice, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec, Québec, Quebec, Canada and Centre de recherche en organogénèse expérimentale de l’Université Laval / LOEX, Québec, Quebec, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie, Faculté de médecine, Université Laval, Québec, Quebec, Canada
- * E-mail:
| |
Collapse
|
13
|
Nuclear shape descriptors by automated morphometry may distinguish aggressive variants of squamous cell carcinoma from relatively benign skin proliferative lesions: a pilot study. Tumour Biol 2015; 36:6125-31. [PMID: 25753477 DOI: 10.1007/s13277-015-3294-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/27/2015] [Indexed: 10/23/2022] Open
Abstract
We evaluated whether degrees of dysplasia may be consistently accessed in an automatic fashion, using different kinds of non-melanoma skin cancer (NMSC) as a validatory model. Namely, we compared Bowen disease, actinic keratosis, basal cell carcinoma, low-grade squamous cell carcinoma, and invasive squamous cell carcinoma. We hypothesized that characterizing the shape of nuclei may be important to consistently diagnose the aggressiveness of a skin tumor. While basal cell carcinoma is comparatively relatively benign, management of squamous cell carcinoma is controversial because of its potential to recur and intraoperative dilemma regarding choice of the margin or the depth for the excision. We provide evidence here that progressive nuclear dysplasia may be automatically estimated through the thresholded images of skin cancer and quantitative parameters estimated to provide a quasi-quantitative data, which can thenceforth guide the management of the particular cancer. For circularity, averaging more than 2500 nuclei in each group estimated the means ± SD as 0.8 ± 0.007 vs. 0.78 ± 0.0063 vs. 0.42 ± 0.014 vs. 0.63 ± 0.02 vs. 0.51 ± 0.02 (F = 318063.56, p < 0.0001, one-way analyses of variance). The mean aspect ratios were (means ± SD) 0.97 ± 0.0014 vs. 0.95 ± 0.002 vs. 0.38 ± 0.018 vs. 0.84 ± 0.0035 vs. 0.74 ± 0.019 (F = 1022631.931, p < 0.0001, one-way analyses of variance). The Feret diameters averaged over 2500 nuclei in each group were the following: 1 ± 0.0001 vs. 0.9 ± 0.002 vs. 5 ± 0.031 vs. 1.5 ± 0.01 vs. 1.9 ± 0.004 (F = 33105614.194, p < 0.0001, one-way analyses of variance). Multivariate analyses of composite parameters potentially detect aggressive variants of squamous cell carcinoma as the most dysplastic form, in comparison to locally occurring squamous cell carcinoma and basal cell carcinoma, or benign skin lesions.
Collapse
|
14
|
Dewan MAA, Ahmad MO, Swamy MNS. A method for automatic segmentation of nuclei in phase-contrast images based on intensity, convexity and texture. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2014; 8:716-728. [PMID: 25388879 DOI: 10.1109/tbcas.2013.2294184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper presents a method for automatic segmentation of nuclei in phase-contrast images using the intensity, convexity and texture of the nuclei. The proposed method consists of three main stages: preprocessing, h-maxima transformation-based marker controlled watershed segmentation ( h-TMC), and texture analysis. In the preprocessing stage, a top-hat filter is used to increase the contrast and suppress the non-uniform illumination, shading, and other imaging artifacts in the input image. The nuclei segmentation stage consists of a distance transformation, h-maxima transformation and watershed segmentation. These transformations utilize the intensity information and the convexity property of the nucleus for the purpose of detecting a single marker in every nucleus; these markers are then used in the h-TMC watershed algorithm to obtain segments of the nuclei. However, dust particles, imaging artifacts, or prolonged cell cytoplasm may falsely be segmented as nuclei at this stage, and thus may lead to an inaccurate analysis of the cell image. In order to identify and remove these non-nuclei segments, in the third stage a texture analysis is performed, that uses six of the Haralick measures along with the AdaBoost algorithm. The novelty of the proposed method is that it introduces a systematic framework that utilizes intensity, convexity, and texture information to achieve a high accuracy for automatic segmentation of nuclei in the phase-contrast images. Extensive experiments are performed demonstrating the superior performance ( precision = 0.948; recall = 0.924; F1-measure = 0.936; validation based on ∼ 4850 manually-labeled nuclei) of the proposed method.
Collapse
|
15
|
Bashar MK, Yamagata K, Kobayashi TJ. Improved and robust detection of cell nuclei from four dimensional fluorescence images. PLoS One 2014; 9:e101891. [PMID: 25020042 PMCID: PMC4096508 DOI: 10.1371/journal.pone.0101891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
Segmentation-free direct methods are quite efficient for automated nuclei extraction from high dimensional images. A few such methods do exist but most of them do not ensure algorithmic robustness to parameter and noise variations. In this research, we propose a method based on multiscale adaptive filtering for efficient and robust detection of nuclei centroids from four dimensional (4D) fluorescence images. A temporal feedback mechanism is employed between the enhancement and the initial detection steps of a typical direct method. We estimate the minimum and maximum nuclei diameters from the previous frame and feed back them as filter lengths for multiscale enhancement of the current frame. A radial intensity-gradient function is optimized at positions of initial centroids to estimate all nuclei diameters. This procedure continues for processing subsequent images in the sequence. Above mechanism thus ensures proper enhancement by automated estimation of major parameters. This brings robustness and safeguards the system against additive noises and effects from wrong parameters. Later, the method and its single-scale variant are simplified for further reduction of parameters. The proposed method is then extended for nuclei volume segmentation. The same optimization technique is applied to final centroid positions of the enhanced image and the estimated diameters are projected onto the binary candidate regions to segment nuclei volumes.Our method is finally integrated with a simple sequential tracking approach to establish nuclear trajectories in the 4D space. Experimental evaluations with five image-sequences (each having 271 3D sequential images) corresponding to five different mouse embryos show promising performances of our methods in terms of nuclear detection, segmentation, and tracking. A detail analysis with a sub-sequence of 101 3D images from an embryo reveals that the proposed method can improve the nuclei detection accuracy by 9 over the previous methods, which used inappropriate large valued parameters. Results also confirm that the proposed method and its variants achieve high detection accuracies ( 98 mean F-measure) irrespective of the large variations of filter parameters and noise levels.
Collapse
Affiliation(s)
- Md. Khayrul Bashar
- Leading Graduate School Promotion Center, Ochanomizu University, Tokyo, Japan
- * E-mail:
| | - Kazuo Yamagata
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | |
Collapse
|