1
|
Siddique A, Vai MI, Pun SH. A low cost neuromorphic learning engine based on a high performance supervised SNN learning algorithm. Sci Rep 2023; 13:6280. [PMID: 37072443 PMCID: PMC10113267 DOI: 10.1038/s41598-023-32120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Spiking neural networks (SNNs) are more energy- and resource-efficient than artificial neural networks (ANNs). However, supervised SNN learning is a challenging task due to non-differentiability of spikes and computation of complex terms. Moreover, the design of SNN learning engines is not an easy task due to limited hardware resources and tight energy constraints. In this article, a novel hardware-efficient SNN back-propagation scheme that offers fast convergence is proposed. The learning scheme does not require any complex operation such as error normalization and weight-threshold balancing, and can achieve an accuracy of around 97.5% on MNIST dataset using only 158,800 synapses. The multiplier-less inference engine trained using the proposed hard sigmoid SNN training (HaSiST) scheme can operate at a frequency of 135 MHz and consumes only 1.03 slice registers per synapse, 2.8 slice look-up tables, and can infer about 0.03[Formula: see text] features in a second, equivalent to 9.44 giga synaptic operations per second (GSOPS). The article also presents a high-speed, cost-efficient SNN training engine that consumes only 2.63 slice registers per synapse, 37.84 slice look-up tables per synapse, and can operate at a maximum computational frequency of around 50 MHz on a Virtex 6 FPGA.
Collapse
Affiliation(s)
- Ali Siddique
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, 999078, Macau.
| | - Mang I Vai
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, 999078, Macau
| | - Sio Hang Pun
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, 999078, Macau
| |
Collapse
|
2
|
Ralph N, Joubert D, Jolley A, Afshar S, Tothill N, van Schaik A, Cohen G. Real-Time Event-Based Unsupervised Feature Consolidation and Tracking for Space Situational Awareness. Front Neurosci 2022; 16:821157. [PMID: 35600627 PMCID: PMC9120364 DOI: 10.3389/fnins.2022.821157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Earth orbit is a limited natural resource that hosts a vast range of vital space-based systems that support the international community's national, commercial and defence interests. This resource is rapidly becoming depleted with over-crowding in high demand orbital slots and a growing presence of space debris. We propose the Fast Iterative Extraction of Salient targets for Tracking Asynchronously (FIESTA) algorithm as a robust, real-time and reactive approach to optical Space Situational Awareness (SSA) using Event-Based Cameras (EBCs) to detect, localize, and track Resident Space Objects (RSOs) accurately and timely. We address the challenges of the asynchronous nature and high temporal resolution output of the EBC accurately, unsupervised and with few tune-able parameters using concepts established in the neuromorphic and conventional tracking literature. We show this algorithm is capable of highly accurate in-frame RSO velocity estimation and average sub-pixel localization in a simulated test environment to distinguish the capabilities of the EBC and optical setup from the proposed tracking system. This work is a fundamental step toward accurate end-to-end real-time optical event-based SSA, and developing the foundation for robust closed-form tracking evaluated using standardized tracking metrics.
Collapse
Affiliation(s)
- Nicholas Ralph
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
- *Correspondence: Nicholas Ralph
| | - Damien Joubert
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| | - Andrew Jolley
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
- Air and Space Power Development Centre, Royal Australian Air Force, Canberra, ACT, Australia
| | - Saeed Afshar
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| | - Nicholas Tothill
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| | - André van Schaik
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| | - Gregory Cohen
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| |
Collapse
|
3
|
Afshar S, Ralph N, Xu Y, Tapson J, van Schaik A, Cohen G. Event-Based Feature Extraction Using Adaptive Selection Thresholds. SENSORS 2020; 20:s20061600. [PMID: 32183052 PMCID: PMC7146588 DOI: 10.3390/s20061600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 11/25/2022]
Abstract
Unsupervised feature extraction algorithms form one of the most important building blocks in machine learning systems. These algorithms are often adapted to the event-based domain to perform online learning in neuromorphic hardware. However, not designed for the purpose, such algorithms typically require significant simplification during implementation to meet hardware constraints, creating trade offs with performance. Furthermore, conventional feature extraction algorithms are not designed to generate useful intermediary signals which are valuable only in the context of neuromorphic hardware limitations. In this work a novel event-based feature extraction method is proposed that focuses on these issues. The algorithm operates via simple adaptive selection thresholds which allow a simpler implementation of network homeostasis than previous works by trading off a small amount of information loss in the form of missed events that fall outside the selection thresholds. The behavior of the selection thresholds and the output of the network as a whole are shown to provide uniquely useful signals indicating network weight convergence without the need to access network weights. A novel heuristic method for network size selection is proposed which makes use of noise events and their feature representations. The use of selection thresholds is shown to produce network activation patterns that predict classification accuracy allowing rapid evaluation and optimization of system parameters without the need to run back-end classifiers. The feature extraction method is tested on both the N-MNIST (Neuromorphic-MNIST) benchmarking dataset and a dataset of airplanes passing through the field of view. Multiple configurations with different classifiers are tested with the results quantifying the resultant performance gains at each processing stage.
Collapse
|
4
|
Afshar S, Hamilton TJ, Tapson J, van Schaik A, Cohen G. Investigation of Event-Based Surfaces for High-Speed Detection, Unsupervised Feature Extraction, and Object Recognition. Front Neurosci 2019; 12:1047. [PMID: 30705618 PMCID: PMC6344467 DOI: 10.3389/fnins.2018.01047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/24/2018] [Indexed: 12/31/2022] Open
Abstract
In this work, we investigate event-based feature extraction through a rigorous framework of testing. We test a hardware efficient variant of Spike Timing Dependent Plasticity (STDP) on a range of spatio-temporal kernels with different surface decaying methods, decay functions, receptive field sizes, feature numbers, and back end classifiers. This detailed investigation can provide helpful insights and rules of thumb for performance vs. complexity trade-offs in more generalized networks, especially in the context of hardware implementation, where design choices can incur significant resource costs. The investigation is performed using a new dataset consisting of model airplanes being dropped free-hand close to the sensor. The target objects exhibit a wide range of relative orientations and velocities. This range of target velocities, analyzed in multiple configurations, allows a rigorous comparison of time-based decaying surfaces (time surfaces) vs. event index-based decaying surface (index surfaces), which are used to perform unsupervised feature extraction, followed by target detection and recognition. We examine each processing stage by comparison to the use of raw events, as well as a range of alternative layer structures, and the use of random features. By comparing results from a linear classifier and an ELM classifier, we evaluate how each element of the system affects accuracy. To generate time and index surfaces, the most commonly used kernels, namely event binning kernels, linearly, and exponentially decaying kernels, are investigated. Index surfaces were found to outperform time surfaces in recognition when invariance to target velocity was made a requirement. In the investigation of network structure, larger networks of neurons with large receptive field sizes were found to perform best. We find that a small number of event-based feature extractors can project the complex spatio-temporal event patterns of the dataset to an almost linearly separable representation in feature space, with best performing linear classifier achieving 98.75% recognition accuracy, using only 25 feature extracting neurons.
Collapse
Affiliation(s)
- Saeed Afshar
- Biomedical Engineering and Neuroscience Program, The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney, NSW, Australia
| | - Tara Julia Hamilton
- Biomedical Engineering and Neuroscience Program, The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney, NSW, Australia
| | - Jonathan Tapson
- Biomedical Engineering and Neuroscience Program, The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney, NSW, Australia
| | - André van Schaik
- Biomedical Engineering and Neuroscience Program, The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney, NSW, Australia
| | - Gregory Cohen
- Biomedical Engineering and Neuroscience Program, The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
5
|
Dumesnil E, Beaulieu PO, Boukadoum M. Single SNN Architecture for Classical and Operant Conditioning using Reinforcement Learning. INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE 2017. [DOI: 10.4018/ijcini.2017040101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A bio-inspired robotic brain is presented where the same spiking neural network (SNN) can implement five variations of learning by conditioning (LC): classical conditioning (CC), and operant conditioning (OC) with positive/negative reinforcement/punishment. In all cases, the links between input stimuli, output actions, reinforcements and punishments are strengthened depending on the stability of the delays between them. To account for the parallel processing nature of neural networks, the SNN is implemented on a field-programmable gate array (FPGA), and the neural delays are extracted via an adaptation of the synapto-dendritic kernel adapting neuron (SKAN) model, for a low resource demanding FPGA implementation of the SNN. A custom robotic platform successfully tested the ability of the proposed architecture to implement the five LC behaviors. Hence, this work contributes to the engineering field by proposing a scalable low resource demanding architecture for adaptive systems, and the cognitive field by suggesting that both CC and OC can be modeled as a single cognitive architecture.
Collapse
Affiliation(s)
| | | | - Mounir Boukadoum
- Department of Computer Science, University of Quebec at Montreal, Montreal, Canada
| |
Collapse
|
6
|
Lee JH, Delbruck T, Pfeiffer M. Training Deep Spiking Neural Networks Using Backpropagation. Front Neurosci 2016; 10:508. [PMID: 27877107 PMCID: PMC5099523 DOI: 10.3389/fnins.2016.00508] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022] Open
Abstract
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.
Collapse
Affiliation(s)
- Jun Haeng Lee
- Samsung Advanced Institute of Technology, Samsung ElectronicsSuwon, South Korea; Institute of Neuroinformatics, University of Zurich and ETH ZurichZurich, Switzerland
| | - Tobi Delbruck
- Institute of Neuroinformatics, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Michael Pfeiffer
- Institute of Neuroinformatics, University of Zurich and ETH Zurich Zurich, Switzerland
| |
Collapse
|