1
|
Aboumerhi K, Güemes A, Liu H, Tenore F, Etienne-Cummings R. Neuromorphic applications in medicine. J Neural Eng 2023; 20:041004. [PMID: 37531951 DOI: 10.1088/1741-2552/aceca3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
In recent years, there has been a growing demand for miniaturization, low power consumption, quick treatments, and non-invasive clinical strategies in the healthcare industry. To meet these demands, healthcare professionals are seeking new technological paradigms that can improve diagnostic accuracy while ensuring patient compliance. Neuromorphic engineering, which uses neural models in hardware and software to replicate brain-like behaviors, can help usher in a new era of medicine by delivering low power, low latency, small footprint, and high bandwidth solutions. This paper provides an overview of recent neuromorphic advancements in medicine, including medical imaging and cancer diagnosis, processing of biosignals for diagnosis, and biomedical interfaces, such as motor, cognitive, and perception prostheses. For each section, we provide examples of how brain-inspired models can successfully compete with conventional artificial intelligence algorithms, demonstrating the potential of neuromorphic engineering to meet demands and improve patient outcomes. Lastly, we discuss current struggles in fitting neuromorphic hardware with non-neuromorphic technologies and propose potential solutions for future bottlenecks in hardware compatibility.
Collapse
Affiliation(s)
- Khaled Aboumerhi
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Amparo Güemes
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge CB3 0FA, United Kingdom
| | - Hongtao Liu
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Francesco Tenore
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States of America
| | - Ralph Etienne-Cummings
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
2
|
Skiadopoulos A, Pulverenti TS, Knikou M. Physiological effects of cathodal electrode configuration for transspinal stimulation in humans. J Neurophysiol 2022; 128:1663-1682. [PMID: 36416443 PMCID: PMC9762966 DOI: 10.1152/jn.00342.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Transspinal stimulation modulates neuronal excitability and promotes recovery in upper motoneuron lesions. The recruitment input-output curves of transspinal evoked potentials (TEPs) recorded from knee and ankle muscles, and their susceptibility to spinal inhibition, were recorded when the position, size, and number of the cathode electrode were arranged in four settings or protocols (Ps). The four Ps were the following: 1) one rectangular electrode placed at midline (KNIKOU-LAB4Recovery or K-LAB4Recovery; P-KLAB), 2) one square electrode placed at midline (P-2), 3) two square electrodes 1 cm apart placed at midline (P-3), and 4) one square electrode placed on each paravertebral side (P-4). P-KLAB and P-3 required less current to reach TEP threshold or maximal amplitudes. A rightward shift in TEP recruitment curves was evident for P-4, whereas the slope was increased for P-2 and P-4 compared with P-KLAB and P-3. TEP depression upon single and paired transspinal stimuli was pronounced in ankle TEPs but was less prominent in knee TEPs. TEP depression induced by single transspinal stimuli at 1.0 Hz was similar for most TEPs across protocols, but TEP depression induced by paired transspinal stimuli was different between protocols and was replaced by facilitation at 100-ms interstimulus interval for P-4. Our results suggest that P-KLAB and P-3 are preferred based on excitability threshold of motoneurons. P-KLAB produced more TEP depression, thereby maximizing the engagement of spinal neuronal pathways. We recommend P-KLAB to study neurophysiological mechanisms underlying transspinal stimulation or when used as a neuromodulation method for recovery in neurological disorders.NEW & NOTEWORTHY Transspinal stimulation with a rectangular cathode electrode (P-KLAB) requires less current to produce transspinal evoked potentials and maximizes spinal inhibition. We recommend P-KLAB for neurophysiological studies or when used as a neuromodulation method to enhance motor output and normalize muscle tone in neurological disorders.
Collapse
Affiliation(s)
- Andreas Skiadopoulos
- Klab4Recovery Research Program, The City University of New York, New York, New York
| | - Timothy S Pulverenti
- Klab4Recovery Research Program, The City University of New York, New York, New York
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, New York
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, Staten Island, New York
| |
Collapse
|
3
|
Lodi M, Shilnikov AL, Storace M. Design Principles for Central Pattern Generators With Preset Rhythms. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:3658-3669. [PMID: 31722491 DOI: 10.1109/tnnls.2019.2945637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article is concerned with the design of synthetic central pattern generators (CPGs). Biological CPGs are neural circuits that determine a variety of rhythmic activities, including locomotion, in animals. A synthetic CPG is a network of dynamical elements (here called cells) properly coupled by various synapses to emulate rhythms produced by a biological CPG. We focus on CPGs for locomotion of quadrupeds and present our design approach, based on the principles of nonlinear dynamics, bifurcation theory, and parameter optimization. This approach lets us design the synthetic CPG with a set of desired rhythms and switch between them as the parameter representing the control actions from the brain is varied. The developed four-cell CPG can produce four distinct gaits: walk, trot, gallop, and bound, similar to the mouse locomotion. The robustness and adaptability of the network design principles are verified using different cell and synapse models.
Collapse
|
4
|
Toossi A, Everaert DG, Uwiera RRE, Hu DS, Robinson K, Gragasin FS, Mushahwar VK. Effect of anesthesia on motor responses evoked by spinal neural prostheses during intraoperative procedures. J Neural Eng 2019; 16:036003. [PMID: 30790787 DOI: 10.1088/1741-2552/ab0938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The overall goal of this study was to investigate the effects of various anesthetic protocols on the intraoperative responses to intraspinal microstimulation (ISMS). ISMS is a neuroprosthetic approach that targets the motor networks in the ventral horns of the spinal cord to restore function after spinal cord injury. In preclinical studies, ISMS in the lumbosacral enlargement produced standing and walking by activating networks controlling the hindlimb muscles. ISMS implants are placed surgically under anesthesia, and refinements in placement are made based on the evoked responses. Anesthesia can have a significant effect on the responses evoked by spinal neuroprostheses; therefore, in preparation for clinical testing of ISMS, we compared the evoked responses under a common clinical neurosurgical anesthetic protocol with those evoked under protocols commonly used in preclinical studies. APPROACH Experiments were conducted in seven pigs. An ISMS microelectrode array was implanted in the lumbar enlargement and responses to ISMS were measured under three anesthetic protocols: (1) isoflurane, an agent used pre-clinically and clinically, (2) total intravenous anesthesia (TIVA) with propofol as the main agent commonly used in clinical neurosurgical procedures, (3) TIVA with sodium pentobarbital, an anesthetic agent used mostly preclinically. Responses to ISMS were evaluated based on stimulation thresholds, movement kinematics, and joint torques. Motor evoked potentials (MEP) and plasma concentrations of propofol were also measured. MAIN RESULTS ISMS under propofol anesthesia produced large and functional responses that were not statistically different from those produced under pentobarbital anesthesia. Isoflurane, however, significantly suppressed the ISMS-evoked responses. SIGNIFICANCE This study demonstrated that the choice of anesthesia is critical for intraoperative assessments of motor responses evoked by spinal neuroprostheses. Propofol and pentobarbital anesthesia did not overly suppress the effects of ISMS; therefore, propofol is expected to be a suitable anesthetic agent for clinical intraoperative testing of an intraspinal neuroprosthetic system.
Collapse
Affiliation(s)
- Amirali Toossi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. Sensory Motor Adaptive Rehabilitative Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
5
|
Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats. Neural Plast 2017; 2017:7351238. [PMID: 28744378 PMCID: PMC5506460 DOI: 10.1155/2017/7351238] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/08/2017] [Accepted: 03/19/2017] [Indexed: 01/12/2023] Open
Abstract
Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy.
Collapse
|
6
|
Krucoff MO, Rahimpour S, Slutzky MW, Edgerton VR, Turner DA. Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation. Front Neurosci 2016; 10:584. [PMID: 28082858 PMCID: PMC5186786 DOI: 10.3389/fnins.2016.00584] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required-a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery.
Collapse
Affiliation(s)
- Max O Krucoff
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, Duke University Medical Center Durham, NC, USA
| | - Marc W Slutzky
- Department of Physiology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA; Department of Neurology, Feinberg School of Medicine, Northwestern UniversityChicago, IL, USA
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles Los Angeles, CA, USA
| | - Dennis A Turner
- Department of Neurosurgery, Duke University Medical CenterDurham, NC, USA; Department of Neurobiology, Duke University Medical CenterDurham, NC, USA; Research and Surgery Services, Durham Veterans Affairs Medical CenterDurham, NC, USA
| |
Collapse
|
7
|
Holinski BJ, Mazurek KA, Everaert DG, Toossi A, Lucas-Osma AM, Troyk P, Etienne-Cummings R, Stein RB, Mushahwar VK. Intraspinal microstimulation produces over-ground walking in anesthetized cats. J Neural Eng 2016; 13:056016. [PMID: 27619069 DOI: 10.1088/1741-2560/13/5/056016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Spinal cord injury causes a drastic loss of motor, sensory and autonomic function. The goal of this project was to investigate the use of intraspinal microstimulation (ISMS) for producing long distances of walking over ground. ISMS is an electrical stimulation method developed for restoring motor function by activating spinal networks below the level of an injury. It produces movements of the legs by stimulating the ventral horn of the lumbar enlargement using fine penetrating electrodes (≤50 μm diameter). APPROACH In each of five adult cats (4.2-5.5 kg), ISMS was applied through 16 electrodes implanted with tips targeting lamina IX in the ventral horn bilaterally. A desktop system implemented a physiologically-based control strategy that delivered different stimulation patterns through groups of electrodes to evoke walking movements with appropriate limb kinematics and forces corresponding to swing and stance. Each cat walked over an instrumented 2.9 m walkway and limb kinematics and forces were recorded. MAIN RESULTS Both propulsive and supportive forces were required for over-ground walking. Cumulative walking distances ranging from 609 to 835 m (longest tested) were achieved in three animals. In these three cats, the mean peak supportive force was 3.5 ± 0.6 N corresponding to full-weight-support of the hind legs, while the angular range of the hip, knee, and ankle joints were 23.1 ± 2.0°, 29.1 ± 0.2°, and 60.3 ± 5.2°, respectively. To further demonstrate the viability of ISMS for future clinical use, a prototype implantable module was successfully implemented in a subset of trials and produced comparable walking performance. SIGNIFICANCE By activating inherent locomotor networks within the lumbosacral spinal cord, ISMS was capable of producing bilaterally coordinated and functional over-ground walking with current amplitudes <100 μA. These exciting results suggest that ISMS may be an effective intervention for restoring functional walking after spinal cord injury.
Collapse
Affiliation(s)
- B J Holinski
- Department of Biomedical Engineering, University of Alberta, Alberta, Canada. Project SMART (Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses), Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bamford JA, Marc Lebel R, Parseyan K, Mushahwar VK. The Fabrication, Implantation, and Stability of Intraspinal Microwire Arrays in the Spinal Cord of Cat and Rat. IEEE Trans Neural Syst Rehabil Eng 2016; 25:287-296. [PMID: 28113558 DOI: 10.1109/tnsre.2016.2555959] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intraspinal microstimulation (ISMS) is currently under investigation for its ability to restore function following spinal cord injury and aid in addressing basic investigations of the spinal cord in feline and murine (rat) models. In this report we describe the procedures for fabricating and implanting intraspinal microwires, with special emphasis on the rat model. We also report our results on targeting success and long-term stability and functionality of the implants. Early targeting with implants fabricated based on general "average" dimensions of the spinal cord was approximately 50% successful in reaching the proper targets within the ventral grey matter in cats. Improvements in insertion technique and the use of multiple contact electrodes have raised the targeting success to 100%. Furthermore, the manufacturing of ISMS arrays has been improved by the use of magnetic resonance imaging to create subject-specific implants for cats and track the location of the arrays post-implant. In the rat, our procedures have produced desirable targeting of all recovered microwires. We speculate this is due to the different targeting parameters and the shorter depth of insertion in the rat spinal cord. Although there is a heightened mechanical mismatch between the 30 μm -diameter microwires and the small rat spinal cord, chronic implantation and stimulation produce limited histological damage and do not compromise function. Furthermore, despite the increased difficulties of implanting into the smaller rat spinal cord, ISMS is effective in activating spinal cord networks in the lumbosacral enlargement in a manner that is safe, stable and reproducible.
Collapse
|