1
|
Cui JQ, Tian Y, Wu Z, Zhang L, Cho WC, Yao S, Lin Y. Concurrently Probing the Mechanical and Electrical Characteristics of Living Cells via an Integrated Microdevice. NANO LETTERS 2024; 24:14522-14530. [PMID: 39495891 DOI: 10.1021/acs.nanolett.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The mechanical and electrical properties of cells serve as critical indicators of their physiological and pathological state. Currently, distinct setups are required to measure the electrical and mechanical responses of cells. In addition, most existing methods such as optical trapping (OT) and atomic force microscopy (AFM) are labor-intensive, expensive, and low-throughput. Here, we developed a microdevice that integrates automated cell trapping, deformation, and electric impedance spectroscopy to overcome these limitations. Our device enables parallel aspiration of tens of trapped cells in a highly scalable manner by simply adjusting the applied pressures, allowing for rapid probing of the dynamic viscoelastic properties of cells. Furthermore, embedded microelectrodes enable concurrent investigations of the electrical impedance of the cells. Through testing on different cell types, our platform demonstrated superior capabilities in comprehensive cell characterization and phenotyping, highlighting its great potential as a versatile tool for single cell analysis, drug screening, and disease detection.
Collapse
Affiliation(s)
- Johnson Q Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong 518000, China
| | - Zhihao Wu
- The Hong Kong University of Science and Technology (Guangzhou), Function Hub Nansha, Guangzhou, Guangdong 511400, China
- Individualized Interdisciplinary Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Lu Zhang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon 999077, Hong Kong, China
| | - Shuhuai Yao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories 999077, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong 518000, China
| |
Collapse
|
2
|
Dawes J, Chou TH, Shen B, Johnston ML. Microfluidic Lab-on-CMOS Packaging Using Wafer-Level Molding and 3D-Printed Interconnects. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:821-833. [PMID: 39167525 DOI: 10.1109/tbcas.2024.3419804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Lab-on-a-chip (LoC) technologies continue to promise lower cost and more accessible platforms for performing biomedical testing in low-cost and disposable form factors. Lab-on-CMOS or lab-on-microchip methods extend this paradigm by merging passive LoC systems with active complementary metal-oxide semiconductor (CMOS) integrated circuits (IC) to enable front-end signal conditioning and digitization immediately next to sensors in fluid channels. However, integrating ICs with microfluidics remains a challenge due to size mismatch and geometric constraints, such as non-planar wirebonds or flip-chip approaches in conflict with planar microfluidics. In this work, we present a hybrid packaging solution for IC-enabled microfluidic sensor systems. Our approach uses a combination of wafer-level molding and direct-write 3D printed interconnects, which are compatible with post-fabrication of planar dielectric and microfluidic layers. In addition, high-resolution direct-write printing can be used to rapidly fabricate electrical interconnects at a scale compatible with IC packaging without the need for fixed tooling. Two demonstration sensor-in-package systems with integrated microfluidics are shown, including measurement of electrical impedance and optical scattering to detect and size particles flowing through microfluidic channels over or adjacent to CMOS sensor and read-out ICs. The approach enables fabrication of impedance measurement electrodes less than 1 mm from the readout IC, directly on package surface. As shown, direct fluid contact with the IC surface is prevented by passivation, but long-term this approach can also enable fluid access to IC-integrated electrodes or other top-level IC features, making it broadly enabling for lab-on-CMOS applications.
Collapse
|
3
|
Chai H, Zhu J, Feng Y, Liang F, Wu Q, Ju Z, Huang L, Wang W. Capillarity Enabled Large-Array Liquid Metal Electrodes for Compact and High-Throughput Dielectrophoretic Microfluidics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310212. [PMID: 38236647 DOI: 10.1002/adma.202310212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Indexed: 01/30/2024]
Abstract
Dielectrophoresis (DEP) particle separation has label-free, well-controllable, and low-damage merits. Sidewall microelectrodes made of liquid metal alloy (LMA) inherits the additional advantage of thick electrodes to generate impactful DEP force. However, existing LMA electrode-based devices lack the ability to integrate large-array electrodes in a compact footprint, severely limiting flow rate and thus throughput. Herein, a facile and versatile method is proposed to integrate high-density thick LMA electrodes in microfluidic devices, taking advantage of the passive control ability of capillary burst valves (CBVs). CBVs with carefully designed burst pressures are co-designed in microfluidic channels, allowing self-assembly of LMA electrode array through simple hand-push injection. The arrayed electrode configuration brings the accumulative DEP deflection effect. Specifically, The fabricated 5000 pairs of sidewall electrodes in a compact chip are demonstrted to achieve ten times higher throughput in DEP deflection. The 5000-electrode-pair device is applied to successfully separate four mixed samples, including human peripheral blood mononuclear cells and A549 cells with the flow rate of 70 µL min-1. It is envisioned that this work can greatly facilitate LMA electrode array fabrication and offer a robust and versatile platform for DEP separation applications.
Collapse
Affiliation(s)
- Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiyan Wu
- The First Medical Center of PLA General Hospital, Beijing, 100853, P. R. China
| | - Zhongjian Ju
- The First Medical Center of PLA General Hospital, Beijing, 100853, P. R. China
| | - Liang Huang
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Mansor MA, Ahmad MR, Petrů M, Rahimian Koloor SS. An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:371-383. [PMID: 37548425 DOI: 10.1080/21691401.2023.2239274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Electrical characteristics of living cells have been proven to reveal important details about their internal structure, charge distribution and composition changes in the cell membrane, as well as the extracellular context. An impedance flow cytometry is a common approach to determine the electrical properties of a cell, having the advantage of label-free and high throughput. However, the current techniques are complex and costly for the fabrication process. For that reason, we introduce an integrated dual microneedle-microchannel for single-cell detection and electrical properties extraction. The dual microneedles utilized a commercially available tungsten needle coated with parylene. When a single cell flows through the parallel-facing electrode configuration of the dual microneedle, the electrical impedance at multiple frequencies is measured. The impedance measurement demonstrated the differential of normal red blood cells (RBCs) with three different sizes of microbeads at low and high frequencies, 100 kHz and 2 MHz, respectively. An electrical equivalent circuit model (ECM) was used to determine the unique membrane capacitance of individual cells. The proposed technique demonstrated that the specific membrane capacitance of an RBC is 9.42 mF/m-2, with the regression coefficients, ρ at 0.9895. As a result, this device may potentially be used in developing countries for low-cost single-cell screening and detection.
Collapse
Affiliation(s)
- Muhammad Asraf Mansor
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Mohd Ridzuan Ahmad
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Michal Petrů
- Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - Seyed Saeid Rahimian Koloor
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| |
Collapse
|
5
|
Feng Y, Zhu J, Chai H, He W, Huang L, Wang W. Impedance-Based Multimodal Electrical-Mechanical Intrinsic Flow Cytometry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303416. [PMID: 37438542 DOI: 10.1002/smll.202303416] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/21/2023] [Indexed: 07/14/2023]
Abstract
Reflecting various physiological states and phenotypes of single cells, intrinsic biophysical characteristics (e.g., mechanical and electrical properties) are reliable and important, label-free biomarkers for characterizing single cells. However, single-modal mechanical or electrical properties alone are not specific enough to characterize single cells accurately, and it has been long and challenging to couple the conventionally image-based mechanical characterization and impedance-based electrical characterization. In this work, the spatial-temporal characteristics of impedance sensing signal are leveraged, and an impedance-based multimodal electrical-mechanical flow cytometry framework for on-the-fly high-dimensional intrinsic measurement is proposed, that is, Young's modulus E, fluidity β, radius r, cytoplasm conductivity σi , and specific membrane capacitance Csm , of single cells. With multimodal high-dimensional characterization, the electrical-mechanical flow cytometry can better reveal the difference in cell types, demonstrated by the experimental results with three types of cancer cells (HepG2, MCF-7, and MDA-MB-468) with 93.4% classification accuracy and pharmacological perturbations of the cytoskeleton (fixed and Cytochalasin B treated cells) with 95.1% classification accuracy. It is envisioned that multimodal electrical-mechanical flow cytometry provides a new perspective for accurate label-free single-cell intrinsic characterization.
Collapse
Affiliation(s)
- Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100190, P. R. China
| | - Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100190, P. R. China
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100190, P. R. China
| | - Weihua He
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100190, P. R. China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, Anhui, 230002, P. R. China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100190, P. R. China
| |
Collapse
|
6
|
Iyer V, Issadore DA, Aflatouni F. The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. LAB ON A CHIP 2023; 23:2553-2576. [PMID: 37114950 DOI: 10.1039/d2lc01163h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Since the field's inception, pioneers in microfluidics have made significant progress towards realizing complete lab-on-chip systems capable of sophisticated sample analysis and processing. One avenue towards this goal has been to join forces with the related field of microelectronics, using integrated circuits (ICs) to perform on-chip actuation and sensing. While early demonstrations focused on using microfluidic-IC hybrid chips to miniaturize benchtop instruments, steady advancements in the field have enabled a new generation of devices that expand past miniaturization into high-performance applications that would not be possible without IC hybrid integration. In this review, we identify recent examples of labs-on-chip that use high-resolution, high-speed, and multifunctional electronic and photonic chips to expand the capabilities of conventional sample analysis. We focus on three particularly active areas: a) high-throughput integrated flow cytometers; b) large-scale microelectrode arrays for stimulation and multimodal sensing of cells over a wide field of view; c) high-speed biosensors for studying molecules with high temporal resolution. We also discuss recent advancements in IC technology, including on-chip data processing techniques and lens-free optics based on integrated photonics, that are poised to further advance microfluidic-IC hybrid chips.
Collapse
Affiliation(s)
- Vasant Iyer
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - David A Issadore
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Firooz Aflatouni
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Warren MA, Shakouri A, Pacheco-Peña V, Hallam T. Development of a Novel Design of Microfluidic Impedance Cytometry for Improved Sensitivity and Cell Identification. ACS OMEGA 2023; 8:18882-18890. [PMID: 37273599 PMCID: PMC10233676 DOI: 10.1021/acsomega.3c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023]
Abstract
A long-standing issue for microfluidic impedance cytometry devices is the accuracy in determining the size of cells during counting and measurements. In this paper, we introduce a novel design that produces a homogeneous electric field in the sensing region and demonstrates higher accuracy than traditional designs in cell counting and sizing, reducing the reliance on cell focusing and signal postprocessing. The concept is validated, and the increased accuracy of the device over traditional designs is demonstrated through the use of finite element simulations to generate suitable data sets for particle trajectories and model expected signal variations.
Collapse
Affiliation(s)
- Michael A. Warren
- School
of Mathematics, Statistics and Physics, Newcastle University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| | - Amir Shakouri
- School
of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Víctor Pacheco-Peña
- School
of Mathematics, Statistics and Physics, Newcastle University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| | - Toby Hallam
- School
of Mathematics, Statistics and Physics, Newcastle University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
8
|
Zhu J, Feng Y, Chai H, Liang F, Cheng Z, Wang W. Performance-enhanced clogging-free viscous sheath constriction impedance flow cytometry. LAB ON A CHIP 2023; 23:2531-2539. [PMID: 37082895 DOI: 10.1039/d3lc00178d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a label-free and high-throughput single cell analysis platform, impedance flow cytometry (IFC) suffers from clogging caused by a narrow microchannel as mechanical constriction (MC). Current sheath constriction (SC) solutions lack systematic evaluation of the performance and proper guidelines for the sheath fluid. Herein, we hypothesize that the viscosity of the non-conductive liquid is the key to the performance of SC, and propose to employ non-conductive viscous sheath flow in SC to unlock the tradeoff between sensitivity and throughput, while ensuring measurement accuracy. By placing MC and SC in series in the same microfluidic chip, we established an evaluation platform to prove the hypothesis. Through modeling analysis and experiments, we confirmed the accuracy (error < 1.60% ± 4.71%) of SC w.r.t. MC, and demonstrated that viscous non-conductive PEG solution achieved an improved sensitivity (7.92×) and signal-to-noise ratio (1.42×) in impedance measurement, with the accuracy maintained and free of clogging. Viscous SC IFC also shows satisfactory ability to distinguish different types of cancer cells and different subtypes of human breast cancer cells. It is envisioned that viscous SC IFC paves the way for IFC to be really usable in practice with clogging-free, accurate, and sensitive performance.
Collapse
Affiliation(s)
- Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China.
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China.
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China.
| | - Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China.
| | - Zhen Cheng
- Department of Automation, Tsinghua University, Beijing, P. R. China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China.
| |
Collapse
|
9
|
Carnevale Castillo DA, Carminati M. A Pipe-Embeddable Impedance Sensor for Monitoring Water Leaks in Distribution Networks: Design and Validation. SENSORS (BASEL, SWITZERLAND) 2023; 23:3117. [PMID: 36991827 PMCID: PMC10051467 DOI: 10.3390/s23063117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Water leakage is one of main problems of distribution infrastructures, reaching unacceptable peaks of 50% of water lost in old networks in several countries. In order to address this challenge, we present an impedance sensor able to detect small water leaks (below 1 L of released volume). The combination of real-time sensing and such a sensitivity allows for early warning and fast response. It relies on a set of robust longitudinal electrodes applied on the external surface of the pipe. The presence of water in the surrounding medium alters its impedance in a detectable way. We report detailed numerical simulations for the optimization of electrode geometry and sensing frequency (2 MHz), as well as the successful experimental proof in the laboratory of this approach for a pipe length of 45 cm. Moreover, we experimentally tested the dependence of the detected signal on the leak volume, temperature, and morphology of the soil. Finally, differential sensing is proposed and validated as a solution to reject drifts and spurious impedance variations due to environmental effects.
Collapse
Affiliation(s)
| | - Marco Carminati
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, 20133 Milano, Italy
| |
Collapse
|
10
|
Riboldi C, Castillo DAC, Crafa DM, Carminati M. Contactless Sensing of Water Properties for Smart Monitoring of Pipelines. SENSORS (BASEL, SWITZERLAND) 2023; 23:2075. [PMID: 36850672 PMCID: PMC9967061 DOI: 10.3390/s23042075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A key milestone for the pervasive diffusion of wireless sensing nodes for smart monitoring of water quality and quantity in distribution networks is the simplification of the installation of sensors. To address this aspect, we demonstrate how two basic contactless sensors, such as piezoelectric transducers and strip electrodes (in a longitudinal interdigitated configuration to sense impedance inside and outside of the pipe with potential for impedimetric leak detection), can be easily clamped on plastic pipes to enable the measurement of multiple parameters without contact with the fluid and, thus, preserving the integrity of the pipe. Here we report the measurement of water flow rate (up to 24 m3/s) and temperature with ultrasounds and of the pipe filling fraction (capacitance at 1 MHz with ~cm3 resolution) and ionic conductivity (resistance at 20 MHz from 700 to 1400 μS/cm) by means of impedance. The equivalent impedance model of the sensor is discussed in detail. Numerical finite-element simulations, carried out to optimize the sensing parameters such as the sensing frequency, confirm the lumped models and are matched by experimental results. In fact, a 6 m long, 30 L demonstration hydraulic loop was built to validate the sensors in realistic conditions (water speed of 1 m/s) monitoring a pipe segment of 0.45 m length and 90 mm diameter (one of the largest ever reported in the literature). Tradeoffs in sensors accuracy, deployment, and fabrication, for instance, adopting single-sided flexible PCBs as electrodes protected by Kapton on the external side and experimentally validated, are discussed as well.
Collapse
Affiliation(s)
- Christian Riboldi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | | | - Daniele M. Crafa
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | - Marco Carminati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano, 20133 Milano, Italy
| |
Collapse
|
11
|
Shen B, Dawes J, Johnston ML. A 10 M Ω, 50 kHz-40 MHz Impedance Measurement Architecture for Source-Differential Flow Cytometry. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:766-778. [PMID: 35727776 DOI: 10.1109/tbcas.2022.3182905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A low-power, impedance-based integrated circuit (IC) readout architecture is presented for cell analysis and cytometry applications. A three-electrode layout and source-differential excitation cancels baseline current prior to the sensor front-end, which enables the use of a high-gain readout circuit for the difference current. A lock-in architecture is employed with down-conversion and up-conversion in the feedback loop, enabling high closed-loop gain (up to 10 M Ω) and high bandwidth (up to 40 MHz). A hybrid-RC feedback network mitigates the SNR degradation seen over a wide operating frequency range when using purely capacitive feedback. The effect of phase shift on the closed-loop system gain and noise performance are analyzed in detail, along with optimization strategies, and the design includes fine-grained phase adjustment to minimize phase error. The impedance sensor was fabricated in a 0.18 μ m CMOS process and consumes 9.7 mW with an operating frequency from 50 kHz to 40 MHz and provides adjustable bandwidth. Measurements demonstrate that the impedance sensor achieves 6 pA [Formula: see text] input-referred noise over 200 Hz bandwidth at 0.5 MHz modulation frequency. Combined with a microfluidic flow cell, measured results using this source-differential measurement approach are presented using both monodisperse and polydisperse sample solutions and demonstrate single-cell resolution, detecting 3 μ m diameter particles in solution with 22 dB SNR.
Collapse
|
12
|
Raji H, Tayyab M, Sui J, Mahmoodi SR, Javanmard M. Biosensors and machine learning for enhanced detection, stratification, and classification of cells: a review. Biomed Microdevices 2022; 24:26. [PMID: 35953679 DOI: 10.1007/s10544-022-00627-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 12/16/2022]
Abstract
Biological cells, by definition, are the basic units which contain the fundamental molecules of life of which all living things are composed. Understanding how they function and differentiating cells from one another, therefore, is of paramount importance for disease diagnostics as well as therapeutics. Sensors focusing on the detection and stratification of cells have gained popularity as technological advancements have allowed for the miniaturization of various components inching us closer to Point-of-Care (POC) solutions with each passing day. Furthermore, Machine Learning has allowed for enhancement in the analytical capabilities of these various biosensing modalities, especially the challenging task of classification of cells into various categories using a data-driven approach rather than physics-driven. In this review, we provide an account of how Machine Learning has been applied explicitly to sensors that detect and classify cells. We also provide a comparison of how different sensing modalities and algorithms affect the classifier accuracy and the dataset size required.
Collapse
Affiliation(s)
- Hassan Raji
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Muhammad Tayyab
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jianye Sui
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Seyed Reza Mahmoodi
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
13
|
Feng Y, Chai H, He W, Liang F, Cheng Z, Wang W. Impedance-Enabled Camera-Free Intrinsic Mechanical Cytometry. SMALL METHODS 2022; 6:e2200325. [PMID: 35595712 DOI: 10.1002/smtd.202200325] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Mechanical properties of single cells are important label-free biomarkers normally measured by expensive and complex imaging systems. To unlock this limit and allow mechanical properties comparable across different measurement platforms, camera-free intrinsic mechanical cytometry (CFIMC) is proposed for on-the-fly measurement of two major intrinsic mechanical parameters, that is, Young's modulus E and fluidity β, of single cells. CFIMC adopts a framework that couples the impedance electrodes with the constriction channel spatially, so that the impedance signals contain the dynamic deformability information of the cell squeezing through the constriction channel. Deformation of the cell is thus extracted from the impedance signals and used to derive the intrinsic mechanical parameters. With reasonably high throughput (>500 cells min-1 ), CFIMC can successfully reveal the mechanical difference in cancer and normal cells (i.e., human breast cell lines MCF-10A, MCF-7, and MDA-MB-231), living and fixed cells, and pharmacological perturbations of the cytoskeleton. It is further found that 1 µM level concentration of Cytochalasin B may be the threshold for the treated cells to induce a significant cytoskeleton effect reflected by the mechanical parameters. It is envisioned that CFIMC provides an alternative avenue for high-throughput and real-time single-cell intrinsic mechanical analysis.
Collapse
Affiliation(s)
- Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Weihua He
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhen Cheng
- Department of Automation, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
14
|
Farooq A, Hayat F, Zafar S, Butt NZ. Thin flexible lab-on-a-film for impedimetric sensing in biomedical applications. Sci Rep 2022; 12:1066. [PMID: 35058505 PMCID: PMC8776742 DOI: 10.1038/s41598-022-04917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
AbstractMicrofluidic cytometers based on coulter principle have recently shown a great potential for point of care biosensors for medical diagnostics. Here, we explore the design of an impedimetric microfluidic cytometer on flexible substrate. Two coplanar microfluidic geometries are compared to highlight the sensitivity of the device to the microelectrode positions relative to the detection volume. We show that the microelectrodes surface area and the geometry of the sensing volume for the cells strongly influence the output response of the sensor. Reducing the sensing volume decreases the pulse width but increases the overall pulse amplitude with an enhanced signal-to-noise ratio (~ max. SNR = 38.78 dB). For the proposed design, the SNR was adequate to enable good detection and differentiation of 10 µm diameter polystyrene beads and leukemia cells (~ 6–21 µm). Also, a systematic approach for irreversible & strong bond strength between the thin flexible surfaces that make up the biochip is explored in this work. We observed the changes in surface wettability due to various methods of surface treatment can be a valuable metric for determining bond strength. We observed permanent bonding between microelectrode defined polypropylene surface and microchannel carved PDMS due to polar/silanol groups formed by plasma treatment and consequent covalent crosslinking by amine groups. These experimental insights provide valuable design guidelines for enhancing the sensitivity of coulter based flexible lab-on-a-chip devices which have a wide range of applications in point of care diagnostics.
Collapse
|
15
|
Feng Y, Cheng Z, Chai H, He W, Huang L, Wang W. Neural network-enhanced real-time impedance flow cytometry for single-cell intrinsic characterization. LAB ON A CHIP 2022; 22:240-249. [PMID: 34849522 DOI: 10.1039/d1lc00755f] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Single-cell impedance flow cytometry (IFC) is emerging as a label-free and non-invasive method for characterizing the electrical properties and revealing sample heterogeneity. At present, most IFC studies utilize phenomenological parameters (e.g., impedance amplitude, phase and opacity) to characterize single cells instead of intrinsic biophysical metrics (e.g., radius r, cytoplasm conductivity σi and specific membrane capacitance Csm). Intrinsic parameters are normally calculated off-line by time-consuming model-fitting methods. Here, we propose to employ neural network (NN)-enhanced IFC to achieve both real-time single-cell intrinsic characterization and intrinsic parameter-based cell classification at high throughput. Three intrinsic parameters (r, σi and Csm) can be obtained online and in real-time via a trained NN at 0.3 ms per single-cell event, achieving significant improvement in calculation speed. Experiments involving four cancer cells and one lymphocyte cell demonstrated 91.5% classification accuracy in the cell type for a test group of 9751 cell samples. By performing a viability assay, we provide evidence that the IFC test per se would not substantially affect the cell property. We envision that the NN-enhanced real-time IFC will provide a new platform for high-throughput, real-time and online cell intrinsic electrical characterization.
Collapse
Affiliation(s)
- Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zhen Cheng
- Department of Automation, Tsinghua University, Beijing, China
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Weihua He
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
| |
Collapse
|
16
|
Zhu C, Maldonado J, Sengupta K. CMOS-Based Electrokinetic Microfluidics With Multi-Modal Cellular and Bio-Molecular Sensing for End-to-End Point-of-Care System. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1250-1267. [PMID: 34914597 DOI: 10.1109/tbcas.2021.3136165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The importance of point-of-care (POC) bio-molecular diagnostics capable of rapid analysis has become abundantly evident after the outbreak of the Covid-19 pandemic. While sensing interfaces for both protein and nucleic-acid based assays have been demonstrated with chip-scale systems, sample preparation in compact form factor has often been a major bottleneck in enabling end-to-end POC diagnostics. Miniaturization of an end-to-end system requires addressing the front-end sample processing, without which, the goal for low-cost POC diagnostics remain elusive. In this paper, we address bulk fluid processing with AC-osmotic based electrokinetic fluid flows that can be fully controlled, processed and automated by CMOS ICs, fabricated in TSMC 65 nm LP process. Here, we combine bulk fluid flow control with bio-molecular sensing, cell manipulation, cytometry, and separation-all of which are controlled with silicon chips for an all-in-one bio-sensing device. We show CMOS controlled pneumatic-free bulk fluid flow with fluid velocities reaching up to 160 μm/s within a microfluidic channel of 100 × 50 μm 2 of cross-sectional area. We incorporate electrode arrays to allow precise control and focused cell flows ( ±2 μm precision) for robust cytometry, and for subsequent separation. We also incorporate a 16-element impedance spectroscopy receiver array for cell and label-free protein sensing. The massive scalability of CMOS-driven microfluidics, manipulation, and sensing can lead to a new design space and a new class of miniaturized sensing technologies.
Collapse
|
17
|
Zhang Z, Huang X, Liu K, Lan T, Wang Z, Zhu Z. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis. BIOSENSORS 2021; 11:470. [PMID: 34821686 PMCID: PMC8615761 DOI: 10.3390/bios11110470] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 05/10/2023]
Abstract
Cellular heterogeneity is of significance in cell-based assays for life science, biomedicine and clinical diagnostics. Electrical impedance sensing technology has become a powerful tool, allowing for rapid, non-invasive, and label-free acquisition of electrical parameters of single cells. These electrical parameters, i.e., equivalent cell resistance, membrane capacitance and cytoplasm conductivity, are closely related to cellular biophysical properties and dynamic activities, such as size, morphology, membrane intactness, growth state, and proliferation. This review summarizes basic principles, analytical models and design concepts of single-cell impedance sensing devices, including impedance flow cytometry (IFC) to detect flow-through single cells and electrical impedance spectroscopy (EIS) to monitor immobilized single cells. Then, recent advances of both electrical impedance sensing systems applied in cell recognition, cell counting, viability detection, phenotypic assay, cell screening, and other cell detection are presented. Finally, prospects of impedance sensing technology in single-cell analysis are discussed.
Collapse
Affiliation(s)
- Zhao Zhang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| | - Xiaowen Huang
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Department of Orthopedics, Nanjing 210029, China;
| | - Ke Liu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| | - Tiancong Lan
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| | - Zixin Wang
- School of Electronics and Information Technology, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou 510275, China;
| | - Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| |
Collapse
|
18
|
Carminati M, Scandurra G. Impact and trends in embedding field programmable gate arrays and microcontrollers in scientific instrumentation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:091501. [PMID: 34598486 DOI: 10.1063/5.0050999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Microcontrollers and field-programmable gate arrays have been largely leveraged in scientific instrumentation since decades. Recent advancements in the performance of these programmable digital devices, with hundreds of I/O pins, up to millions of logic cells, >10 Gb/s connectivity, and hundreds of MHz multiple clocks, have been accelerating this trend, extending the range of functions. The diversification of devices from very low-cost 8-bit microcontrollers up to 32-bit ARM-based ones and a system of chip combining programmable logic with processors make them ubiquitous in modern electronic systems, addressing diverse challenges from ultra-low power operation, with sub-µA quiescent current in sleep mode for portable and Internet of Things applications, to high-performance computing, such as in machine vision. In this Review, the main motivations (compactness, re-configurability, parallelization, low latency for sub-ns timing, and real-time control), the possible approaches of the adoption of embedded devices, and the achievable performances are discussed. Relevant examples of applications in opto-electronics, physics experiments, impedance, vibration, and temperature sensing from the recent literature are also reviewed. From this bird-eye view, key paradigms emerge, such as the blurring of boundaries between digital platforms and the pervasiveness of machine learning algorithms, significantly fostered by the possibility to be run in embedded devices for distributing intelligence in the environment.
Collapse
Affiliation(s)
- M Carminati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano 20133, Italy
| | - G Scandurra
- Dipartimento di Ingegneria, Università degli Studi di Messina, Messina 98166, Italy
| |
Collapse
|
19
|
Biochip with multi-planar electrodes geometry for differentiation of non-spherical bioparticles in a microchannel. Sci Rep 2021; 11:11880. [PMID: 34088942 PMCID: PMC8178319 DOI: 10.1038/s41598-021-91109-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/21/2021] [Indexed: 02/04/2023] Open
Abstract
A biosensor capable of differentiating cells or other microparticles based on morphology finds significant biomedical applications. Examples may include morphological determination in the cellular division process, differentiation of bacterial cells, and cellular morphological variation in inflammation and cancer etc. Here, we present a novel integrated multi-planar microelectrodes geometry design that can distinguish a non-spherical individual particle flowing along a microchannel based on its electrical signature. We simulated multi-planar electrodes design in COMSOL Multiphysics and have shown that the changes in electrical field intensity corresponding to multiple particle morphologies can be distinguished. Our initial investigation has shown that top-bottom electrodes configuration produces significantly enhanced signal strength for a spherical particle as compared to co-planar configuration. Next, we integrated the co-planar and top-bottom configurations to develop a multi-planar microelectrode design capable of electrical impedance measurement at different spatial planes inside a microchannel by collecting multiple output signatures. We tested our integrated multi-planar electrode design with particles of different elliptical morphologies by gradually changing spherical particle dimensions to the non-spherical. The computed electrical signal ratio of non-spherical to spherical particle shows a very good correlation to predict the particle morphology. The biochip sensitivity is also found be independent of orientation of the particle flowing in the microchannel. Our integrated design will help develop the technology that will allow morphological analysis of various bioparticles in a microfluidic channel in the future.
Collapse
|
20
|
An Automatic Offset Calibration Method for Differential Charge-Based Capacitance Measurement. JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS 2021. [DOI: 10.3390/jlpea11020022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Charge-Based Capacitance Measurement (CBCM) technique is a simple but effective technique for measuring capacitance values down to the attofarad level. However, when adopted for fully on-chip implementation, this technique suffers output offset caused by mismatches and process variations. This paper introduces a novel method that compensates the offset of a fully integrated differential CBCM electronic front-end. After a detailed theoretical analysis of the differential CBCM topology, we present and discuss a modified architecture that compensates mismatches and increases robustness against mismatches and process variations. The proposed circuit has been simulated using a standard 130-nm technology and shows a sensitivity of 1.3 mV/aF and a 20× reduction of the standard deviation of the differential output voltage as compared to the traditional solution.
Collapse
|
21
|
Honrado C, Bisegna P, Swami NS, Caselli F. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics. LAB ON A CHIP 2021; 21:22-54. [PMID: 33331376 PMCID: PMC7909465 DOI: 10.1039/d0lc00840k] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biophysical analysis of single-cells by microfluidic impedance cytometry is emerging as a label-free and high-throughput means to stratify the heterogeneity of cellular systems based on their electrophysiology. Emerging applications range from fundamental life-science and drug assessment research to point-of-care diagnostics and precision medicine. Recently, novel chip designs and data analytic strategies are laying the foundation for multiparametric cell characterization and subpopulation distinction, which are essential to understand biological function, follow disease progression and monitor cell behaviour in microsystems. In this tutorial review, we present a comparative survey of the approaches to elucidate cellular and subcellular features from impedance cytometry data, covering the related subjects of device design, data analytics (i.e., signal processing, dielectric modelling, population clustering), and phenotyping applications. We give special emphasis to the exciting recent developments of the technique (timeframe 2017-2020) and provide our perspective on future challenges and directions. Its synergistic application with microfluidic separation, sensor science and machine learning can form an essential toolkit for label-free quantification and isolation of subpopulations to stratify heterogeneous biosystems.
Collapse
Affiliation(s)
- Carlos Honrado
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | | | |
Collapse
|
22
|
Caselli F, De Ninno A, Reale R, Businaro L, Bisegna P. A Bayesian Approach for Coincidence Resolution in Microfluidic Impedance Cytometry. IEEE Trans Biomed Eng 2020; 68:340-349. [PMID: 32746004 DOI: 10.1109/tbme.2020.2995364] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cell counting and characterization is fundamental for medicine, science and technology. Coulter-type microfluidic devices are effective and automated systems for cell/particle analysis, based on the electrical sensing zone principle. However, their throughput and accuracy are limited by coincidences (i.e., two or more particles passing through the sensing zone nearly simultaneously), which reduce the observed number of particles and may lead to errors in the measured particle properties. In this work, a novel approach for coincidence resolution in microfluidic impedance cytometry is proposed. METHODS The approach relies on: (i) a microchannel comprising two electrical sensing zones and (ii) a model of the signals generated by coinciding particles. Maximum a posteriori probability (MAP) estimation is used to identify the model parameters and therefore characterize individual particle properties. RESULTS Quantitative performance assessment on synthetic data streams shows a counting sensitivity of 97% and a positive predictive value of 99% at concentrations of 2×106 particles/ml. An application to red blood cell analysis shows accurate particle characterization up to a throughput of about 2500 particles/s. An original formula providing the expected number of coinciding particles is derived, and good agreement is found between experimental results and theoretical predictions. CONCLUSION The proposed cytometer enables the decomposition of signals generated by coinciding particles into individual particle contributions, by using a Bayesian approach. SIGNIFICANCE This system can be profitably used in applications where accurate counting and characterization of cell/particle suspensions over a broad range of concentrations is required.
Collapse
|
23
|
Carminati M, Fiorini C. Challenges for Microelectronics in Non-Invasive Medical Diagnostics. SENSORS 2020; 20:s20133636. [PMID: 32610430 PMCID: PMC7374509 DOI: 10.3390/s20133636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 01/03/2023]
Abstract
Microelectronics is emerging, sometimes with changing fortunes, as a key enabling technology in diagnostics. This paper reviews some recent results and technical challenges which still need to be addressed in terms of the design of CMOS analog application specific integrated circuits (ASICs) and their integration in the surrounding systems, in order to consolidate this technological paradigm. Open issues are discussed from two, apparently distant but complementary, points of view: micro-analytical devices, combining microfluidics with affinity bio-sensing, and gamma cameras for simultaneous multi-modal imaging, namely scintigraphy and magnetic resonance imaging (MRI). The role of integrated circuits is central in both application domains. In portable analytical platforms, ASICs offer miniaturization and tackle the noise/power dissipation trade-off. The integration of CMOS chips with microfluidics poses multiple open technological issues. In multi-modal imaging, now that the compatibility of the acquisition chains (thousands of Silicon Photo-Multipliers channels) of gamma detectors with Tesla-level magnetic fields has been demonstrated, other development directions, enabled by microelectronics, can be envisioned in particular for single-photon emission tomography (SPECT): a faster and simplified operation, for instance, to allow transportable applications (bed-side) and hardware pre-processing that reduces the number of output signals and the image reconstruction time.
Collapse
Affiliation(s)
- Marco Carminati
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy;
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
- Correspondence:
| | - Carlo Fiorini
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy;
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
| |
Collapse
|
24
|
Carminati M, Turolla A, Mezzera L, Di Mauro M, Tizzoni M, Pani G, Zanetto F, Foschi J, Antonelli M. A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1125. [PMID: 32092984 PMCID: PMC7070842 DOI: 10.3390/s20041125] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/18/2022]
Abstract
A smart, safe, and efficient management of water is fundamental for both developed and developing countries. Several wireless sensor networks have been proposed for real-time monitoring of drinking water quantity and quality, both in the environment and in pipelines. However, surface fouling significantly affects the long-term reliability of pipes and sensors installed in-line. To address this relevant issue, we presented a multi-parameter sensing node embedding a miniaturized slime monitor able to estimate the micrometric thickness and type of slime. The measurement of thin deposits in pipes is descriptive of water biological and chemical stability and enables early warning functions, predictive maintenance, and more efficient management processes. After the description of the sensing node, the related electronics, and the data processing strategies, we presented the results of a two-month validation in the field of a three-node pilot network. Furthermore, self-powering by means of direct energy harvesting from the water flowing through the sensing node was also demonstrated. The robustness and low cost of this solution enable its upscaling to larger monitoring networks, paving the way to water monitoring with unprecedented spatio-temporal resolution.
Collapse
Affiliation(s)
- Marco Carminati
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano 20133, Italy
| | - Andrea Turolla
- Department of Civil and Environmental Engineering (DICA)—Environmental Section, Politecnico di Milano, Milano 20133, Italy
| | - Lorenzo Mezzera
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano 20133, Italy
| | - Michele Di Mauro
- Department of Civil and Environmental Engineering (DICA)—Environmental Section, Politecnico di Milano, Milano 20133, Italy
| | - Marco Tizzoni
- Department of Civil and Environmental Engineering (DICA)—Environmental Section, Politecnico di Milano, Milano 20133, Italy
| | - Gaia Pani
- Department of Civil and Environmental Engineering (DICA)—Environmental Section, Politecnico di Milano, Milano 20133, Italy
| | - Francesco Zanetto
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano 20133, Italy
| | - Jacopo Foschi
- Department of Civil and Environmental Engineering (DICA)—Environmental Section, Politecnico di Milano, Milano 20133, Italy
| | - Manuela Antonelli
- Department of Civil and Environmental Engineering (DICA)—Environmental Section, Politecnico di Milano, Milano 20133, Italy
| |
Collapse
|
25
|
Feng Y, Huang L, Zhao P, Liang F, Wang W. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement. Anal Chem 2019; 91:15204-15212. [PMID: 31702127 DOI: 10.1021/acs.analchem.9b04083] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Single-cell impedance measurement is a label-free, noninvasive method for characterizing the electrical properties of single cells. At present, though widely used for impedance measurement, electric impedance flow cytometry (IFC) and electric impedance spectroscopy (EIS) are used alone for most microfluidic chips. In this paper, we present a microfluidic device combining the IFC and EIS techniques for single-cell electrical property measurement. The device uses hydrodynamic constriction to passively trap single cells and uses coplanar electrodes to obtain the impedance spectrum of the trapped cell via EIS and discrete impedance data points of the passing cells via IFC. Through experiment, we verified the individual functionality of IFC and EIS respectively, by revealing through IFC the impedance magnitude difference and quantifying through EIS the area-specific membrane capacitance and cytoplasm conductivity of the three types of cancer cells. We also demonstrated the complementarity of IFC and EIS, which holds for a wide range of the flow rate. We envision that the strategy of combining IFC and EIS provides a new thought in the efforts to enhancing the efficiency of electrical property measurement for single cells.
Collapse
Affiliation(s)
- Yongxiang Feng
- Department of Precision Instrument , Tsinghua University , Beijing , China
| | - Liang Huang
- School of Instrument Science and Optoelectronics Engineering , Hefei University of Technology , Hefei , China
| | - Peng Zhao
- Department of Precision Instrument , Tsinghua University , Beijing , China
| | - Fei Liang
- Department of Precision Instrument , Tsinghua University , Beijing , China
| | - Wenhui Wang
- Department of Precision Instrument , Tsinghua University , Beijing , China
| |
Collapse
|
26
|
Reale R, De Ninno A, Businaro L, Bisegna P, Caselli F. High-throughput electrical position detection of single flowing particles/cells with non-spherical shape. LAB ON A CHIP 2019; 19:1818-1827. [PMID: 30997463 DOI: 10.1039/c9lc00071b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present an innovative impedance cytometer for the measurement of the cross-sectional position of single particles or cells flowing in a microchannel. As predicted by numerical simulations and experimentally validated, the proposed approach is applicable to particles/cells with either spherical or non-spherical shape. In particular, the optics-free high-throughput position detection of individual flowing red blood cells (RBCs) is demonstrated and applied to monitor RBCs hydrodynamic focusing under different sheath flow conditions. Moreover, the device provides multiparametric information useful for lab-on-a-chip applications, including particle inter-arrival times and velocity profile, as well as RBCs mean corpuscular volume, distribution width and electrical opacity.
Collapse
Affiliation(s)
- Riccardo Reale
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, 00133 Rome, Italy.
| | | | | | | | | |
Collapse
|
27
|
Sosa-Hernández JE, Villalba-Rodríguez AM, Romero-Castillo KD, Aguilar-Aguila-Isaías MA, García-Reyes IE, Hernández-Antonio A, Ahmed I, Sharma A, Parra-Saldívar R, Iqbal HMN. Organs-on-a-Chip Module: A Review from the Development and Applications Perspective. MICROMACHINES 2018; 9:536. [PMID: 30424469 PMCID: PMC6215144 DOI: 10.3390/mi9100536] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
In recent years, ever-increasing scientific knowledge and modern high-tech advancements in micro- and nano-scales fabrication technologies have impacted significantly on various scientific fields. A micro-level approach so-called "microfluidic technology" has rapidly evolved as a powerful tool for numerous applications with special reference to bioengineering and biomedical engineering research. Therefore, a transformative effect has been felt, for instance, in biological sample handling, analyte sensing cell-based assay, tissue engineering, molecular diagnostics, and drug screening, etc. Besides such huge multi-functional potentialities, microfluidic technology also offers the opportunity to mimic different organs to address the complexity of animal-based testing models effectively. The combination of fluid physics along with three-dimensional (3-D) cell compartmentalization has sustained popularity as organ-on-a-chip. In this context, simple humanoid model systems which are important for a wide range of research fields rely on the development of a microfluidic system. The basic idea is to provide an artificial testing subject that resembles the human body in every aspect. For instance, drug testing in the pharma industry is crucial to assure proper function. Development of microfluidic-based technology bridges the gap between in vitro and in vivo models offering new approaches to research in medicine, biology, and pharmacology, among others. This is also because microfluidic-based 3-D niche has enormous potential to accommodate cells/tissues to create a physiologically relevant environment, thus, bridge/fill in the gap between extensively studied animal models and human-based clinical trials. This review highlights principles, fabrication techniques, and recent progress of organs-on-chip research. Herein, we also point out some opportunities for microfluidic technology in the future research which is still infancy to accurately design, address and mimic the in vivo niche.
Collapse
Affiliation(s)
- Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Angel M Villalba-Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Kenya D Romero-Castillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Mauricio A Aguilar-Aguila-Isaías
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Isaac E García-Reyes
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Arturo Hernández-Antonio
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Ishtiaq Ahmed
- School of Medical Science, Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia.
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, Queretaro CP 76130, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| |
Collapse
|