1
|
Liu P, Song Y, Yang X, Li D, Khosravi M. Medical intelligence using PPG signals and hybrid learning at the edge to detect fatigue in physical activities. Sci Rep 2024; 14:16149. [PMID: 38997404 PMCID: PMC11245484 DOI: 10.1038/s41598-024-66839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
The educational environment plays a vital role in the development of students who participate in athletic pursuits both in terms of their physical health and their ability to detect fatigue. As a result of recent advancements in deep learning and biosensors benefitting from edge computing resources, we are now able to monitor the physiological fatigue of students participating in sports in real time. These devices can then be used to analyze the data using contemporary technology. In this paper, we present an innovative deep learning framework for forecasting fatigue in athletic students following physical exercise. It addresses the issue of lack of precision computational models and extensive data analysis in current approaches to monitoring students' physical activity. In our study, we classified fatigue and non-fatigue based on photoplethysmography (PPG) signals. Several deep learning models are compared in the study. Using limited training data, determining the optimal parameters for PPG presents a significant challenge. For datasets containing many data points, several models were trained using PPG signals: a deep residual network convolutional neural network (ResNetCNN) ResNetCNN, an Xception architecture, a bidirectional long short-term memory (BILSTM), and a combination of these models. Training and testing datasets were assigned using a fivefold cross validation approach. Based on the testing dataset, the model demonstrated a proper classification accuracy of 91.8%.
Collapse
Affiliation(s)
- Ping Liu
- Department of Physical Education and Teaching, Hebei Finance University, Baoding, 071051, China
| | - Yazhou Song
- Department of Physical Education and Teaching, Hebei Finance University, Baoding, 071051, China
- Faculty of Sport Sciences & Recreation, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Xuan Yang
- Graduate School, Angeles University Foundation, 2009, Angeles, Philippines
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, Weifang, 262700, Shandong, China
| | - Dejuan Li
- Graduate School, Angeles University Foundation, 2009, Angeles, Philippines
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, Weifang, 262700, Shandong, China
| | - M Khosravi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, Weifang, 262700, Shandong, China.
| |
Collapse
|
2
|
Abrisham KP, Alipour K, Tarvirdizadeh B, Ghamari M. Deep Learning-Based Estimation of Arterial Stiffness from PPG Spectrograms: A Novel Approach for Non-Invasive Cardiovascular Diagnostics. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-7. [PMID: 40040001 DOI: 10.1109/embc53108.2024.10782553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Cardiovascular diseases (CVDs), a leading cause of global mortality, are intricately linked to arterial stiffness, a key factor in cardiovascular health. Non-invasive assessment of arterial stiffness, particularly through Carotid-to-femoral Pulse Wave Velocity (cf-PWV) - the gold standard in this field - is vital for early detection and management of CVDs. This study introduces a novel approach, utilizing photoplethysmogram (PPG) signal spectrograms as inputs for deep learning models to estimate cf-PWV, a significant advancement over traditional methods. Employing a modified ResNet-18 architecture, we analyze PPG signals from digital, radial, and brachial arteries of a simulated dataset of 4374 healthy adults. Our methodology's innovation lies in its direct use of finely tuned spectrogram images, bypassing the complex feature extraction processes. This approach achieved R2 (correlation coefficient) values of up to 0.9902 for the digital artery, 0.9898 for the radial artery, and 0.9825 for the brachial artery, coupled with significantly lower Mean Absolute Percentage Errors (MAPE) of approximately 1.61% for the digital, 1.87% for the radial, and 2.08% for the brachial artery. These findings highlight the efficacy of PPG spectrograms, especially from the digital artery, in providing an accurate, user-friendly, and non-invasive method for cf-PWV estimation, thereby enhancing the capabilities of non-invasive cardiovascular diagnostics.
Collapse
|
3
|
Hsu JY, Jiang TY, Chao PCP. A Fast FPGA Hardware Accelerator for Remote Heart Rate Detection Based on RGB Vision. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:592-607. [PMID: 38227402 DOI: 10.1109/tbcas.2024.3354505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
A fast hardware accelerator is created by this work via field programmable gate array (FPGA) to estimate heart rate (HR) through the video recorded by a RGB camera based on the technology of remote photoplethysmography (rPPG). The method of rPPG acquires physiological signals of a human body by analyzing the subtle color changes on the surface of the human skin. The hardware implementation of rPPG to estimate HR is proposed herein to aim for a much faster calculation speed than software for a number of applications, like heart failure pre-warning of an in-action athlete and drowsiness detection of a driver. In this accelerator, ICA (Independent Component Analysis) is used to recover the blood volume pulse from the raw signals of remote PPG, and then obtain the heart rate value. The architecture of the hardware circuit is described in Verilog HDL and verified by Quartus II, and also implemented in an Altera DE10-Standard FPGA board, which consists of image capture, heart rate algorithm and image display. A TRDB-D5M camera is utilized for image capture. Two experiments were conducted with image collecting duration of 16 seconds and 8 seconds respectively, and the commercial device Omron HEM-6111 was used as the golden value. The proposed system achieves an accuracy in (ME ± 1.96SD) of -0.76 ± 5.09 and -0.70 ± 8.71 bpm in the short periods of 16-second and 8-second versions, respectively, which outperforms all the reported prior works in combined computation time and accuracy.
Collapse
|
4
|
Lu L, Zhu T, Morelli D, Creagh A, Liu Z, Yang J, Liu F, Zhang YT, Clifton DA. Uncertainties in the Analysis of Heart Rate Variability: A Systematic Review. IEEE Rev Biomed Eng 2024; 17:180-196. [PMID: 37186539 DOI: 10.1109/rbme.2023.3271595] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Heart rate variability (HRV) is an important metric with a variety of applications in clinical situations such as cardiovascular diseases, diabetes mellitus, and mental health. HRV data can be potentially obtained from electrocardiography and photoplethysmography signals, then computational techniques such as signal filtering and data segmentation are used to process the sampled data for calculating HRV measures. However, uncertainties arising from data acquisition, computational models, and physiological factors can lead to degraded signal quality and affect HRV analysis. Therefore, it is crucial to address these uncertainties and develop advanced models for HRV analysis. Although several reviews of HRV analysis exist, they primarily focus on clinical applications, trends in HRV methods, or specific aspects of uncertainties such as measurement noise. This paper provides a comprehensive review of uncertainties in HRV analysis, quantifies their impacts, and outlines potential solutions. To the best of our knowledge, this is the first study that presents a holistic review of uncertainties in HRV methods and quantifies their impacts on HRV measures from an engineer's perspective. This review is essential for developing robust and reliable models, and could serve as a valuable future reference in the field, particularly for dealing with uncertainties in HRV analysis.
Collapse
|
5
|
Ibrahim MEA, Abbas Q, Daadaa Y, Ahmed AES. A Novel PPG-Based Biometric Authentication System Using a Hybrid CVT-ConvMixer Architecture with Dense and Self-Attention Layers. SENSORS (BASEL, SWITZERLAND) 2023; 24:15. [PMID: 38202878 PMCID: PMC10781036 DOI: 10.3390/s24010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
Biometric authentication is a widely used method for verifying individuals' identities using photoplethysmography (PPG) cardiac signals. The PPG signal is a non-invasive optical technique that measures the heart rate, which can vary from person to person. However, these signals can also be changed due to factors like stress, physical activity, illness, or medication. Ensuring the system can accurately identify and authenticate the user despite these variations is a significant challenge. To address these issues, the PPG signals were preprocessed and transformed into a 2-D image that visually represents the time-varying frequency content of multiple PPG signals from the same human using the scalogram technique. Afterward, the features fusion approach is developed by combining features from the hybrid convolution vision transformer (CVT) and convolutional mixer (ConvMixer), known as the CVT-ConvMixer classifier, and employing attention mechanisms for the classification of human identity. This hybrid model has the potential to provide more accurate and reliable authentication results in real-world scenarios. The sensitivity (SE), specificity (SP), F1-score, and area under the receiver operating curve (AUC) metrics are utilized to assess the model's performance in accurately distinguishing genuine individuals. The results of extensive experiments on the three PPG datasets were calculated, and the proposed method achieved ACCs of 95%, SEs of 97%, SPs of 95%, and an AUC of 0.96, which indicate the effectiveness of the CVT-ConvMixer system. These results suggest that the proposed method performs well in accurately classifying or identifying patterns within the PPG signals to perform continuous human authentication.
Collapse
Affiliation(s)
- Mostafa E. A. Ibrahim
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.E.A.I.); (Y.D.); (A.E.S.A.)
- Department of Electrical Engineering, Benha Faculty of Engineering, Benha University, Benha 13518, Qalubia, Egypt
| | - Qaisar Abbas
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.E.A.I.); (Y.D.); (A.E.S.A.)
| | - Yassine Daadaa
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.E.A.I.); (Y.D.); (A.E.S.A.)
| | - Alaa E. S. Ahmed
- College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia; (M.E.A.I.); (Y.D.); (A.E.S.A.)
- Electrical Engineering Department, Faculty of Engineering at Shoubra, Benha University, Cairo 11629, Egypt
| |
Collapse
|
6
|
Pattyn E, Thammasan N, Lutin E, Tourolle D, Van Kraaij A, Kosunen I, De Raedt W, Van Hoof C. Simulation of ambulatory electrodermal activity and the handling of low-quality segments. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107859. [PMID: 37863009 DOI: 10.1016/j.cmpb.2023.107859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Monitoring electrodermal activity (EDA) in daily life requires effective handling of low-quality segments, which are common in ambulatory EDA data. Although several low-quality handling methods have been implemented, systematic comparison of these methods, which requires a large annotated dataset, is lacking. METHODS Therefore, we proposed the simulation of realistic ambulatory EDA data starting from high-quality EDA signals, which were subsequently contaminated with varying concentrations of artifacts. Subsequently, three approaches for handling low-quality data were evaluated regarding the preservation of several EDA-derived features: removing all artifacts, interpolating over removed artifacts, and retaining all artifacts. Specifically, multiple EDA features were assessed, derived from response detection (evaluated using F1, precision, recall) as well as EDA, phasic, and tonic features (assessed using absolute error), by comparing the simulated EDA data with and without the inserted artifacts, using the latter as ground truth. RESULTS For response detection, retaining artifacts resulted in the highest F1-scores, while interpolating over removed artifacts achieved the highest F1-scores for the phasic signal. The approaches did significantly differ in the mean error for the phasic but not for the tonic component and raw EDA. CONCLUSION This work generated ambulatory EDA datasets of 200 h, containing 0.125 to 3 artifacts per minute, and showed that interpolation over removed artifacts was an effective approach to reconstruct phasic-derived features up to 2 artifacts per minute. The proposed simulation and evaluation methodology, which are easily customizable, offer opportunities for future research to develop and systematically compare signal quality indicators, decomposition methods, and response detectors for processing ambulatory EDA.
Collapse
Affiliation(s)
- E Pattyn
- Department of Electrical Engineering, Elektronische Circuits en Systemen (ECS), KU Leuven, Leuven (Arenberg), Kasteelpark Arenberg 10 - bus 2443, Heverlee, Leuven 3001, Belgium; OnePlanet Research Center, Wageningen, The Netherlands.
| | | | - E Lutin
- Department of Electrical Engineering, Elektronische Circuits en Systemen (ECS), KU Leuven, Leuven (Arenberg), Kasteelpark Arenberg 10 - bus 2443, Heverlee, Leuven 3001, Belgium; OnePlanet Research Center, Wageningen, The Netherlands
| | | | | | | | - W De Raedt
- OnePlanet Research Center, Wageningen, The Netherlands
| | - C Van Hoof
- Department of Electrical Engineering, Elektronische Circuits en Systemen (ECS), KU Leuven, Leuven (Arenberg), Kasteelpark Arenberg 10 - bus 2443, Heverlee, Leuven 3001, Belgium; Imec Leuven, Leuven, Belgium; OnePlanet Research Center, Wageningen, The Netherlands
| |
Collapse
|
7
|
Gorur K. Fourier Synchrosqueezing Transform-ICA-EMD Framework Based EOG-Biometric Sustainable and Continuous Authentication via Voluntary Eye Blinking Activities. Biomimetics (Basel) 2023; 8:378. [PMID: 37622983 PMCID: PMC10452148 DOI: 10.3390/biomimetics8040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
In recent years, limited works on EOG (electrooculography)-based biometric authentication systems have been carried out with eye movements or eye blinking activities in the current literature. EOGs have permanent and unique traits that can separate one individual from another. In this work, we have investigated FSST (Fourier Synchrosqueezing Transform)-ICA (Independent Component Analysis)-EMD (Empirical Mode Decomposition) robust framework-based EOG-biometric authentication (one-versus-others verification) performances using ensembled RNN (Recurrent Neural Network) deep models voluntary eye blinkings movements. FSST is implemented to provide accurate and dense temporal-spatial properties of EOGs on the state-of-the-art time-frequency matrix. ICA is a powerful statistical tool to decompose multiple recording electrodes. Finally, EMD is deployed to isolate EOG signals from the EEGs collected from the scalp. As our best knowledge, this is the first research attempt to explore the success of the FSST-ICA-EMD framework on EOG-biometric authentication generated via voluntary eye blinking activities in the limited EOG-related biometric literature. According to the promising results, improved and high recognition accuracies (ACC/Accuracy: ≥99.99% and AUC/Area under the Curve: 0.99) have been achieved in addition to the high TAR (true acceptance rate) scores (≥98%) and low FAR (false acceptance rate) scores (≤3.33%) in seven individuals. On the other hand, authentication and monitoring for online users/students are becoming essential and important tasks due to the increase of the digital world (e-learning, e-banking, or e-government systems) and the COVID-19 pandemic. Especially in order to ensure reliable access, a highly scalable and affordable approach for authenticating the examinee without cheating or monitoring high-data-size video streaming is required in e-learning platforms and online education strategies. Hence, this work may present an approach that offers a sustainable, continuous, and reliable EOG-biometric authentication of digital applications, including e-learning platforms for users/students.
Collapse
Affiliation(s)
- Kutlucan Gorur
- Electrical and Electronics Engineering Department, Bandırma Onyedi Eylul University, 10250 Balıkesir, Turkey
| |
Collapse
|
8
|
Tramontano A, Tamburis O, Cioce S, Venticinque S, Magliulo M. Heart rate estimation from ballistocardiogram signals processing via low-cost telemedicine architectures: a comparative performance evaluation. Front Digit Health 2023; 5:1222898. [PMID: 37583833 PMCID: PMC10424792 DOI: 10.3389/fdgth.2023.1222898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Medical devices (MDs) have been designed for monitoring the parameters of patients in many sectors. Nonetheless, despite being high-performing and reliable, they often turn out to be expensive and intrusive. In addition, MDs are almost exclusively used in controlled, hospital-based environments. Paving a path of technological innovation in the clinical field, a very active line of research is currently dealing with the possibility to rely on non-medical-graded low-cost devices, to develop unattended telemedicine (TM) solutions aimed at non-invasively gathering data, signals, and images. In this article, a TM solution is proposed for monitoring the heart rate (HR) of patients during sleep. A remote patient monitoring system (RPMS) featuring a smart belt equipped with pressure sensors for ballistocardiogram (BCG) signals sampling was deployed. A field trial was then conducted over a 2-month period on 24 volunteers, who also agreed to wear a finger pulse oximeter capable of producing a photoplethysmography (PPG) signal as the gold standard, to examine the feasibility of the solution via the estimation of HR values from the collected BCG signals. For this purpose, two of the highest-performing approaches for HR estimation from BCG signals, one algorithmic and the other based on a convolutional neural network (CNN), were retrieved from the literature and updated for a TM-related use case. Finally, HR estimation performances were assessed in terms of patient-wise mean absolute error (MAE). Results retrieved from the literature (controlled environment) outperformed those achieved in the experimentation (TM environment) by 29% (MAE = 4.24 vs. 5.46, algorithmic approach) and 52% (MAE = 2.32 vs. 3.54, CNN-based approach), respectively. Nonetheless, a low packet loss ratio, restrained elaboration time of the collected biomedical big data, low-cost deployment, and positive feedback from the users, demonstrate the robustness, reliability, and applicability of the proposed TM solution. In light of this, further steps will be planned to fulfill new targets, such as evaluation of respiratory rate (RR), and pattern assessment of the movement of the participants overnight.
Collapse
Affiliation(s)
- Adriano Tramontano
- Institute of Biostructures and Bioimaging, National Research Council (IBB–CNR), Naples, Italy
| | - Oscar Tamburis
- Institute of Biostructures and Bioimaging, National Research Council (IBB–CNR), Naples, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| | - Salvatore Cioce
- Institute of Biostructures and Bioimaging, National Research Council (IBB–CNR), Naples, Italy
| | - Salvatore Venticinque
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Aversa (CE), Italy
| | - Mario Magliulo
- Institute of Biostructures and Bioimaging, National Research Council (IBB–CNR), Naples, Italy
| |
Collapse
|
9
|
Vicente-Samper JM, Tamantini C, Ávila-Navarro E, De La Casa-Lillo MÁ, Zollo L, Sabater-Navarro JM, Cordella F. An ML-Based Approach to Reconstruct Heart Rate from PPG in Presence of Motion Artifacts. BIOSENSORS 2023; 13:718. [PMID: 37504116 PMCID: PMC10377343 DOI: 10.3390/bios13070718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
The heart rate (HR) is a widely used clinical variable that provides important information on a physical user's state. One of the most commonly used methods for ambulatory HR monitoring is photoplethysmography (PPG). The PPG signal retrieved from wearable devices positioned on the user's wrist can be corrupted when the user is performing tasks involving the motion of the arms, wrist, and fingers. In these cases, the obtained HR is altered as well. This problem increases when trying to monitor people with autism spectrum disorder (ASD), who are very reluctant to use foreign bodies, notably hindering the adequate attachment of the device to the user. This work presents a machine learning approach to reconstruct the user's HR signal using an own monitoring wristband especially developed for people with ASD. An experiment is carried out, with users performing different daily life activities in order to build a dataset with the measured signals from the monitoring wristband. From these data, an algorithm is applied to obtain a reliable HR value when these people are performing skill improvement activities where intensive wrist movement may corrupt the PPG.
Collapse
Affiliation(s)
- José María Vicente-Samper
- Neuroengineering Biomedical Group, Institute of Bioengineering, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Christian Tamantini
- Unit of Advanced Robotics and Human-Centred Technologies, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Ernesto Ávila-Navarro
- Department of Materials Science, Optics and Electronic Technology, Miguel Hernández University of Elche, 03202 Elche, Spain
| | | | - Loredana Zollo
- Unit of Advanced Robotics and Human-Centred Technologies, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - José María Sabater-Navarro
- Neuroengineering Biomedical Group, Institute of Bioengineering, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Francesca Cordella
- Unit of Advanced Robotics and Human-Centred Technologies, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
10
|
Thakur S, Chao PCP, Tsai CH. Precision Heart Rate Estimation Using a PPG Sensor Patch Equipped with New Algorithms of Pre-Quality Checking and Hankel Decomposition. SENSORS (BASEL, SWITZERLAND) 2023; 23:6180. [PMID: 37448029 PMCID: PMC10346997 DOI: 10.3390/s23136180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
A new method for accurately estimating heart rates based on a single photoplethysmography (PPG) signal and accelerations is proposed in this study, considering motion artifacts due to subjects' hand motions and walking. The method comprises two sub-algorithms: pre-quality checking and motion artifact removal (MAR) via Hankel decomposition. PPGs and accelerations were collected using a wearable device equipped with a PPG sensor patch and a 3-axis accelerometer. The motion artifacts caused by hand movements and walking were effectively mitigated by the two aforementioned sub-algorithms. The first sub-algorithm utilized a new quality-assessment criterion to identify highly noise-contaminated PPG signals and exclude them from subsequent processing. The second sub-algorithm employed the Hankel matrix and singular value decomposition (SVD) to effectively identify, decompose, and remove motion artifacts. Experimental data collected during hand-moving and walking were considered for evaluation. The performance of the proposed algorithms was assessed using the datasets from the IEEE Signal Processing Cup 2015. The obtained results demonstrated an average error of merely 0.7345 ± 8.1129 beats per minute (bpm) and a mean absolute error of 1.86 bpm for walking, making it the second most accurate method to date that employs a single PPG and a 3-axis accelerometer. The proposed method also achieved the best accuracy of 3.78 bpm in mean absolute errors among all previously reported studies for hand-moving scenarios.
Collapse
Affiliation(s)
| | - Paul C.-P. Chao
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | | |
Collapse
|
11
|
Zheng X, Dwyer VM, Barrett LA, Derakhshani M, Hu S. Rapid Vital Sign Extraction for Real-Time Opto-Physiological Monitoring at Varying Physical Activity Intensity Levels. IEEE J Biomed Health Inform 2023; 27:3107-3118. [PMID: 37071520 DOI: 10.1109/jbhi.2023.3268240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Robustness of physiological parameters obtained from photoplethysmographic (PPG) signals is highly dependent on a signal quality that is often affected by the motion artefacts (MAs) generated during physical activity. This study aims to suppress MAs and obtain reliable physiological readings using the part of the pulsatile signal, captured by a multi-wavelength illumination optoelectronic patch sensor (mOEPS), that minimizes the residual between the measured signal and the motion estimates obtained from an accelerometer. The minimum residual (MR) method requires the simultaneous collection of (1) multiple wavelength data from the mOEPS, and (2) motion reference signals from a triaxial accelerometer attached to the mOEPS. The MR method suppresses those frequencies associated with motion in a manner that is easily embedded on a microprocessor. The performance of the method in reducing both in-band and out-of-band frequencies of MAs is evaluated through two protocols with 34 subjects engaged in the study. The MA-suppressed PPG signal, obtained through MR, enables the calculation of the heart rate (HR) with an average absolute error of 1.47 beats/min for the IEEE-SPC datasets, and the calculation of HR and respiration rate (RR) to 1.44 beats/min and 2.85 breaths/min respectively for our in-house datasets. Oxygen saturation (SpO 2) levels calculated from the minimum residual wave forms were consistently [Formula: see text]. The comparison with the reference HR and RR show errors with an absolute accuracy of [Formula: see text] and the Pearson correlation ( R) for HR and RR are 0.9976 and 0.9118, respectively. These outcomes demonstrate that MR is capable of effective suppression of MAs for a range of physical activity intensities and to achieve real-time signal processing for wearable health monitoring.
Collapse
|
12
|
Jiang X, Zhang L, Li L. Multi-Task Learning Radar Transformer (MLRT): A Personal Identification and Fall Detection Network Based on IR-UWB Radar. SENSORS (BASEL, SWITZERLAND) 2023; 23:5632. [PMID: 37420798 DOI: 10.3390/s23125632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
Radar-based personal identification and fall detection have received considerable attention in smart healthcare scenarios. Deep learning algorithms have been introduced to improve the performance of non-contact radar sensing applications. However, the original Transformer network is not suitable for multi-task radar-based applications to effectively extract temporal features from time-series radar signals. This article proposes the Multi-task Learning Radar Transformer (MLRT): a personal Identification and fall detection network based on IR-UWB radar. The proposed MLRT utilizes the attention mechanism of Transformer as its core to automatically extract features for personal identification and fall detection from radar time-series signals. Multi-task learning is applied to exploit the correlation between the personal identification task and the fall detection task, enhancing the performance of discrimination for both tasks. In order to suppress the impact of noise and interference, a signal processing approach is employed including DC removal and bandpass filtering, followed by clutter suppression using a RA method and Kalman filter-based trajectory estimation. An indoor radar signal dataset is generated with 11 persons under one IR-UWB radar, and the performance of MLRT is evaluated using this dataset. The measurement results show that the accuracy of MLRT improves by 8.5% and 3.6% for personal identification and fall detection, respectively, compared to state-of-the-art algorithms. The indoor radar signal dataset and the proposed MLRT source code are publicly available.
Collapse
Affiliation(s)
- Xikang Jiang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Lin Zhang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Lei Li
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
13
|
Seok CL, Song YD, An BS, Lee EC. Photoplethysmogram Biometric Authentication Using a 1D Siamese Network. SENSORS (BASEL, SWITZERLAND) 2023; 23:4634. [PMID: 37430548 PMCID: PMC10221126 DOI: 10.3390/s23104634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/12/2023]
Abstract
In the head-mounted display environment for experiencing metaverse or virtual reality, conventional input devices cannot be used, so a new type of nonintrusive and continuous biometric authentication technology is required. Since the wrist wearable device is equipped with a photoplethysmogram sensor, it is very suitable for use for nonintrusive and continuous biometric authentication purposes. In this study, we propose a one-dimensional Siamese network biometric identification model using a photoplethysmogram. To maintain the unique characteristics of each person and reduce noise in preprocessing, we adopted a multicycle averaging method without using a bandpass or low-pass filter. In addition, to verify the effectiveness of the multicycle averaging method, the number of cycles was changed and the results were compared. Genuine and impostor data were used to verify the biometric identification. We used the one-dimensional Siamese network to verify the similarity between the classes and found that the method with five overlapping cycles was the most effective. Tests were conducted on the overlapping data of five single-cycle signals and excellent identification results were observed, with an AUC score of 0.988 and an accuracy of 0.9723. Thus, the proposed biometric identification model is time-efficient and shows excellent security performance, even in devices with limited computational capabilities, such as wearable devices. Consequently, our proposed method has the following advantages compared with previous works. First, the effect of noise reduction and information preservation through multicycle averaging was experimentally verified by varying the number of photoplethysmogram cycles. Second, by analyzing authentication performance through genuine and impostor matching analysis based on a one-dimensional Siamese network, the accuracy that is not affected by the number of enrolled subjects was derived.
Collapse
Affiliation(s)
- Chae Lin Seok
- Department of AI & Informatics, Graduate School, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul 03016, Republic of Korea; (C.L.S.); (Y.D.S.)
| | - Young Do Song
- Department of AI & Informatics, Graduate School, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul 03016, Republic of Korea; (C.L.S.); (Y.D.S.)
| | - Byeong Seon An
- Department of AI & Informatics, Graduate School, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul 03016, Republic of Korea; (C.L.S.); (Y.D.S.)
| | - Eui Chul Lee
- Department of Human-Centered Artificial Intelligence, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul 03016, Republic of Korea
| |
Collapse
|
14
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, et alLuo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Show More Authors] [Citation(s) in RCA: 312] [Impact Index Per Article: 156.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
15
|
Kumar A, Ashdhir A, Komaragiri R, Kumar M. Analysis of photoplethysmogram signal to estimate heart rate during physical activity using fractional fourier transform - A sampling frequency independent and reference signal-less method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 229:107294. [PMID: 36528998 DOI: 10.1016/j.cmpb.2022.107294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Acquiring accurate and reliable health information using a PPG signal in wearable devices requires suppressing motion artifacts. This paper presents a method based on the Fractional Fourier transform (FrFT) to effectively suppress the motion artifacts in a Photoplethysmogram (PPG) signal for an accurate estimation of heart rate (HR). METHODS By analyzing various PPG signals recorded under various physiological conditions and sampling frequencies, the proposed work determines an optimal value of the fractional order of the proposed FrFT. The proposed FrFT-based algorithm separates the motion artifacts component from the acquired PPG signal. Finally, the HR estimation accuracy during the strong motion artifact-affected windows is improved using a post-processing technique. The efficacy of the proposed method is evaluated by computing the root mean square error (RMSE). RESULTS The performance of the proposed algorithm is compared with methods in recent studies using test and training datasets from the IEEE Signal Processing Cup (SPC). The proposed method provides the mean absolute error of 1.88 beats per minute (BPM) on all twenty-three recordings. CONCLUSIONS The proposed method uses the Fourier method in the fractional domain. A noisy signal is rotated into an intermediate plane between the time and frequency domains to separate the signal from the noise. The algorithm incorporates FrFT analysis to suppress motion artifacts from PPG signals to estimate HR accurately. Further, a post-processing step is used to track the HR for accurate and reliable HR estimation. The proposed FrFT-based algorithm doesn't require additional reference accelerometers or hardware to estimate HR in real-time. The noise and signal separation is optimum for a fractional order (a) value in the vicinity of 0.6. The optimized value of fractional order is constant irrespective of the physical activity and sampling frequency.
Collapse
Affiliation(s)
- Ashish Kumar
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | - Aryaman Ashdhir
- Department of Electronics and Communication Engineering, Bennett University, Greater Noida, India.
| | - Rama Komaragiri
- Department of Electronics and Communication Engineering, Bennett University, Greater Noida, India
| | - Manjeet Kumar
- Department of Electronics and Communication Engineering, Delhi Technological University, Delhi, India.
| |
Collapse
|
16
|
Christabel GJ, Subhajini AC. KPCA-WRF-prediction of heart rate using deep feature fusion and machine learning classification with tuned weighted hyper-parameter. NETWORK (BRISTOL, ENGLAND) 2023; 34:250-281. [PMID: 37534974 DOI: 10.1080/0954898x.2023.2238070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2023] [Indexed: 08/04/2023]
Abstract
The rapid advancement of technology such as stream processing technologies, deep-learning approaches, and artificial intelligence plays a prominent and vital role, to detect heart rate using a prediction model. However, the existing methods could not handle high -dimensional datasets, and deep feature learning to improvise the performance. Therefore, this work proposed a real-time heart rate prediction model, using K-nearest neighbour (KNN) adhered to the principle component analysis algorithm (PCA) and weighted random forest algorithm for feature fusion (KPCA-WRF) approach and deep CNN feature learning framework. The feature selection, from the fused features, was optimized by ant colony optimization (ACO) and particle swarm optimization (PSO) algorithm to enhance the selected fused features from deep CNN. The optimized features were reduced to low dimensions using the PCA algorithm. The significant straight heart rate features are plotted by capturing out nearest similar data point values using the algorithm. The fused features were then classified for aiding the training process. The weighted values are assigned to those tuned hyper parameters (feature matrix forms). The optimal path and continuity of the weighted feature representations are moved using the random forest algorithm, in K-fold validation iterations.
Collapse
Affiliation(s)
- G Jasmine Christabel
- Department of Computer Application, Noorul Islam Center for Higher Education, Kumaracoil, India
- Research Scholar, Department of Computer Application, Noorul Islam Center for Higher Education, Kumaracoil, India
| | - A C Subhajini
- Research Scholar, Department of Computer Application, Noorul Islam Center for Higher Education, Kumaracoil, India
| |
Collapse
|
17
|
Song Y, Chen J, Zhang R. Heart Rate Estimation from Incomplete Electrocardiography Signals. SENSORS (BASEL, SWITZERLAND) 2023; 23:597. [PMID: 36679394 PMCID: PMC9860828 DOI: 10.3390/s23020597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
As one of the most remarkable indicators of physiological health, heart rate (HR) has become an unfailing investigation for researchers. Unlike many existing methods, this article proposes an approach to implement short-time HR estimation from electrocardiography in time series missing patterns. Benefiting from the rapid development of deep learning, we adopted a bidirectional long short-term memory model (Bi-LSTM) and temporal convolution network (TCN) to recover complete heartbeat signals from those with durations are less than one cardiac cycle, and the estimated HR from recovered segment combining the input and the predicted output. We also compared the performance of Bi-LSTM and TCN in PhysioNet dataset. Validating the method over a resting heart rate range of 60−120 bpm in the database without significant arrhythmias and a corresponding range of 30−150 bpm in the database with arrhythmias, we found that networks provide an estimated approach for incomplete signals in a fixed format. These results are consistent with real heartbeats in the normal heartbeat dataset (γ > 0.7, RMSE < 10) and in the arrhythmia database (γ > 0.6, RMSE < 30), verifying that HR could be estimated by models in advance. We also discussed the short-time limits for the predictive model. It could be used for physiological purposes such as mobile sensing in time-constrained scenarios, and providing useful insights for better time series analyses in missing data patterns.
Collapse
Affiliation(s)
- Yawei Song
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
| | - Jia Chen
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Rongxin Zhang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology, Xiamen University, Ministry of Education, Xiamen 361005, China
| |
Collapse
|
18
|
Dong L, Wang J. Intelligent Safety Ergonomics: A Cleaner Research Direction for Ergonomics in the Era of Big Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:423. [PMID: 36612744 PMCID: PMC9819348 DOI: 10.3390/ijerph20010423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Safety ergonomics is an important branch of safety science and environmental engineering. As humans enter the era of big data, the development of information technology has brought new opportunities and challenges to the innovation, transformation, and upgrading of safety ergonomics, as the traditional safety ergonomics theory has gradually failed to adapt to the need for safe and clean production. Intelligent safety ergonomics (ISE) is regarded as a new direction for the development of safety ergonomics in the era of big data. Unfortunately, since ISE is an emerging concept, there is no research to clarify its basic problems, which leads to a lack of theoretical guidance for the research and practice of ISE. In order to solve the shortcomings of traditional safety ergonomics theories and methods, first of all, this paper answers the basic questions of ISE, including the basic concepts, characteristics, attributes, contents, and research objects. Then, practical application functions of ISE are systematically clarified. Finally, following the life cycle of the design, implementation, operation, and maintenance of the system, it ends with a discussion of the challenges and application prospects of ISE. The conclusion shows that ISE is a cleaner research direction for ergonomics in the era of big data, that it can deepen the understanding of humans, machines, and environment systems, and it can provide a new method for further research on safety and cleaner production. Overall, this paper not only helps safety researchers and practitioners to correctly understand the concept of intelligent safety ergonomics, but it will certainly inject energy and vitality into the development of safety ergonomics and cleaner production.
Collapse
|
19
|
Chen Y, Zhang D, Karimi HR, Deng C, Yin W. A new deep learning framework based on blood pressure range constraint for continuous cuffless BP estimation. Neural Netw 2022; 152:181-190. [DOI: 10.1016/j.neunet.2022.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
|
20
|
Ray D, Collins T, Ponnapalli PVS. DeepPulse: An Uncertainty-aware Deep Neural Network for Heart Rate Estimations from Wrist-worn Photoplethysmography. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1651-1654. [PMID: 36086420 DOI: 10.1109/embc48229.2022.9871813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wearable Photoplethysmography (PPG) has gained prominence as a low cost, unobtrusive and continuous method for physiological monitoring. The quality of the collected PPG signals is affected by several sources of interference, predominantly due to physical motion. Many methods for estimating heart rate (HR) from PPG signals have been proposed with Deep Neural Networks (DNNs) gaining popularity in recent years. However, the "black-box" and complex nature of DNNs has caused a lack of trust in the predicted values. This paper contributes DeepPulse, an uncertainty-aware DNN method for estimating HR from PPG and accelerometer signals, with aims of increasing trust of the predicted HR values. To the best of the authors' knowledge no PPG HR estimation method has considered aleatoric and epistemic uncertainty metrics. The results show DeepPulse is the most accurate method for DNNs with smaller network sizes. Finally, recommendations are given to reduce epistemic uncertainty, validate uncertainty estimates, improve the accuracy of DeepPulse as well as reduce the model size for resource-constrained edge devices.
Collapse
|
21
|
Lampier LC, Valadão CT, Silva LA, Delisle-Rodriguez D, Caldeira EMDO, Bastos Filho TF. A deep learning approach to estimate pulse rate by remote photoplethysmography. Physiol Meas 2022; 43. [PMID: 35728793 DOI: 10.1088/1361-6579/ac7b0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE This study proposes an U-net shaped Deep Neural Network (DNN) model to extract remote photoplethysmography (rPPG) signals from skin color signals to estimate Pulse Rate (PR). APPROACH Three input window sizes are used into the DNN: 256 samples (5.12 s), 512 samples (10.24 s), and 1024 (20.48 s). A data argumentation algorithm based on interpolation is also used here to artificially increase the number of training samples. MAIN RESULTS The proposed model outperformed a prior-knowledge rPPG method by using input signals with window of 256 and 512 samples. Also, it was found that the data augmentation procedure only increased the performance for window of 1024 samples. The trained model achieved a Mean Absolute Error (MAE) of 3.97 Beats per Minute (BPM) and Root Mean Squared Error (RMSE) of 6.47 BPM, for the 256 samples window, and MAE of 3.00 BPM and RMSE of 5.45 BPM for the window of 512 samples. On the other hand, the prior-knowledge rPPG method got a MAE of 8.04 BPM and RMSE of 16.63 BPM for the window of 256 samples, and MAE of 3.49 BPM and RMSE of 7.92 BPM for the window of 512. For the longest window (1024 samples), the concordance of the predicted PRs from the DNNs and the true PRs was higher when applying the data augmentation procedure. SIGNIFICANCE These results demonstrate a big potential of this technique for PR estimation, showing that the DNN proposed here may generate reliable rPPG signals even with short window lengths (5.12 s and 10.24 s), suggesting that it needs less data for a faster rPPG measurement and PR estimation.
Collapse
Affiliation(s)
- Lucas Côgo Lampier
- Universidade Federal do Espirito Santo, Av. Fernando Ferrari, 514, Vitoria, 29075-910, BRAZIL
| | | | - Leticia Araújo Silva
- Universidade Federal do Espirito Santo, Av. Fernando Ferrari, 514, Vitoria, 29075-910, BRAZIL
| | - Denis Delisle-Rodriguez
- Universidade Federal do Espirito Santo, Av. Fernando Ferrari, 514, Vitoria, Espirito Santo, 29075-910, BRAZIL
| | | | - Teodiano Freire Bastos Filho
- Postgraduate Program in Electrical Engineering, Universidade Federal do Espirito Santo, Av. Fernando Ferrari, 514, Vitoria, ES, 29075-910, BRAZIL
| |
Collapse
|
22
|
Ismail S, Siddiqi I, Akram U. Heart rate estimation in PPG signals using Convolutional-Recurrent Regressor. Comput Biol Med 2022; 145:105470. [DOI: 10.1016/j.compbiomed.2022.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022]
|
23
|
Galli A, Montree RJH, Que S, Peri E, Vullings R. An Overview of the Sensors for Heart Rate Monitoring Used in Extramural Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:4035. [PMID: 35684656 PMCID: PMC9185322 DOI: 10.3390/s22114035] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/02/2023]
Abstract
This work presents an overview of the main strategies that have been proposed for non-invasive monitoring of heart rate (HR) in extramural and home settings. We discuss three categories of sensing according to what physiological effect is used to measure the pulsatile activity of the heart, and we focus on an illustrative sensing modality for each of them. Therefore, electrocardiography, photoplethysmography, and mechanocardiography are presented as illustrative modalities to sense electrical activity, mechanical activity, and the peripheral effect of heart activity. In this paper, we describe the physical principles underlying the three categories and the characteristics of the different types of sensors that belong to each class, and we touch upon the most used software strategies that are currently adopted to effectively and reliably extract HR. In addition, we investigate the strengths and weaknesses of each category linked to the different applications in order to provide the reader with guidelines for selecting the most suitable solution according to the requirements and constraints of the application.
Collapse
Affiliation(s)
- Alessandra Galli
- Department of Information Engineering, University of Padova, I-35131 Padova, Italy;
| | - Roel J. H. Montree
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Shuhao Que
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Elisabetta Peri
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Rik Vullings
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| |
Collapse
|
24
|
Yang J, Huang Y, Guo Y, Huang F, Li J. PPG biometric recognition with singular value decomposition and local mean decomposition. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-212086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although some methods of feature extraction for photoplethysmography (PPG) biometric recognition have been extensively studied, effectiveness of local features, time cost of feature extraction, and robust identification for small-scale data remain challenging. To address these issues, we proposed a feature-extraction method of PPG biometrics combining singular value decomposition with local mean decomposition and time-domain parameters. First, we used the singular-value-decomposition method to de-noise the original PPG data. Second, we extracted the local-mean-decomposition-based and time-domain features, which are fused into a concatenated feature. Finally, we combined the concatenated feature with four classifiers for classification and decision-making. Extensive experiments on the three datasets have shown that the waveform of the PPG signal de-noised by singular value decomposition was smoother and more regular, the concatenated feature had strong inter-subject distinguishability and intra-subject similarity, and the concatenated feature combined with a random-forest classifier was the best and could achieve 99.40%, 99.88%, and 99.56% recognition rates on the respective datasets. The method is competitive with several state-of-the-art methods.
Collapse
Affiliation(s)
- Junfeng Yang
- School of Computer, Heze University, Heze 274015, Shandong Province, China
| | - Yuwen Huang
- School of Computer, Heze University, Heze 274015, Shandong Province, China
| | - Yubin Guo
- School of Computer, Heze University, Heze 274015, Shandong Province, China
| | - Fuxian Huang
- School of Computer, Heze University, Heze 274015, Shandong Province, China
| | - Jing Li
- School of Computer, Heze University, Heze 274015, Shandong Province, China
| |
Collapse
|
25
|
Jiang H, Zou L, Huang D, Feng Q. Continuous Blood Pressure Estimation Based on Multi-Scale Feature Extraction by the Neural Network With Multi-Task Learning. Front Neurosci 2022; 16:883693. [PMID: 35600611 PMCID: PMC9120547 DOI: 10.3389/fnins.2022.883693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 11/15/2022] Open
Abstract
In this article, a novel method for continuous blood pressure (BP) estimation based on multi-scale feature extraction by the neural network with multi-task learning (MST-net) has been proposed and evaluated. First, we preprocess the target (Electrocardiograph; Photoplethysmography) and label signals (arterial blood pressure), especially using peak-to-peak time limits of signals to eliminate the interference of the false peak. Then, we design a MST-net to extract multi-scale features related to BP, fully excavate and learn the relationship between multi-scale features and BP, and then estimate three BP values simultaneously. Finally, the performance of the developed neural network is verified by using a public multi-parameter intelligent monitoring waveform database. The results show that the mean absolute error ± standard deviation for systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) with the proposed method against reference are 4.04 ± 5.81, 2.29 ± 3.55, and 2.46 ± 3.58 mmHg, respectively; the correlation coefficients of SBP, DBP, and MAP are 0.96, 0.92, and 0.94, respectively, which meet the Association for the Advancement of Medical Instrumentation standard and reach A level of the British Hypertension Society standard. This study provides insights into the improvement of accuracy and efficiency of a continuous BP estimation method with a simple structure and without calibration. The proposed algorithm for BP estimation could potentially enable continuous BP monitoring by mobile health devices.
Collapse
Affiliation(s)
- Hengbing Jiang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
| | - Lili Zou
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- *Correspondence: Lili Zou,
| | - Dequn Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Qianjin Feng,
| |
Collapse
|
26
|
Liu C, Yu J, Huang Y, Huang F. Time–frequency fusion learning for photoplethysmography biometric recognition. IET BIOMETRICS 2022. [DOI: 10.1049/bme2.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - Jijiang Yu
- School of Computer Heze University Heze China
| | - Yuwen Huang
- School of Computer Heze University Heze China
- School of Software Shandong University Jinan China
| | | |
Collapse
|
27
|
Vavrinsky E, Esfahani NE, Hausner M, Kuzma A, Rezo V, Donoval M, Kosnacova H. The Current State of Optical Sensors in Medical Wearables. BIOSENSORS 2022; 12:217. [PMID: 35448277 PMCID: PMC9029995 DOI: 10.3390/bios12040217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 05/04/2023]
Abstract
Optical sensors play an increasingly important role in the development of medical diagnostic devices. They can be very widely used to measure the physiology of the human body. Optical methods include PPG, radiation, biochemical, and optical fiber sensors. Optical sensors offer excellent metrological properties, immunity to electromagnetic interference, electrical safety, simple miniaturization, the ability to capture volumes of nanometers, and non-invasive examination. In addition, they are cheap and resistant to water and corrosion. The use of optical sensors can bring better methods of continuous diagnostics in the comfort of the home and the development of telemedicine in the 21st century. This article offers a large overview of optical wearable methods and their modern use with an insight into the future years of technology in this field.
Collapse
Affiliation(s)
- Erik Vavrinsky
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, Sasinkova 2, 81272 Bratislava, Slovakia
| | - Niloofar Ebrahimzadeh Esfahani
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Michal Hausner
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Anton Kuzma
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Vratislav Rezo
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Martin Donoval
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 81219 Bratislava, Slovakia; (N.E.E.); (M.H.); (A.K.); (V.R.); (M.D.)
| | - Helena Kosnacova
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, Sasinkova 4, 81272 Bratislava, Slovakia
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia
| |
Collapse
|
28
|
Park J, Seok HS, Kim SS, Shin H. Photoplethysmogram Analysis and Applications: An Integrative Review. Front Physiol 2022; 12:808451. [PMID: 35300400 PMCID: PMC8920970 DOI: 10.3389/fphys.2021.808451] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022] Open
Abstract
Beyond its use in a clinical environment, photoplethysmogram (PPG) is increasingly used for measuring the physiological state of an individual in daily life. This review aims to examine existing research on photoplethysmogram concerning its generation mechanisms, measurement principles, clinical applications, noise definition, pre-processing techniques, feature detection techniques, and post-processing techniques for photoplethysmogram processing, especially from an engineering point of view. We performed an extensive search with the PubMed, Google Scholar, Institute of Electrical and Electronics Engineers (IEEE), ScienceDirect, and Web of Science databases. Exclusion conditions did not include the year of publication, but articles not published in English were excluded. Based on 118 articles, we identified four main topics of enabling PPG: (A) PPG waveform, (B) PPG features and clinical applications including basic features based on the original PPG waveform, combined features of PPG, and derivative features of PPG, (C) PPG noise including motion artifact baseline wandering and hypoperfusion, and (D) PPG signal processing including PPG preprocessing, PPG peak detection, and signal quality index. The application field of photoplethysmogram has been extending from the clinical to the mobile environment. Although there is no standardized pre-processing pipeline for PPG signal processing, as PPG data are acquired and accumulated in various ways, the recently proposed machine learning-based method is expected to offer a promising solution.
Collapse
Affiliation(s)
- Junyung Park
- Department of Biomedical Engineering, Chonnam National University, Yeosu, South Korea
| | - Hyeon Seok Seok
- Department of Biomedical Engineering, Chonnam National University, Yeosu, South Korea
| | - Sang-Su Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, South Korea
| | - Hangsik Shin
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
29
|
Labati RD, Piuri V, Rundo F, Scotti F. Photoplethysmographic Biometrics: a Comprehensive Survey. Pattern Recognit Lett 2022. [DOI: 10.1016/j.patrec.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Normalization of photoplethysmography using deep neural networks for individual and group comparison. Sci Rep 2022; 12:3133. [PMID: 35210522 PMCID: PMC8873247 DOI: 10.1038/s41598-022-07107-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/03/2021] [Indexed: 11/08/2022] Open
Abstract
Photoplethysmography (PPG) is easy to measure and provides important parameters related to heart rate and arrhythmia. However, automated PPG methods have not been developed because of their susceptibility to motion artifacts and differences in waveform characteristics among individuals. With increasing use of telemedicine, there is growing interest in application of deep neural network (DNN) technology for efficient analysis of vast amounts of PPG data. This study is about an algorithm for measuring a patient's PPG and comparing it with their own data stored previously and with the average data of several groups. Six deep neural networks were used to normalize the PPG waveform according to the heart rate by removing uninformative regions from the PPG, distinguishing between heartbeat and reflection pulses, dividing the heartbeat waveform into 10 segments and averaging the values according to each segments. PPG data were measured using telemedicine in both groups. Group 1 consisted of healthy people aged 25 to 35 years, and Group 2 consisted of patients between 60 and 75 years of age taking antihypertensive medications. The proposed algorithm could accurately determine which group the subject belonged with the newly measured PPG data (AUC = 0.998). On the other hand, errors were frequently observed in identification of individuals (AUC = 0.819).
Collapse
|
31
|
A Predictive Analysis of Heart Rates Using Machine Learning Techniques. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042417. [PMID: 35206603 PMCID: PMC8872524 DOI: 10.3390/ijerph19042417] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Heart disease, caused by low heart rate, is one of the most significant causes of mortality in the world today. Therefore, it is critical to monitor heart health by identifying the deviation in the heart rate very early, which makes it easier to detect and manage the heart’s function irregularities at a very early stage. The fast-growing use of advanced technology such as the Internet of Things (IoT), wearable monitoring systems and artificial intelligence (AI) in the healthcare systems has continued to play a vital role in the analysis of huge amounts of health-based data for early and accurate disease detection and diagnosis for personalized treatment and prognosis evaluation. It is then important to analyze the effectiveness of using data analytics and machine learning to monitor and predict heart rates using wearable device (accelerometer)-generated data. Hence, in this study, we explored a number of powerful data-driven models including the autoregressive integrated moving average (ARIMA) model, linear regression, support vector regression (SVR), k-nearest neighbor (KNN) regressor, decision tree regressor, random forest regressor and long short-term memory (LSTM) recurrent neural network algorithm for the analysis of accelerometer data to make future HR predictions from the accelerometer’s univariant HR time-series data from healthy people. The performances of the models were evaluated under different durations. Evaluated on a very recently created data set, our experimental results demonstrate the effectiveness of using an ARIMA model with a walk-forward validation and linear regression for predicting heart rate under all durations and other models for durations longer than 1 min. The results of this study show that employing these data analytics techniques can be used to predict future HR more accurately using accelerometers.
Collapse
|
32
|
Marzorati D, Dorizza A, Bovio D, Salito C, Mainardi L, Cerveri P. Hybrid Convolutional Networks for End-to-End Event Detection in Concurrent PPG and PCG Signals Affected by Motion Artifacts. IEEE Trans Biomed Eng 2022; 69:2512-2523. [PMID: 35119997 DOI: 10.1109/tbme.2022.3148171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The accurate detection of physiologically-related events in photopletismographic (PPG) and phocardiographic (PCG) signals, recorded by wearable sensors, is mandatory to perform the estimation of relevant cardiovascular parameters like the heart rate and the blood pressure. However, the measurement performed in uncontrolled conditions without clinical supervision leaves the detection quality particularly susceptible to noise and motion artifacts. The performed work proposed a new fully-automatic computational framework, based on convolutional networks, to identify and localize fiducial points in time as the foot, maximum slope and peak in PPG signal and the S1 sound in the PCG signal, both acquired by a custom chest sensor, described recently in the literature by our group. The novelty entailing a custom neural architecture to process sequentially the PPG and PCG signals. Tests were performed analysing four different acquisition conditions (rest, cycling, rest recovery and walking). Cross-validation results for the three PPG fiducial points showed identification accuracy greater than 93 % and localization error (RMSE) less than 10 ms. As expected, cycling and walking conditions provided worse results than rest and recovery, however reaching an accuracy greater than 90 % and a localization error lower than 15 ms. Likewise, the identification and localization error for S1 sound were greater than 90 % and lower than 25 ms. Overall, this study showcased the ability of the proposed technique to detect events with high accuracy not only for steady acquisitions but also during subject movements. We also showed that the proposed network outperformed traditional Shannon-energy-envelope method in the detection of S1 sound. Therefore, we argue that coupling chest sensors and deep learning processing techniques may disclose wearable devices to unobtrusively acquire health information, being less affected by noise and motion artifacts.
Collapse
|
33
|
Han D, Bashar SK, Lázaro J, Mohagheghian F, Peitzsch A, Nishita N, Ding E, Dickson EL, DiMezza D, Scott J, Whitcomb C, Fitzgibbons TP, McManus DD, Chon KH. A Real-Time PPG Peak Detection Method for Accurate Determination of Heart Rate during Sinus Rhythm and Cardiac Arrhythmia. BIOSENSORS 2022; 12:82. [PMID: 35200342 PMCID: PMC8869811 DOI: 10.3390/bios12020082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/20/2023]
Abstract
OBJECTIVE We have developed a peak detection algorithm for accurate determination of heart rate, using photoplethysmographic (PPG) signals from a smartwatch, even in the presence of various cardiac rhythms, including normal sinus rhythm (NSR), premature atrial contraction (PAC), premature ventricle contraction (PVC), and atrial fibrillation (AF). Given the clinical need for accurate heart rate estimation in patients with AF, we developed a novel approach that reduces heart rate estimation errors when compared to peak detection algorithms designed for NSR. METHODS Our peak detection method is composed of a sequential series of algorithms that are combined to discriminate the various arrhythmias described above. Moreover, a novel Poincaré plot scheme is used to discriminate between basal heart rate AF and rapid ventricular response (RVR) AF, and to differentiate PAC/PVC from NSR and AF. Training of the algorithm was performed only with Samsung Simband smartwatch data, whereas independent testing data which had more samples than did the training data were obtained from Samsung's Gear S3 and Galaxy Watch 3. RESULTS The new PPG peak detection algorithm provides significantly lower average heart rate and interbeat interval beat-to-beat estimation errors-30% and 66% lower-and mean heart rate and mean interbeat interval estimation errors-60% and 77% lower-when compared to the best of the seven other traditional peak detection algorithms that are known to be accurate for NSR. Our new PPG peak detection algorithm was the overall best performers for other arrhythmias. CONCLUSION The proposed method for PPG peak detection automatically detects and discriminates between various arrhythmias among different waveforms of PPG data, delivers significantly lower heart rate estimation errors for participants with AF, and reduces the number of false negative peaks. SIGNIFICANCE By enabling accurate determination of heart rate despite the presence of AF with rapid ventricular response or PAC/PVCs, we enable clinicians to make more accurate recommendations for heart rate control from PPG data.
Collapse
Affiliation(s)
- Dong Han
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (D.H.); (F.M.); (A.P.)
| | - Syed Khairul Bashar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Jesús Lázaro
- BSICoS Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, 50018 Zaragoza, Spain;
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Fahimeh Mohagheghian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (D.H.); (F.M.); (A.P.)
| | - Andrew Peitzsch
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (D.H.); (F.M.); (A.P.)
| | - Nishat Nishita
- Department of Public Health Sciences, University of Connecticut Health, Farmington, CT 06030, USA;
| | - Eric Ding
- Division of Cardiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; (E.D.); (D.D.); (J.S.); (T.P.F.); (D.D.M.)
| | - Emily L. Dickson
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA;
| | - Danielle DiMezza
- Division of Cardiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; (E.D.); (D.D.); (J.S.); (T.P.F.); (D.D.M.)
| | - Jessica Scott
- Division of Cardiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; (E.D.); (D.D.); (J.S.); (T.P.F.); (D.D.M.)
| | - Cody Whitcomb
- School of Medicine, Tufts University, Medford, MA 02155, USA;
| | - Timothy P. Fitzgibbons
- Division of Cardiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; (E.D.); (D.D.); (J.S.); (T.P.F.); (D.D.M.)
| | - David D. McManus
- Division of Cardiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; (E.D.); (D.D.); (J.S.); (T.P.F.); (D.D.M.)
| | - Ki H. Chon
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (D.H.); (F.M.); (A.P.)
| |
Collapse
|
34
|
Burrello A, Pagliari DJ, Risso M, Benatti S, Macii E, Benini L, Poncino M. Q-PPG: Energy-Efficient PPG-Based Heart Rate Monitoring on Wearable Devices. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1196-1209. [PMID: 34673496 DOI: 10.1109/tbcas.2021.3122017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hearth Rate (HR) monitoring is increasingly performed in wrist-worn devices using low-cost photoplethysmography (PPG) sensors. However, Motion Artifacts (MAs) caused by movements of the subject's arm affect the performance of PPG-based HR tracking. This is typically addressed coupling the PPG signal with acceleration measurements from an inertial sensor. Unfortunately, most standard approaches of this kind rely on hand-tuned parameters, which impair their generalization capabilities and their applicability to real data in the field. In contrast, methods based on deep learning, despite their better generalization, are considered to be too complex to deploy on wearable devices. In this work, we tackle these limitations, proposing a design space exploration methodology to automatically generate a rich family of deep Temporal Convolutional Networks (TCNs) for HR monitoring, all derived from a single "seed" model. Our flow involves a cascade of two Neural Architecture Search (NAS) tools and a hardware-friendly quantizer, whose combination yields both highly accurate and extremely lightweight models. When tested on the PPG-Dalia dataset, our most accurate model sets a new state-of-the-art in Mean Absolute Error. Furthermore, we deploy our TCNs on an embedded platform featuring a STM32WB55 microcontroller, demonstrating their suitability for real-time execution. Our most accurate quantized network achieves 4.41 Beats Per Minute (BPM) of Mean Absolute Error (MAE), with an energy consumption of 47.65 mJ and a memory footprint of 412 kB. At the same time, the smallest network that obtains a MAE 8 BPM, among those generated by our flow, has a memory footprint of 1.9 kB and consumes just 1.79 mJ per inference.
Collapse
|
35
|
John A, Nundy KK, Cardiff B, John D. Multimodal Multiresolution Data Fusion Using Convolutional Neural Networks for IoT Wearable Sensing. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1161-1173. [PMID: 34882563 DOI: 10.1109/tbcas.2021.3134043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With advances in circuit design and sensing technology, the acquisition of data from a large number of Internet of Things (IoT) sensors simultaneously to enable more accurate inferences has become mainstream. In this work, we propose a novel convolutional neural network (CNN) model for the fusion of multimodal and multiresolution data obtained from several sensors. The proposed model enables the fusion of multiresolution sensor data, without having to resort to padding/ resampling to correct for frequency resolution differences even when carrying out temporal inferences like high-resolution event detection. The performance of the proposed model is evaluated for sleep apnea event detection, by fusing three different sensor signals obtained from UCD St. Vincent University Hospital's sleep apnea database. The proposed model is generalizable and this is demonstrated by incremental performance improvements, proportional to the number of sensors used for fusion. A selective dropout technique is used to prevent overfitting of the model to any specific high-resolution input, and increase the robustness of fusion to signal corruption from any sensor source. A fusion model with electrocardiogram (ECG), Peripheral oxygen saturation signal (SpO2), and abdominal movement signal achieved an accuracy of 99.72% and a sensitivity of 98.98%. Energy per classification of the proposed fusion model was estimated to be approximately 5.61 μJ for on-chip implementation. The feasibility of pruning to reduce the complexity of the fusion models was also studied.
Collapse
|
36
|
Rocha LG, Paim G, Biswas D, Bampi S, Catthoor F, Van Hoof C, Van Helleputte N. LSTM-only Model for Low-complexity HR Estimation from Wrist PPG. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1068-1071. [PMID: 34891472 DOI: 10.1109/embc46164.2021.9630942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Continuous and non-invasive cardiovascular monitoring has gained attention due to the miniaturization of wearable devices. Particularly, wrist-worn photoplethysmography (PPG) sensors present an alternative to electrocardiogram recording for heart rate (HR) monitoring as it is cheaper and non-intrusive for daily activities. Yet, the accuracy of PPG measurements is heavily affected by motion artifacts which are inherent to ambulatory environments. In this paper, we propose a low-complexity LSTM-only neural network for HR estimation from a single PPG channel during intense physical activity. This work explored the trade-off between model complexity and accuracy by exploring different model dataflows, number of layers, and number of training epochs to capture the intrinsic time-dependency between PPG samples. The best model achieves a mean absolute error of 4.47 ± 3.68 bpm when evaluated on 12 IEEE SPC subjects.Clinical relevance- This work aims to improve the quality of HR inference from PPG signals using neural network, enabling continuous vital signal monitoring with little interference in daily activities from embedded monitoring devices.
Collapse
|
37
|
Tazarv A, Levorato M. A Deep Learning Approach to Predict Blood Pressure from PPG Signals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5658-5662. [PMID: 34892406 DOI: 10.1109/embc46164.2021.9629687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Blood Pressure (BP) is one of the four primary vital signs indicating the status of the body's vital (life-sustaining) functions. BP is difficult to continuously monitor using a sphygmomanometer (i.e. a blood pressure cuff), especially in everyday-setting. However, other health signals which can be easily and continuously acquired, such as photoplethysmography (PPG), show some similarities with the Aortic Pressure waveform. Based on these similarities, in recent years several methods were proposed to predict BP from the PPG signal. Building on these results, we propose an advanced personalized data-driven approach that uses a three-layer deep neural network to estimate BP based on PPG signals. Different from previous work, the proposed model analyzes the PPG signal in time-domain and automatically extracts the most critical features for this specific application, then uses a variation of recurrent neural networks (RNN) called Long-Short-Term-Memory (LSTM) to map the extracted features to the BP value associated with that time window. Experimental results on two separate standard hospital datasets, yielded absolute errors mean and absolute error standard deviation for systolic and diastolic BP values outperforming prior works.
Collapse
|
38
|
Chen J, Sun K, Sun Y, Li X. Signal Quality Assessment of PPG Signals using STFT Time-Frequency Spectra and Deep Learning Approaches. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1153-1156. [PMID: 34891492 DOI: 10.1109/embc46164.2021.9630758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoplethysmography (PPG) is an important signal which contains much physiological information like heart rate and cardiovascular health etc. However, PPG signals are easily corrupted by motion artifacts and body movements during their recordings, which may lead to poor quality. In order to accurately extract cardiovascular information, it is necessary to ensure high PPG quality in these applications. Although there are several existed methods to get the PPG signal quality, those algorithms are complex and the accuracies are not very high. Thus, this work proposes a deep learning network for the signal quality assessment using the STFT time-frequency spectra. A total of 5804 10s signals are preprocessed and transformed into 2D STFT spectra with 250 × 334 pixels. The STFT figures are as the input of the CNN networks, and the model gives the result as good or bad quality. The model accuracy is 98.3% with 98.9% sensitivity, 96.7% specificity, and 98.8% F1-score. And the heart rate error is much reduced after classification with the reference of ECG signals. Thus, the proposed deep learning approaches can be useful in the classification of good and bad PPG signals. As far as we know, this is the first article using deep learning methods combined with STFT time-frequency spectra to get the signal quality assessment of PPG signals.
Collapse
|
39
|
Ye Y, Xiong G, Wan Z, Pan T, Huang Z. PPG-based Biometric Identification: Discovering and Identifying a New User. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1145-1148. [PMID: 34891490 DOI: 10.1109/embc46164.2021.9630883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The convenience of Photoplethysmography (PPG) signal acquisition from wearable devices makes it becomes a hot topic in biometric identification. A majority of studies focus on PPG biometric technology in a verification application rather than an identification application. Yet, in the identification application, it is an inevitable problem in discovering and identifying a new user. However, so far few works have investigated this problem. Existing approaches can only identify trained old users. Their identification model needs to be retrained when a new user joins, which reduces the identification accuracy. This work investigates the approach and performance of identifying both old users and new users on a deep neural network trained only by old users. We used a deep neural network as a feature extractor, and the distance of the feature vector to discover and identify a new user, which avoids retraining the identification model. On the BIDMC data set, we achieved an accuracy of more than 99% for old users, an accuracy of more than 90% for discovering a new user, and an average accuracy of about 90% for identifying a new user. Our proposed approach can accurately identify old users and has feasibility in discovering and identifying a new user without retraining in the identification application.
Collapse
|
40
|
Lutin E, Biswas D, Simoes-Capela N, Van Hoof C, Van Helleputte N. Learning based Quality Indicator Aiding Heart Rate Estimation in Wrist-Worn PPG. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7063-7067. [PMID: 34892729 DOI: 10.1109/embc46164.2021.9630910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Technological advancements and miniaturization of wearable sensors have enabled long-term pervasive physiological monitoring. Wrist-worn photoplethysmography (PPG) sensors, although quite popular owing to their form factor, suffer from poor signal quality in ambulatory settings due to motion artifacts. This affects the reliable estimation of vital cardiac parameters, especially during motion/activities of daily living. Hence, in this paper, we have developed a learningbased quality indicator engine (QIE), evaluating on 23 PPG records of the TROIKA database. The engine comprises the fundamental steps of frequency-domain feature extraction, feature selection and classification by an ensemble of decision trees, achieving an accuracy of 83% in the testing set. To the best of our knowledge, the proposed quality engine is the first to be evaluated on wrist-PPG data acquired during various physical activities and with respect to improvement in heart rate (HR) estimation. The QIE demonstrated an average improvement of 43% in HR estimation, when used in conjunction with state-ofthe-art WFPV algorithm.Clinical Relevance- The proposed quality indicator engine helps to increase the efficacy of vital parameter estimation (e.g. heart rate) from pervasive, wrist-worn PPG sensors on the backdrop of motion artifacts when used in ambulatory settings (e.g. activities of daily living).
Collapse
|
41
|
da Costa PU, Paim G, Rocha LMG, da Costa EAC, de Almeida SJM, Bampi S. Fixed-Point NLMS and IPNLMS VLSI Architectures for Accurate FECG and FHR Processing. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:898-911. [PMID: 34673495 DOI: 10.1109/tbcas.2021.3120237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Capturing signals without noise and interference while monitoring the maternal abdomen's fetal electrocardiogram (FECG) is a challenging task. This method can provide fetal monitoring for long hours, not harming the pregnant woman or the fetus. Such non-invasive FECG raw signal suffers from various interference sources as the bio-electric maternal potentials include her ECG component. Therefore, a critical step in the non-invasive FECG is to design the filtering of components derived from the maternal ECG. There is an increasing demand for portable devices to extract a pure FECG signal and to detect fetal heart rate (FHR) with precision. Dedicated CMOS architectures enable higher energy efficiency in portable devices. This paper proposes VLSI architectures dedicated to FECG extraction and FHR processing. Fixed-point architectures for the FECG detection exploring the NLMS (normalized least mean square), IPNLMS (improved proportional NLMS), and three different division VLSI CMOS architectures are designed herein. An architecture based on the Pan-Tompkins algorithm that processes the FECG for extracting the FHR, extending the functionally of the system, is also proposed. The results show that the NLMS and IPNLMS based architectures effectively detect the R-peaks of FECG with a detection accuracy of 92.86% and 93.75%, respectively. The synthesis results shows that our NLMS architecture proposal saves 13.3 % energy, due to a reduction of 279 clock cycles, compared to the state of the art. On the other hand, the IPNLMS algorithm results in +0.89% detection accuracy at the price of 42% additional energy consumption w.r.t NLMS.
Collapse
|
42
|
Cheng J, Xu Y, Song R, Liu Y, Li C, Chen X. Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks. Comput Biol Med 2021; 138:104877. [PMID: 34571436 DOI: 10.1016/j.compbiomed.2021.104877] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023]
Abstract
Cardiovascular disease (CVD) is one of the most serious diseases threatening human health. Arterial blood pressure (ABP) waveforms, containing vivid cardiovascular information, are of great significance for the diagnosis and the prevention of CVD. This paper proposes a deep learning model, named ABP-Net, to transform photoplethysmogram (PPG) signals into ABP waveforms that contain vital physiological information related to cardiovascular systems. In order to guarantee the quality of the predicted ABP waveforms, the structure of the network, the input signals and the loss functions are carefully designed. Specifically, a Wave-U-Net, one kind of fully convolutional neural networks (CNN), is taken as the core architecture of the ABP-Net. Besides the original PPG signals, its first derivative and second derivative signals are all utilized as the inputs of the ABP-Net. Additionally, the maximal absolute loss, accompany with the mean squared error loss is employed to ensure the match of the predicted ABP waveform with the reference one. The performance of the proposed ABP network is tested on the public MIMIC II database both in subject-dependent and subject-independent manners. Both results verify the superior performance of the proposed model over those existing methods accordingly. The mean absolute error (MAE) and the root-mean-square error (RMSE) between the predicted waveforms via the ABP-Net and the reference ones are 3.20 mmHg and 4.38 mmHg during the subject-dependent experiments while those are 5.57 mmHg and 7.15 mmHg during the subject-independent experiments. Benefiting from the predicted high-quality ABP waveforms, more ABP related physiological parameters can be better obtained, which effectively expands the application scope of PPG devices.
Collapse
Affiliation(s)
- Juan Cheng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei, 230009, China
| | - Yufei Xu
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Rencheng Song
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yu Liu
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chang Li
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xun Chen
- Department of Electronic Engineering & Information Science, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
43
|
de Pedro-Carracedo J, Fuentes-Jimenez D, Ugena AM, Gonzalez-Marcos AP. Transcending Conventional Biometry Frontiers: Diffusive Dynamics PPG Biometry. SENSORS (BASEL, SWITZERLAND) 2021; 21:5661. [PMID: 34451105 PMCID: PMC8402390 DOI: 10.3390/s21165661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022]
Abstract
This paper presents the first photoplethysmographic (PPG) signal dynamic-based biometric authentication system with a Siamese convolutional neural network (CNN). Our method extracts the PPG signal's biometric characteristics from its diffusive dynamics, characterized by geometric patterns in the (p,q)-planes specific to the 0-1 test. PPG signal diffusive dynamics are strongly dependent on the vascular bed's biostructure, unique to each individual. The dynamic characteristics of the PPG signal are more stable over time than its morphological features, particularly in the presence of psychosomatic conditions. Besides its robustness, our biometric method is anti-spoofing, given the complex nature of the blood network. Our proposal trains using a national research study database with 40 real-world PPG signals measured with commercial equipment. Biometric system results for input data, raw and preprocessed, are studied and compared with eight primary biometric methods related to PPG, achieving the best equal error rate (ERR) and processing times with a single attempt, among all of them.
Collapse
Affiliation(s)
- Javier de Pedro-Carracedo
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicación, Universidad Politécnica de Madrid (UPM), E-28040 Madrid, Spain
| | - David Fuentes-Jimenez
- Departamento de Electrónica, Universidad de Alcalá (UAH), Escuela Politécnica Superior, Alcalá de Henares (Madrid), E-28871 Alcalá de Henares, Spain
| | - Ana María Ugena
- Departamento de Matemática Aplicada a las Tecnologías de la Información, ETSI Telecomunicación, Universidad Politécnica de Madrid (UPM), E-28040 Madrid, Spain
| | - Ana Pilar Gonzalez-Marcos
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicación, Universidad Politécnica de Madrid (UPM), E-28040 Madrid, Spain
| |
Collapse
|
44
|
Li N, Zhai H, Seetharam TG, Shanthini A. Psychological health analysis based on fuzzy assisted neural network model for sports person. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-219043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stress is indeed a life aspect that influences everyone, even though athletes seem to suffer from it one step ahead of others because of the extent they are expected to balance between coursework, workouts, and competitions, along with everyday life and family stress. Therefore, an efficient psychological health analysis for sportspersons is crucial in sports training. This paper introduces a Fuzzy-assisted Neural Network model for Psychological Health Analysis (FNN-PHA) to assess mental stress by monitoring the Electro Cardio Gram signal (ECG), Electroencephalogram (EEG), and Pulse rate. This paper integrates the fuzzy assisted Petri nets, fuzzy assisted k-complex detector, and fuzzy assisted transient time analyzer to ensure the psychological health analysis neural network model’s adaptive performance. The strength of the proposed fuzzy model demonstrates interpretability against the accuracy of different criteria. The simulation analysis shows that the FNN-PHA model enhances the prediction ratio of 98.7%, emotional stability of 96.7%, personal growth of 95.7%, physical fitness level of 97.8%, and depression ratio of 12.5% when compared to other existing models.
Collapse
Affiliation(s)
- Na Li
- Physical Education College, Jilin Normal University, Siping, Jilin, China
| | - Haiting Zhai
- Naval Aviation University, Yantai, Shandong, China
| | | | | |
Collapse
|
45
|
Ni A, Azarang A, Kehtarnavaz N. A Review of Deep Learning-Based Contactless Heart Rate Measurement Methods. SENSORS 2021; 21:s21113719. [PMID: 34071736 PMCID: PMC8198867 DOI: 10.3390/s21113719] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
The interest in contactless or remote heart rate measurement has been steadily growing in healthcare and sports applications. Contactless methods involve the utilization of a video camera and image processing algorithms. Recently, deep learning methods have been used to improve the performance of conventional contactless methods for heart rate measurement. After providing a review of the related literature, a comparison of the deep learning methods whose codes are publicly available is conducted in this paper. The public domain UBFC dataset is used to compare the performance of these deep learning methods for heart rate measurement. The results obtained show that the deep learning method PhysNet generates the best heart rate measurement outcome among these methods, with a mean absolute error value of 2.57 beats per minute and a mean square error value of 7.56 beats per minute.
Collapse
|
46
|
Interface sensors with skin piezo-thermic transduction enable motion artifact removal for wearable physiological monitoring. Biosens Bioelectron 2021; 188:113325. [PMID: 34030098 DOI: 10.1016/j.bios.2021.113325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/25/2022]
Abstract
Accurate measurements on physiological parameters using wearable monitoring devices during physical exercises are essential for personal healthcare and rehabilitation training, but still challenging owing to various motion artifacts (MA) caused by the interfacial dynamic change between wearable sensors and human skin. Here, we propose an interface sensor to detect noncontact proximity and contact pressure between wearable sensors and human skin. The interface sensor employs natural piezo-thermic transduction of human skin and enables direct interfacial proximity/pressure detection by using simple thin-film thermistors to detect the interfacial thermal field change. We develop a wearable watch-type heart rate (HR) monitor utilizing interface sensors to remove MA for a photoplethysmography (PPG) sensor through adaptive filtering. To validate the method, we conduct experiments for multiple subjects, who carry out HR monitoring using the wearable device while doing various physical exercises. The PPG-based HR estimations are corrected through MA removal using interface sensors and compared with that using conventional accelerometer-based MA removal. The experimental results verify that the interface sensors capture the interfacial dynamic change between the PPG sensor and skin better, and obtain more accurate HR estimations during irregular and muscle strength exercises. Utilizing natural transduction of human skin and simple thermometry, the interface sensor provides an advantageous way to overcome MA for wearable monitoring devices during physical activities and thus broadens wearable monitoring applications.
Collapse
|
47
|
Covi E, Donati E, Liang X, Kappel D, Heidari H, Payvand M, Wang W. Adaptive Extreme Edge Computing for Wearable Devices. Front Neurosci 2021; 15:611300. [PMID: 34045939 PMCID: PMC8144334 DOI: 10.3389/fnins.2021.611300] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Wearable devices are a fast-growing technology with impact on personal healthcare for both society and economy. Due to the widespread of sensors in pervasive and distributed networks, power consumption, processing speed, and system adaptation are vital in future smart wearable devices. The visioning and forecasting of how to bring computation to the edge in smart sensors have already begun, with an aspiration to provide adaptive extreme edge computing. Here, we provide a holistic view of hardware and theoretical solutions toward smart wearable devices that can provide guidance to research in this pervasive computing era. We propose various solutions for biologically plausible models for continual learning in neuromorphic computing technologies for wearable sensors. To envision this concept, we provide a systematic outline in which prospective low power and low latency scenarios of wearable sensors in neuromorphic platforms are expected. We successively describe vital potential landscapes of neuromorphic processors exploiting complementary metal-oxide semiconductors (CMOS) and emerging memory technologies (e.g., memristive devices). Furthermore, we evaluate the requirements for edge computing within wearable devices in terms of footprint, power consumption, latency, and data size. We additionally investigate the challenges beyond neuromorphic computing hardware, algorithms and devices that could impede enhancement of adaptive edge computing in smart wearable devices.
Collapse
Affiliation(s)
| | - Elisa Donati
- Institute of Neuroinformatics, University of Zurich, Eidgenössische Technische Hochschule Zürich (ETHZ), Zurich, Switzerland
| | - Xiangpeng Liang
- Microelectronics Lab, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - David Kappel
- Bernstein Center for Computational Neuroscience, III Physikalisches Institut–Biophysik, Georg-August Universität, Göttingen, Germany
| | - Hadi Heidari
- Microelectronics Lab, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Melika Payvand
- Institute of Neuroinformatics, University of Zurich, Eidgenössische Technische Hochschule Zürich (ETHZ), Zurich, Switzerland
| | - Wei Wang
- The Andrew and Erna Viterbi Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
48
|
Machine Learning-Based Pulse Wave Analysis for Early Detection of Abdominal Aortic Aneurysms Using In Silico Pulse Waves. Symmetry (Basel) 2021. [DOI: 10.3390/sym13050804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An abdominal aortic aneurysm (AAA) is usually asymptomatic until rupture, which is associated with extremely high mortality. Consequently, the early detection of AAAs is of paramount importance in reducing mortality; however, most AAAs are detected by medical imaging only incidentally. The aim of this study was to investigate the feasibility of machine learning-based pulse wave (PW) analysis for the early detection of AAAs using a database of in silico PWs. PWs in the large systemic arteries were simulated using one-dimensional blood flow modelling. A database of in silico PWs representative of subjects (aged 55, 65 and 75 years) with different AAA sizes was created by varying the AAA-related parameters with major impacts on PWs—identified by parameter sensitivity analysis—in an existing database of in silico PWs representative of subjects without AAAs. Then, a machine learning architecture for AAA detection was trained and tested using the new in silico PW database. The parameter sensitivity analysis revealed that the AAA maximum diameter and stiffness of the large systemic arteries were the dominant AAA-related biophysical properties considerably influencing the PWs. However, AAA detection by PW indexes was compromised by other non-AAA related cardiovascular parameters. The proposed machine learning model produced a sensitivity of 86.8 % and a specificity of 86.3 % in early detection of AAA from the photoplethysmogram PW signal measured in the digital artery with added random noise. The number of false positive and negative results increased with increasing age and decreasing AAA size, respectively. These findings suggest that machine learning-based PW analysis is a promising approach for AAA screening using PW signals acquired by wearable devices.
Collapse
|
49
|
SPARE: A Spectral Peak Recovery Algorithm for PPG Signals Pulsewave Reconstruction in Multimodal Wearable Devices. SENSORS 2021; 21:s21082725. [PMID: 33924351 PMCID: PMC8070644 DOI: 10.3390/s21082725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
The photoplethysmographic (PPG) signal is an unobtrusive blood pulsewave measure that has recently gained popularity in the context of the Internet of Things. Even though it is commonly used for heart rate detection, it has been lately employed on multimodal health and wellness monitoring applications. Unfortunately, this signal is prone to motion artifacts, making it almost useless in all situations where a person is not entirely at rest. To overcome this issue, we propose SPARE, a spectral peak recovery algorithm for PPG signals pulsewave reconstruction. Our solution exploits the local semiperiodicity of the pulsewave signal, together with the information about the cardiac rhythm provided by an available simultaneous ECG, to reconstruct its full waveform, even when affected by strong artifacts. The developed algorithm builds on state-of-the-art signal decomposition methods, and integrates novel techniques for signal reconstruction. Experimental results are reported both in the case of PPG signals acquired during physical activity and at rest, but corrupted in a systematic way by synthetic noise. The full PPG waveform reconstruction enables the identification of several health-related features from the signal, showing an improvement of up to 65% in the detection of different biomarkers from PPG signals affected by noise.
Collapse
|
50
|
Zhang O, Ding C, Pereira T, Xiao R, Gadhoumi K, Meisel K, Lee RJ, Chen Y, Hu X. Explainability Metrics of Deep Convolutional Networks for Photoplethysmography Quality Assessment. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:29736-29745. [PMID: 33747683 PMCID: PMC7978398 DOI: 10.1109/access.2021.3054613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoplethysmography (PPG) is a noninvasive way to monitor various aspects of the circulatory system, and is becoming more and more widespread in biomedical processing. Recently, deep learning methods for analyzing PPG have also become prevalent, achieving state of the art results on heart rate estimation, atrial fibrillation detection, and motion artifact identification. Consequently, a need for interpretable deep learning has arisen within the field of biomedical signal processing. In this paper, we pioneer novel explanatory metrics which leverage domain-expert knowledge to validate a deep learning model. We visualize model attention over a whole testset using saliency methods and compare it to human expert annotations. Congruence, our first metric, measures the proportion of model attention within expert-annotated regions. Our second metric, Annotation Classification, measures how much of the expert annotations our deep learning model pays attention to. Finally, we apply our metrics to compare between a signal based model and an image based model for PPG signal quality classification. Both models are deep convolutional networks based on the ResNet architectures. We show that our signal-based one dimensional model acts in a more explainable manner than our image based model; on average 50.78% of the one dimensional model's attention are within expert annotations, whereas 36.03% of the two dimensional model's attention are within expert annotations. Similarly, when thresholding the one dimensional model attention, one can more accurately predict if each pixel of the PPG is annotated as artifactual by an expert. Through this testcase, we demonstrate how our metrics can provide a quantitative and dataset-wide analysis of how explainable the model is.
Collapse
Affiliation(s)
- Oliver Zhang
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Cheng Ding
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Tania Pereira
- Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal
| | - Ran Xiao
- School of Nursing, Duke University, Durham, NC 27708, USA
| | - Kais Gadhoumi
- School of Nursing, Duke University, Durham, NC 27708, USA
| | - Karl Meisel
- Department of Neurology School of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA
| | - Randall J Lee
- School of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA
| | - Yiran Chen
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Xiao Hu
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
- School of Nursing, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, School of Medicine, Duke University, Durham, NC 27708, USA
- Department of Surgery, School of Medicine, Duke University, Durham, NC 27708, USA
| |
Collapse
|