1
|
Ding H, Yang D, Ding S, Ma F. Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion. Soft Robot 2025. [PMID: 39792479 DOI: 10.1089/soro.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing. However, most existing methods are predetermined through the fabrication process and cannot reprogram their shape, facing limitations on multifunction. Besides, the achievable geometries are very limited due to the device's low integrated level of actuator elements. Here, we develop a polyvinylidene fluoride flexible piezoelectric actuator array based on a row/column addressing (RCA) scheme for reprogrammable high DoF shape morphing and locomotion. The specially designed row/column electrodes form a 6 × 6 array, which contains 36 actuator elements. By developing a high-voltage RCA control system, we can individually control all the elements in the array, leading to a highly reprogrammable array with various sophisticated high DoF shape morphing. We also demonstrate that the array is capable of propelling a robotic fish with various locomotions. This research provides a new method and approach for biomimetic robotics with better mimicry, aero/hydrodynamic efficiency, and maneuverability, as well as haptic display and object manipulation.
Collapse
Affiliation(s)
- Hong Ding
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Dengfei Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
| | - Shuo Ding
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Fangyi Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
- School of Electromechanical Engineering & Transportation, Shaoxing Vocational & Technical College, Shaoxing, China
| |
Collapse
|
2
|
Kim YH, Kang KC, Kim JN, Park KK, Firouzi K, Khuri-Yakub BT. High-spatial-resolution transcranial focused ultrasound neuromodulation using frequency-modulated pattern interference radiation force. ULTRASONICS 2024; 140:107298. [PMID: 38531115 DOI: 10.1016/j.ultras.2024.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/28/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Stimulating the brain in a precise location is crucial in ultrasound neuromodulation. However, improving the resolution proves a challenge owing to the characteristics of transcranial focused ultrasound. In this paper, we present a new neuromodulation system that overcomes the existing limitations based on an acoustic radiation force with a frequency-modulated waveform and standing waves. By using the frequency-modulated pattern interference radiation force (FM-PIRF), the axial spatial resolution can be reduced to a single wavelength level and the target location can be controlled in axial direction electronically. A linear frequency-modulated chirp waveform used in the experiment was designed based on the simulation results. The displacement of the polydimethylsiloxane (PDMS) cantilever was measured at intervals of 0.1 mm to visualize the distribution of radiation force. These results and methods experimentally show that FM-PIRF has improved spatial resolution and capability of electrical movement.
Collapse
Affiliation(s)
- Young Hun Kim
- Mechanical Convergence Engineering, Hanyang University, Seoul 04763, Republic of Korea; Edward. L. Ginzton Lab, Stanford University, Stanford, CA 94305, USA
| | - Ki Chang Kang
- Mechanical Convergence Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeong Nyeon Kim
- Edward. L. Ginzton Lab, Stanford University, Stanford, CA 94305, USA
| | - Kwan Kyu Park
- Edward. L. Ginzton Lab, Stanford University, Stanford, CA 94305, USA.
| | - Kamyar Firouzi
- Edward. L. Ginzton Lab, Stanford University, Stanford, CA 94305, USA
| | - Butrus T Khuri-Yakub
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Sharma V, Páscoa dos Santos F, Verschure PFMJ. Patient-specific modeling for guided rehabilitation of stroke patients: the BrainX3 use-case. Front Neurol 2023; 14:1279875. [PMID: 38099071 PMCID: PMC10719856 DOI: 10.3389/fneur.2023.1279875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
BrainX3 is an interactive neuroinformatics platform that has been thoughtfully designed to support neuroscientists and clinicians with the visualization, analysis, and simulation of human neuroimaging, electrophysiological data, and brain models. The platform is intended to facilitate research and clinical use cases, with a focus on personalized medicine diagnostics, prognostics, and intervention decisions. BrainX3 is designed to provide an intuitive user experience and is equipped to handle different data types and 3D visualizations. To enhance patient-based analysis, and in keeping with the principles of personalized medicine, we propose a framework that can assist clinicians in identifying lesions and making patient-specific intervention decisions. To this end, we are developing an AI-based model for lesion identification, along with a mapping of tract information. By leveraging the patient's lesion information, we can gain valuable insights into the structural damage caused by the lesion. Furthermore, constraining whole-brain models with patient-specific disconnection masks can allow for the detection of mesoscale excitatory-inhibitory imbalances that cause disruptions in macroscale network properties. Finally, such information has the potential to guide neuromodulation approaches, assisting in the choice of candidate targets for stimulation techniques such as Transcranial Ultrasound Stimulation (TUS), which modulate E-I balance, potentiating cortical reorganization and the restoration of the dynamics and functionality disrupted due to the lesion.
Collapse
Affiliation(s)
- Vivek Sharma
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Francisco Páscoa dos Santos
- Eodyne Systems S.L., Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Paul F. M. J. Verschure
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
4
|
Javid A, Ilham S, Kiani M. A Review of Ultrasound Neuromodulation Technologies. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:1084-1096. [PMID: 37506009 DOI: 10.1109/tbcas.2023.3299750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The invasiveness of neuromodulation technologies that require surgical implantation (e.g., electrical and optical stimulation) may limit their clinical application. Thus, alternative technologies that offer similar benefits without surgery are of paramount importance in the field of neuromodulation. Low-intensity ultrasound is an emerging modality for neural stimulation as ultrasound can be focused in deep tissues with millimeter resolution. Transcranial focused ultrasound stimulation (tFUS) has already been demonstrated in a wide range of animals and even humans at different sonication frequencies (mostly in the sub-MHz range due to the presence of the skull). This article first provides some fundamental knowledge in ultrasound, and then reviews various examples of successful tFUS experiments in animals and humans using different stimulation patterns, as well as available tFUS technologies for generating, focusing, and steering ultrasound beams in neural tissues. In particular, phased array technologies for the ultrasound stimulation application are discussed with an emphasis on the design, fabrication, and integration of ultrasound transducer arrays as well as the design and development of phased array electronics with beamformer and high-voltage driver circuitry. The challenges in tFUS, such as its underlying mechanism, indirect auditory response, and skull aberration effects, are also discussed.
Collapse
|
5
|
Rivandi H, Costa TL. A 2D Ultrasound Phased-Array Transmitter ASIC for High-Frequency US Stimulation and Powering. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:701-712. [PMID: 37352088 DOI: 10.1109/tbcas.2023.3288891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
Ultrasound (US) neuromodulation and ultrasonic power transfer to implanted devices demand novel ultrasound transmitters capable of steering focused ultrasound waves in 3D with high spatial resolution and US pressure, while having a miniaturized form factor. Meeting these requirements needs a 2D array of ultrasound transducers directly integrated with a high-frequency 2D phased-array ASIC. However, this imposes severe challenges on the design of the ASIC. In order to avoid the generation of grating lobes, the elements in the 2D phased-array should have a pitch of half of the ultrasound wavelength, which, as frequency increases, highly reduces the area available for the design of high-voltage beamforming channels. This article addresses these challenges by presenting the system-level optimization and implementation of a high-frequency 2D phased-array ASIC. The system-level study focuses on the optimization of the US transmitter toward high-frequency operation while minimizing power consumption. This study resulted in the implementation of two ASICs in TSMC 180 nm BCD technology: firstly, an individual beamforming channel was designed to demonstrate the tradeoffs between frequency, driving voltage, and beamforming capabilities. Finally, a 12-MHz pitch matched 12 × 12 phased-array ASIC working at 20-V amplitude and 3-bit phasing was designed and experimentally validated, to demonstrate high-frequency phased-array operation. The measurement results verify the phasing functionality of the ASIC with a maximum DNL of 0.35 LSB. The CMOS chip consumes 130 mW and 26.6 mW average power during the continuous pulsing and delivering 200-pulse bursts with a PRF of 1 kHz, respectively.
Collapse
|
6
|
Guo J, Lo WLA, Hu H, Yan L, Li L. Transcranial ultrasound stimulation applied in ischemic stroke rehabilitation: A review. Front Neurosci 2022; 16:964060. [PMID: 35937889 PMCID: PMC9355469 DOI: 10.3389/fnins.2022.964060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke is a serious medical condition that is caused by cerebral vascular occlusion and leads to neurological dysfunction. After stroke, patients suffer from long-term sensory, motor and cognitive impairment. Non-invasive neuromodulation technology has been widely studied in the field of stroke rehabilitation. Transcranial ultrasound stimulation (TUS), as a safe and non-invasive technique with deep penetration ability and a tiny focus, is an emerging technology. It can produce mechanical and thermal effects by delivering sound waves to brain tissue that can induce the production of neurotrophic factors (NFs) in the brain, and reduce cell apoptosis and the inflammatory response. TUS, which involves application of an acoustic wave, can also dissolve blood clots and be used to deliver therapeutic drugs to the ischemic region. TUS has great potential in the treatment of ischemic stroke. Future advancements in imaging and parameter optimization will improve the safety and efficacy of this technology in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jiecheng Guo
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Li Yan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Li Yan,
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Le Li,
| |
Collapse
|
7
|
Tipsawat P, Ilham SJ, Yang JI, Kashani Z, Kiani M, Trolier-McKinstry S. 32 Element Piezoelectric Micromachined Ultrasound Transducer (PMUT) Phased Array for Neuromodulation. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 2:184-193. [PMID: 36938316 PMCID: PMC10021572 DOI: 10.1109/ojuffc.2022.3196823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interest in utilizing ultrasound (US) transducers for non-invasive neuromodulation treatment, including for low intensity transcranial focused ultrasound stimulation (tFUS), has grown rapidly. The most widely demonstrated US transducers for tFUS are either bulk piezoelectric transducers or capacitive micromachine transducers (CMUT) which require high voltage excitation to operate. In order to advance the development of the US transducers towards small, portable devices for safe tFUS at large scale, a low voltage array of US transducers with beam focusing and steering capability is of interest. This work presents the design methodology, fabrication, and characterization of 32-element phased array piezoelectric micromachined ultrasound transducers (PMUT) using 1.5 μm thick Pb(Zr0.52 Ti0.48)O3 films doped with 2 mol% Nb. The electrode/piezoelectric/electrode stack was deposited on a silicon on insulator (SOI) wafer with a 2 μm silicon device layer that serves as the passive elastic layer for bending-mode vibration. The fabricated 32-element PMUT has a central frequency at 1.4 MHz. Ultrasound beam focusing and steering (through beamforming) was demonstrated where the array was driven with 14.6 V square unipolar pulses. The PMUT generated a maximum peak-to-peak focused acoustic pressure output of 0.44 MPa at a focal distance of 20 mm with a 9.2 mm and 1 mm axial and lateral resolution, respectively. The maximum pressure is equivalent to a spatial-peak pulse-average intensity of 1.29 W/cm2, which is suitable for tFUS application.
Collapse
Affiliation(s)
- Pannawit Tipsawat
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 USA
| | - Sheikh Jawad Ilham
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Jung In Yang
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 USA
| | - Zeinab Kashani
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Mehdi Kiani
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Susan Trolier-McKinstry
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|