1
|
Antoniou A, Chrysanthou A, Georgiou L, Christofi A, Roussakis Y, Ioannides C, Spanoudes K, Zhao J, Yu L, Damianou C. Focused Ultrasound Sonications of Tumor Model in Head Phantom under MRI Monitoring: Effect of Skull Obstruction on Focal Heating. J Med Phys 2025; 50:38-45. [PMID: 40256186 PMCID: PMC12005658 DOI: 10.4103/jmp.jmp_177_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 04/22/2025] Open
Abstract
Purpose This study presents the outcomes of a series of magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS) sonications performed on an anatomically accurate head phantom with an embedded tumor simulator to evaluate the effectiveness of partial and complete tumor ablation with obstruction from thin polymer skull mimics. Materials and Methods The tumor simulator was subjected to single and grid sonications using a single-element concave transducer integrated with an MRI-compatible focused ultrasound (FUS) robotic system. All experiments were carried out in a high-field MRI scanner utilizing proton resonance frequency thermometry and T2-weighted (T2-W) turbo spin echo (TSE) imaging to evaluate the induced thermal effects. FUS transmission through 1-mm thick three-dimensional-printed polymer skull mimics was compared to unobstructed sonication through a circular aperture in the skull model. Results T2-W TSE imaging demonstrated sharp contrast between the tumor and hyperintense FUS lesions. Complete tumor coverage was achieved through robotic-assisted grid ablation without a skull mimic, as well as with a 1-mm resin skull mimic intervening in the beam. With the lowest attenuation among tested polymers, the resin skull resulted in approximately a 20% reduction in focal temperature change compared to unobstructed sonication, yet still facilitated sharp beam focusing, raising the tumor temperature to ablative levels. Conclusions The study provides preliminary evidence for the potential application of a thin biocompatible implant to temporarily replace a skull portion facilitating MRgFUS ablation of inoperable tumors using a single-element transducer. The tumor-embedded head phantom was proven effective for testing MRgFUS oncological protocols and equipment.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Antreas Chrysanthou
- Department of Diagnostic and Interventional Radiology, German Medical Institute, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Diagnostic and Interventional Radiology, German Medical Institute, Limassol, Cyprus
| | - Antonis Christofi
- Department of Diagnostic and Interventional Radiology, German Medical Institute, Limassol, Cyprus
| | - Yiannis Roussakis
- Department of Radiation Oncology, German Medical Institute, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Diagnostic and Interventional Radiology, German Medical Institute, Limassol, Cyprus
| | - Kyriakos Spanoudes
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, Nicosia, Cyprus
- VET EX MACHINA Limited, Nicosia, Cyprus
| | - Jufeng Zhao
- Department of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Liyang Yu
- Department of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
- Department of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Zia G, Lintz A, Hardin C, Bottiglieri A, Sebek J, Prakash P. Assessment of thermochromic phantoms for characterizing microwave ablation devices. Med Phys 2024; 51:8442-8453. [PMID: 39287488 PMCID: PMC11803639 DOI: 10.1002/mp.17404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Thermochromic gel phantoms provide a controlled medium for visual assessment of thermal ablation device performance. However, there are limited studies reporting on the comparative assessment of ablation profiles assessed in thermochromic gel phantoms against those in ex vivo tissue. The objective of this study was to compare microwave ablation zones in a thermochromic tissue-mimicking gel phantom and ex vivo bovine liver and to report on measurements of the temperature-dependent dielectric and thermal properties of the phantom. METHODS Thermochromic polyacrylamide phantoms were fabricated following a previously reported protocol. Phantom samples were heated to temperatures in the range of 20°C-90°C in a temperature-controlled water bath, and colorimetric analysis of images of the phantom taken after heating was used to develop a calibration between color changes and the temperature to which the phantom was heated. Using a custom, 2.45 GHz water-cooled microwave ablation antenna, ablations were performed in fresh ex vivo liver and phantoms using 65 W applied for 5 min or 10 min (n = 3 samples in each medium for each power/time combination). Broadband (500 MHz-6 GHz) temperature-dependent dielectric and thermal properties of the phantom were measured over the temperature range of 22°C-100°C. RESULTS Colorimetric analysis showed that the sharp change in gel phantom color commences at a temperature of 57°C. Short and long axes of the ablation zone in the phantom (as assessed by the 57°C isotherm) for 65 W, 5 min ablations were aligned with the extents of the ablation zone observed in ex vivo bovine liver. However, for the 65 W, 10 min setting, ablations in the phantom were on average 23.7% smaller in the short axis and 7.4 % smaller in the long axis than those observed in ex vivo liver. Measurements of the temperature-dependent relative permittivity, thermal conductivity, and volumetric heat capacity of the phantom largely followed similar trends to published values for ex vivo liver tissue. CONCLUSION Thermochromic tissue-mimicking phantoms provides a controlled, and reproducible medium for comparative assessment of microwave ablation devices and energy delivery settings. However, ablation zone size and shapes in the thermochromic phantom do not accurately represent ablation sizes and shapes observed in ex vivo liver tissue for high energy delivery treatments (65 W, 10 min). One cause for this limitation is the difference in temperature-dependent thermal and dielectric properties of the thermochromic phantom compared to ex vivo bovine liver tissue, as reported in the present study.
Collapse
Affiliation(s)
- Ghina Zia
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Amber Lintz
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Clay Hardin
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Anna Bottiglieri
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Jan Sebek
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
3
|
An J, Won DS, Park Y, Park JH, Park KH, Lee JH, Kim HS. Effects of changes in the waveform and frequency of radio frequency energy on tissue ablation range. PLoS One 2024; 19:e0308691. [PMID: 39298403 DOI: 10.1371/journal.pone.0308691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024] Open
Abstract
This study reports the effects of changes in the waveform and frequency of radio frequency (RF) energy on the tissue ablation range. We developed a 70-watt RFA generator that provides sine and square waves and allows frequency control between 10 Hz and 500 kHz. The changes in the ablation range according to the waveform and frequency were observed using the developed generator. In the waveform variation test, the distance between the electrodes and the electrode type were changed for both waveforms with the frequency set to 500 kHz. In the frequency variation test, the waveform and electrode type were changed with the frequency set to 10, 100, and 500 kHz, while the distance between the electrodes was set to 20 mm. A fixed 45 voltage was applied using the bipolar method. RF energy was applied for 90 s in vitro. The temperature was regulated to not exceed 70°C. The ablation range was calculated using ImageJ software. The analysis results showed that the ablation range was larger with the square wave than with the sine wave and at 10 kHz than at 500 kHz. The developed generator can advance research on ablation area and depth in RF ablation.
Collapse
Affiliation(s)
- Jinsu An
- Department of Biomedical Engineering, School of ICT Convergence Engineering, College of Science & Technology, Konkuk University, Chungju-si, Chungcheongbuk-do, Republic of Korea
| | - Dong-Sung Won
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
| | - Yubeen Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea
| | - Jung-Hoon Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, Republic of Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea
| | - Ki-Hyeon Park
- Department of Mechatronics Engineering, School of ICT Convergence Engineering, College of Science & Technology, Konkuk University, Chungju-si, Chungcheongbuk-do, Republic of Korea
| | - Ji-Ho Lee
- Department of Mechatronics Engineering, School of ICT Convergence Engineering, College of Science & Technology, Konkuk University, Chungju-si, Chungcheongbuk-do, Republic of Korea
| | - Hyung-Sik Kim
- Department of Mechatronics Engineering, School of ICT Convergence Engineering, College of Science & Technology, Konkuk University, Chungju-si, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
4
|
Antoniou A, Evripidou N, Georgiou L, Chrysanthou A, Ioannides C, Damianou C. Tumor phantom model for MRI-guided focused ultrasound ablation studies. Med Phys 2023; 50:5956-5968. [PMID: 37226334 DOI: 10.1002/mp.16480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The persistent development of focused ultrasound (FUS) thermal therapy in the context of oncology creates the need for tissue-mimicking tumor phantom models for early-stage experimentation and evaluation of relevant systems and protocols. PURPOSE This study presents the development and evaluation of a tumor-bearing tissue phantom model for testing magnetic resonance imaging (MRI)-guided FUS (MRgFUS) ablation protocols and equipment based on MR thermometry. METHODS Normal tissue was mimicked by a pure agar gel, while the tumor simulator was differentiated from the surrounding material by including silicon dioxide. The phantom was characterized in terms of acoustic, thermal, and MRI properties. US, MRI, and computed tomography (CT) images of the phantom were acquired to assess the contrast between the two compartments. The phantom's response to thermal heating was investigated by performing high power sonications with a 2.4 MHz single element spherically focused ultrasonic transducer in a 3T MRI scanner. RESULTS The estimated phantom properties fall within the range of literature-reported values of soft tissues. The inclusion of silicon dioxide in the tumor material offered excellent tumor visualization in US, MRI, and CT. MR thermometry revealed temperature elevations in the phantom to ablation levels and clear evidence of larger heat accumulation within the tumor owing to the inclusion of silicon dioxide. CONCLUSION Overall, the study findings suggest that the proposed tumor phantom model constitutes a simple and inexpensive tool for preclinical MRgFUS ablation studies, and potentially other image-guided thermal ablation applications upon minimal modifications.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Antreas Chrysanthou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
5
|
Nguyen TK, Yadav S, Truong TA, Han M, Barton M, Leitch M, Guzman P, Dinh T, Ashok A, Vu H, Dau V, Haasmann D, Chen L, Park Y, Do TN, Yamauchi Y, Rogers JA, Nguyen NT, Phan HP. Integrated, Transparent Silicon Carbide Electronics and Sensors for Radio Frequency Biomedical Therapy. ACS NANO 2022; 16:10890-10903. [PMID: 35816450 PMCID: PMC9332346 DOI: 10.1021/acsnano.2c03188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The integration of micro- and nanoelectronics into or onto biomedical devices can facilitate advanced diagnostics and treatments of digestive disorders, cardiovascular diseases, and cancers. Recent developments in gastrointestinal endoscopy and balloon catheter technologies introduce promising paths for minimally invasive surgeries to treat these diseases. However, current therapeutic endoscopy systems fail to meet requirements in multifunctionality, biocompatibility, and safety, particularly when integrated with bioelectronic devices. Here, we report materials, device designs, and assembly schemes for transparent and stable cubic silicon carbide (3C-SiC)-based bioelectronic systems that facilitate tissue ablation, with the capability for integration onto the tips of endoscopes. The excellent optical transparency of SiC-on-glass (SoG) allows for direct observation of areas of interest, with superior electronic functionalities that enable multiple biological sensing and stimulation capabilities to assist in electrical-based ablation procedures. Experimental studies on phantom, vegetable, and animal tissues demonstrated relatively short treatment times and low electric field required for effective lesion removal using our SoG bioelectronic system. In vivo experiments on an animal model were conducted to explore the versatility of SoG electrodes for peripheral nerve stimulation, showing an exciting possibility for the therapy of neural disorders through electrical excitation. The multifunctional features of SoG integrated devices indicate their high potential for minimally invasive, cost-effective, and outcome-enhanced surgical tools, across a wide range of biomedical applications.
Collapse
Affiliation(s)
- Tuan-Khoa Nguyen
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Brisbane, Queensland 4111, Australia
| | - Sharda Yadav
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Brisbane, Queensland 4111, Australia
| | - Thanh-An Truong
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Brisbane, Queensland 4111, Australia
- School
of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mengdi Han
- Department
of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Matthew Barton
- School
of Nursing and Midwifery, Griffith University, Brisbane, Queensland 4111, Australia
- Menzies
Health Institute Queensland, Brisbane, Queensland 4222, Australia
| | - Michael Leitch
- School
of Nursing and Midwifery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Pablo Guzman
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Brisbane, Queensland 4111, Australia
| | - Toan Dinh
- Centre
for Future Materials, University of Southern
Queensland, Toowoomba, Queensland 4305, Australia
| | - Aditya Ashok
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hieu Vu
- School
of Engineering and Built Environment, Griffith
University, Brisbane, Queensland 4215, Australia
| | - Van Dau
- School
of Engineering and Built Environment, Griffith
University, Brisbane, Queensland 4215, Australia
| | - Daniel Haasmann
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Brisbane, Queensland 4111, Australia
| | - Lin Chen
- State
Key Laboratory for Mechanical Behavior of Materials, School of Materials
Science and Engineering, Xi’an Jiaotong
University, Xi’an 710049, Shaanxi, People’s Republic of China
| | - Yoonseok Park
- Querrey
Simpson Institute for Bioelectronics, Northwestern
University, Evanston, Illinois 60208, United States
- Department
of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic
of Korea
| | - Thanh Nho Do
- Graduate
School of Biomedical Engineering, The University
of New South Wales, Sydney, New South Wales 2032, Australia
| | - Yusuke Yamauchi
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- JST-ERATO
Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research
Institute for Science and Technology, Waseda
University, Tokyo 169-0051, Japan
| | - John A. Rogers
- Querrey
Simpson Institute for Bioelectronics, Northwestern
University, Evanston, Illinois 60208, United States
- Department
of Materials Science and Engineering, Department of Mechanical Engineering,
Department of Biomedical Engineering, Departments of Electrical and
Computer Engineering and Chemistry, and Department of Neurological
Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Nam-Trung Nguyen
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Brisbane, Queensland 4111, Australia
| | - Hoang-Phuong Phan
- Queensland
Micro and Nanotechnology Centre, Griffith
University, Brisbane, Queensland 4111, Australia
- School
of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
6
|
Radiofrequency ablation for liver tumors abutting complex blood vessel structures: treatment protocol optimization using response surface method and computer modeling. Int J Hyperthermia 2022; 39:733-742. [PMID: 35610101 DOI: 10.1080/02656736.2022.2075567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To achieve a result of a large tumor ablation volume with minimal thermal damage to the surrounding blood vessels by designing a few clinically-adjustable operating parameters in radiofrequency ablation (RFA) for liver tumors abutting complex vascular structures. METHODS Response surface method (RSM) was employed to correlate the ablated tumor volume (Ra) and thermal damage to blood vessels (Dt) based on RFA operating parameters: ablation time, electrode position, and insertion angle. A coupled electric-thermal-fluid RFA computer model was created as the testbed for RSM to simulate RFA process. Then, an optimal RFA protocol for the two conflicting goals, namely (1) large tumor ablation and (2) small thermal damage to the surrounding blood vessels, has been achieved under a specific ablation environment. RESULTS Linear regression analysis confirmed that the RFA protocol significantly affected Ra and Dt (the adjusted coefficient of determination Radj2 = 93.61% and 95.03%, respectively). For a proposed liver tumor scenario (liver tumor with a dimension of 4×3×2.9 cm3 abutting a complex vascular structure), an optimized RFA protocol was found based on the regression results in RSM. Compared with a reference RFA protocol, in which the electrode was centered in the tumor with a 12-min ablation time, the optimized RFA protocol has increased Ra from 98.1% to 99.6% and decreased Dt from 4.1% to 0.4%, achieving nearly the complete ablation of proposed liver tumor and ignorable thermal damages to vessels. CONCLUSION This work showed that it is possible to design a few clinically-adjustable operating parameters of RFA for achieving a large tumor ablation volume while minimizing thermal damage to the surrounding blood vessels.
Collapse
|
7
|
Technical advance in silico and in vitro development of a new bipolar radiofrequency ablation device for renal denervation. BMC Cardiovasc Disord 2021; 21:500. [PMID: 34656104 PMCID: PMC8520645 DOI: 10.1186/s12872-021-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Background Renal denervation with radiofrequency ablation has become an accepted treatment for drug-resistant hypertension. However, there is a continuing need to develop new catheters for high-accuracy, targeted ablation. We therefore developed a radiofrequency bipolar electrode for controlled, targeted ablation through Joule heating induction between 60 and 100 °C. The bipolar design can easily be assembled into a basket catheter for deployment inside the renal artery. Methods Finite element modeling was used to determine the optimum catheter design to deliver a minimum ablation zone of 4 mm (W) × 10 mm (L) × 4 mm (H) within 60 s with a 500 kHz, 60 Vp-p signal, and 3 W maximum. The in silico model was validated with in vitro experiments using a thermochromic phantom tissue prepared with polyacrylamide gel and a thermochromic ink additive that permanently changes from pink to magenta when heated over 60 °C. Results The in vitro ablation zone closely matched the size and shape of the simulated area. The new electrode design directs the current density towards the artery walls and tissue, reducing unwanted blood temperature increases by focusing energy on the ablation zone. In contrast, the basket catheter design does not block renal flow during renal denervation. Conclusions This computational model of radiofrequency ablation can be used to estimate renal artery ablation zones for highly targeted renal denervation in patients with resistant hypertension. Furthermore, this innovative catheter has short ablation times and is one of the lowest power requirements of existing designs to perform the ablation.
Collapse
|
8
|
Cheng HY, Huang KW, Liang JT, Lin BR, Huang J, Hung JS, Chen CL. Multielectrode Radiofrequency Ablation for Resectable Metachronous Liver Metastasis from Colorectal Cancer. J Clin Med 2021; 10:3712. [PMID: 34442007 PMCID: PMC8396979 DOI: 10.3390/jcm10163712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/16/2023] Open
Abstract
The outcome of radiofrequency ablation (RFA) for liver metastases from colorectal cancer (CRLM) has been thought to be inferior to metastasectomy. However, the recent development of multielectrode RFA (multi-RFA) systems has made the ablation zone larger and more complete. Thus, we assessed the survival benefits of this modality in cases of metachronous CRLM. This retrospective study assessed patients diagnosed with resectable metachronous CRLM between 2013 and 2016; 132 patients were categorized by treatment for liver metastases: multi-RFA (n = 68), hepatectomy (n = 34), or systemic treatment only (n = 30). Therapeutic effectiveness, outcomes, and intervention-related complications were compared between groups. Median overall survival (OS), recurrence-free survival (RFS), and intrahepatic recurrence-free survival (IHRFS) were 69.8, 85.2, and 59.7 months for the hepatectomy group; 53.4, 41.3, and 32.3 months for the multi-RFA group; and 19.1, 7.1, and 7.1 months for the systemic treatment group. No significant differences were observed between the multi-RFA and hepatectomy groups after a median follow-up of 59.8 months. This study demonstrated that multi-RFA and hepatectomy provide similar survival benefits for patients with resectable CRLM. Multi-RFA may represent a reliable treatment option for the management of resectable liver metastases.
Collapse
Affiliation(s)
- Hou-Ying Cheng
- Division of General Surgery, Department of Surgery, National Taiwan University Hospital, Taipei 100229, Taiwan;
| | - Kai-Wen Huang
- Division of General Surgery, Department of Surgery, National Taiwan University Hospital, Taipei 100229, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100229, Taiwan;
- Division of Colorectal Surgery, Department of Surgery, National Taiwan University Hospital, Taipei 100229, Taiwan; (J.-T.L.); (B.-R.L.); (J.H.); (J.-S.H.)
| | - Jin-Tung Liang
- Division of Colorectal Surgery, Department of Surgery, National Taiwan University Hospital, Taipei 100229, Taiwan; (J.-T.L.); (B.-R.L.); (J.H.); (J.-S.H.)
| | - Been-Ren Lin
- Division of Colorectal Surgery, Department of Surgery, National Taiwan University Hospital, Taipei 100229, Taiwan; (J.-T.L.); (B.-R.L.); (J.H.); (J.-S.H.)
| | - John Huang
- Division of Colorectal Surgery, Department of Surgery, National Taiwan University Hospital, Taipei 100229, Taiwan; (J.-T.L.); (B.-R.L.); (J.H.); (J.-S.H.)
| | - Ji-Shiang Hung
- Division of Colorectal Surgery, Department of Surgery, National Taiwan University Hospital, Taipei 100229, Taiwan; (J.-T.L.); (B.-R.L.); (J.H.); (J.-S.H.)
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100229, Taiwan;
| |
Collapse
|
9
|
Chen WJ, Wang Q, Kim CY. Gel Phantom Models for Radiofrequency and Microwave Ablation of the Liver. DIGESTIVE DISEASE INTERVENTIONS 2020; 4:303-310. [PMID: 34308093 PMCID: PMC8297667 DOI: 10.1055/s-0040-1716737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heat-based percutaneous thermal ablation techniques have emerged as popular and effective treatments for liver cancer. As the technology continues to evolve, there is a need for optimized methods for experimentation to identify advantageous modifications and developments. Given that assessing and comparing resulting ablation zones in animal models are costly and resource-intensive, in vitro gel phantom models can serve an important role for early-stage experimentation. There exist several gel phantom recipes that have been reported in the literature. In this review, we will review the various recipes, the pros and cons to the existing models, and future potential directions.
Collapse
Affiliation(s)
- Willa J. Chen
- Division of Interventional Radiology, Duke University Medical Center, Durham, North Carolina
| | - Qi Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Charles Y. Kim
- Division of Interventional Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
10
|
Karaki W, Rahul, Lopez CA, Borca Tasciuc DA, De S. A continuum thermomechanical model for the electrosurgery of soft hydrated tissues using a moving electrode. Comput Methods Biomech Biomed Engin 2020; 23:1317-1335. [PMID: 32744457 DOI: 10.1080/10255842.2020.1798415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Electrosurgical radio-frequency heating of tissue is widely applied in minimally invasive surgical procedures to dissect tissue with simultaneous coagulation to obtain hemostasis. The tissue effect depends on the cumulative heating that occurs in the vicinity of the moving blade electrode. In this work, a continuum thermomechanical model based on mixture theory, which accounts for the multiphase nature of soft hydrated tissues and includes transport and evaporation losses, is used to capture the transient heating effect of a moving electrode. The model takes into account the dependence of electrical conductivity and the evaporation rate on the water content in the tissue, as it changes in response to heating. Temperature prediction is validated with mean experimental temperature measured during in situ experiments performed on porcine liver tissue at different power settings of the electrosurgical unit. The model is shown to closely capture the temperature variation in the tissue for three distinct scenarios; with no visible cutting or coagulation damage at a low 10 W power setting, with coagulation damage but no tissue cutting at an intermediate power setting of 25 W, and with both coagulation and tissue cutting at a higher power setting of 50 W. Furthermore, an Arrhenius model is shown to capture tissue damage observed in the experiments. Increase in applied power was found to correlate with tissue cutting and concentrated damage near the electrode, but had little effect on the observed coagulation damage width. The proposed model provides, for the first time, an accurate tool for predicting temperature rise and evolving damage resulting from a moving electrode in pure-cut electrosurgery.
Collapse
Affiliation(s)
- Wafaa Karaki
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Rahul
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Carlos A Lopez
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Diana-Andra Borca Tasciuc
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Suvranu De
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
11
|
Faridi P, Bossmann SH, Prakash P. Simulation-based design and characterization of a microwave applicator for MR-guided hyperthermia experimental studies in small animals. Biomed Phys Eng Express 2020; 6:015001. [PMID: 32999735 PMCID: PMC7521833 DOI: 10.1088/2057-1976/ab36dd] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purpose The objective of this study was to design and characterize a 2.45 GHz microwave hyperthermia applicator for delivering hyperthermia in experimental small animals to 2 - 4 mm diameter targets located 1 - 3 mm from the skin surface, with minimal heating of the surrounding tissue, under 14.1 T MRI real-time monitoring and feedback control. Materials and methods An experimentally validated 3D computational model was employed to design and characterize a non-invasive directional water-cooled microwave hyperthermia applicator. We assessed the effects of: reflector geometry, monopole shape, cooling water temperature, and flow rate on spatial-temperature profiles. The system was integrated with real-time MR thermometry and feedback control to monitor and maintain temperature elevations in the range of 4 - 5 °C at 1 - 3 mm from the applicator surface. The quality of heating was quantified by determining the fraction of the target volume heated to the desired temperature, and the extent of heating in non-targeted regions. Results Model-predicted hyperthermic profiles were in good agreement with experimental measurements (Dice Similarity Coefficient of 0.95 - 0.99). Among the four considered criteria, a reflector aperture angle of 120 °, S-shaped monopole antenna with 0.6 mm displacement, and coolant flow rate of 150 ml/min were selected as the end result of the applicator design. The temperature of circulating water and input power were identified as free variables, allowing considerable flexibility in heating target sizes within varying distances from the applicator surface. 2 - 4 mm diameter targets positioned 1 - 3 mm from the applicator surface were heated to hyperthermic temperatures, with target coverage ratio ranging between 76 - 93 % and 11 - 26 % of non-targeted tissue heated. Conclusion We have designed an experimental platform for MR-guided hyperthermia, incorporating a microwave applicator integrated with temperature-based feedback control to heat deep-seated targets for experimental studies in small animals.
Collapse
Affiliation(s)
- Pegah Faridi
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Stefan H. Bossmann
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
12
|
Fang Z, Moser M, Zhang E, Zhang WJC, Zhang B. Design of a Novel Electrode of Radiofrequency Ablation for Large Tumors: In Vitro Validation and Evaluation. J Biomech Eng 2018; 141:2718212. [PMID: 30516246 DOI: 10.1115/1.4042179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Indexed: 11/08/2022]
Abstract
In the present study, a monopolar expandable electrode (MEE) in radiofrequency ablation (RFA) proposed in our previous study was validated and evaluated using the in vitro experiment and computer simulation. Two commercial RF electrodes (conventional electrode, CE and umbrella electrode, UE) was used to compare the ablation results with MEE using the in vitro egg white model (experiment and computer simulation) and in vivo liver tumor model (computer simulation) to verify the efficacy of MEE in the large tumor ablation. The sharp increase in impedance during RFA procedures was taken as the termination of RFA protocols. The volume and sphericity of ablation zone generated by MEE, CE, and UE in the in vitro egg white experiment were 75.3 1.6 cm3, 2.7 0.4 cm3, 12.4 1.8 cm3 (P <0.001), and 88.1 0.9%, 12.9 1.3%, 62.0 3.0% (P <0.001), respectively. Correspondingly, a similar result was obtained in the egg white simulation. In the liver tumor simulation, the volume and sphpericity of ablation zone generated by MEE, CE, and UE were 35.4 cm3 and 86.8%, 3.7 cm3 and 17.7%, and 12.7 cm3 and 59.6%, respectively. In summary, MEE has the potential to achieve complete ablation in the treatment of large tumors (>3 cm in diameter) compared with CE and UE due to the larger electrode-tissue interface and more round shape of hooks.
Collapse
Affiliation(s)
- Zheng Fang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Michael Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Edwin Zhang
- Division of Vascular & Interventional Radiology, Department of Medical Imaging, University of Toronto, ON M5T 1W7, Canada
| | - W J Chris Zhang
- Fellow ASME, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bing Zhang
- Mem. ASME, Tumor Ablation Group, Biomedical Science and Technology Research Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Karaki W, Lopez CA, Borca-Tasciuc DA, De S. A continuum thermomechanical model of in vivo electrosurgical heating of hydrated soft biological tissues. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 2018; 127:961-974. [PMID: 30739950 PMCID: PMC6366672 DOI: 10.1016/j.ijheatmasstransfer.2018.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Radio-frequency (RF) heating of soft biological tissues during electrosurgical procedures is a fast process that involves phase change through evaporation and transport of intra- and extra-cellular water, and where variations in physical properties with temperature and water content play significant role. Accurately predicting and capturing these effects would improve the modeling of temperature change in the tissue allowing the development of improved instrument design and better understanding of tissue damage and necrosis. Previous models based on the Pennes' bioheat model neglect both evaporation and transport or consider evaporation through numerical correlations, however, do not account for changes in physical properties due to mass transport or phase change, nor capture the pressure increase due to evaporation within the tissue. While a porous media approach can capture the effects of evaporation, transport, pressure and changes in physical properties, the model assumes free diffusion of liquid and gas without a careful examination of assumptions on transport parameters in intact tissue resulting in significant under prediction of temperature. These different approaches have therefore been associated with errors in temperature prediction exceeding 20% when compared to experiments due to inaccuracies in capturing the effects of evaporation losses and transport. Here, we present a model of RF heating of hydrated soft tissue based on mixture theory where the multiphase nature of tissue is captured within a continuum thermomechanics framework, simultaneously considering the transport, deformation and phase change losses due to evaporation that occur during electrosurgical heating. The model predictions are validated against data obtained for in vivo ablation of porcine liver tissue at various power settings of the electrosurgical unit. The model is able to match the mean experimental temperature data with sharp gradients in the vicinity of the electrode during rapid low and high power ablation procedures with errors less than 7.9%. Additionally, the model is able to capture fast vaporization losses and the corresponding increase in pressure due to vapor buildup which have a significant effect on temperature prediction beyond 100 °C.
Collapse
Affiliation(s)
- Wafaa Karaki
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Carlos A Lopez
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Diana-Andra Borca-Tasciuc
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Suvranu De
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
14
|
Deas Yero D, Gilart Gonzalez F, Van Troyen D, Vandenbosch GAE. Dielectric Properties of Ex Vivo Porcine Liver Tissue Characterized at Frequencies Between 5 and 500 kHz When Heated at Different Rates. IEEE Trans Biomed Eng 2018; 65:2560-2568. [PMID: 29993493 DOI: 10.1109/tbme.2018.2807981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The released energy during radio frequency thermal ablation therapy changes the dielectric properties of biological tissues. Understanding changes of dielectric properties of biological tissues during heating is fundamental to suitably model the medical procedure. The aim of this work is to obtain the thermal dependences of conductivity and permittivity of ex vivo porcine liver tissue at six frequencies from 5 to 500 kHz, during heating from 37 °C to 100 °C at three heating rates of approximately 0.1, 3, and 10 °C/min. METHODS Two experimental setups using different heating sources and a four-needle electrode connected to an impedance analyzer were developed to evaluate the thermal dependencies. RESULTS The results at a body temperature of 37 °C show a good agreement with the data reported in the literature. The conductivity initially shows an increase followed by a decrease, whereas the permittivity increases before a subsequent sharp decrease. Above 60 °C, different trends are observed for the three heating rates studied. CONCLUSION The electric conductivity and permittivity show a similar behavior at all evaluated frequencies and heating rates. The observed abrupt change of the slope near 45 °C at a slow heating rate may be used to identify the region of reversible changes in the tissue. SIGNIFICANCE These results confirm the connection among tissue dielectric properties, working frequency, and exposure time with thermal damage during heating.
Collapse
|
15
|
PINHEIRO CLEBERDASILVA. INFLUENCE OF THERMAL-ELECTRICAL PARAMETER COMBINATIONS ON THERMAL LESIONS OF RADIOFREQUENCY TUMOR ABLATION. J BIOL SYST 2017. [DOI: 10.1142/s0218339017500164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several studies have been conducted on the applicability of hyperthermia radiofrequency in the treatment of liver tumors. Many theoretical studies have reported the relevance of various physical parameters in terms of their efficacy in combating tumors and have analyzed the impact of these physical parameters on the temperature profile in the diseased tissue. Parameters such as thermal and electrical conductivities have been investigated during simulations of thermal ablation. Such parameters play an important role in the process of heat transfer in tissues. The purpose of this study is to predict the lesion volume, considering the inclusion of temperature dependence of thermal-electrical properties. This paper introduces a three-dimensional computational model that includes different comparative combinations of tissue thermal-electrical parameters as a mapping of temperature (such as thermal and electrical conductivities and specific heat). The finite-element method is employed for simulating hepatic radiofrequency ablation through the numerical solutions of the bioheat, Laplace, and Navier–Stokes equations. The results suggest that different combinations of tissue temperature-dependent parameters can significantly affect the computed lesion volume and that the temperature dependence of electrical conductivity has a major impact on the computed lesion volume and temperature distribution.
Collapse
Affiliation(s)
- CLEBER DA SILVA PINHEIRO
- Institute of Physics—University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Asa Norte, CEP 70919-970, Brasília/Distrito Federal-DF, Brazil
- Department of Biological Sciences, University Center of Brasilia (UniCEUB), Asa Norte, SEPN 707/907-University Center, CEP 70790-075, Brasília/Distrito Federal-DF, Brazil
| |
Collapse
|
16
|
Zhang B, Moser MAJ, Zhang EM, Luo Y, Zhang W. A new approach to feedback control of radiofrequency ablation systems for large coagulation zones. Int J Hyperthermia 2016; 33:367-377. [DOI: 10.1080/02656736.2016.1263365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Bing Zhang
- CISR Lab, East China University of Science and Technology, Shanghai, China
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | | | - Edwin M. Zhang
- Division of Vascular & Interventional Radiology, Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Yigang Luo
- Department of Surgery, University of Saskatchewan, Saskatoon, Canada
| | - Wenjun Zhang
- CISR Lab, East China University of Science and Technology, Shanghai, China
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
17
|
Qi X, Li G, Liu D, Motamarry A, Huang X, Wolfe AM, Helke KL, Haemmerich D, Staveley-O'Carroll KF, Kimchi ET. Development of a radiofrequency ablation platform in a clinically relevant murine model of hepatocellular cancer. Cancer Biol Ther 2016; 16:1812-9. [PMID: 26537481 DOI: 10.1080/15384047.2015.1095412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RFA is used in treatment of patients with hepatocellular cancer (HCC); however, tumor location and size often limit therapeutic efficacy. The absence of a realistic animal model and a radiofrequency ablation (RFA) suitable for small animals presents significant obstacles in developing new strategies. To establish a realistic RFA platform that allows the development of effective RFA-integrated treatment in an orthotopic murine model of HCC, a human cardiac radiofrequency generator was modified for murine use. Parameters were optimized and RFA was then performed in normal murine livers and HCCs. The effects of RFA were monitored by measuring the ablation zone and transaminases. The survival of tumor-bearing mice with and without RFA was monitored, ablated normal liver and HCCs were evaluated macroscopically and histologically. We demonstrated that tissue-mimicking media was able to optimize RFA parameters. Utilizing this information we performed RFA in normal and HCC-bearing mice. RFA was applied to hepatic parenchyma and completely destroyed small tumors and part of large tumors. Localized healing of the ablation and normalization of transaminases occurred within 7 days post RFA. RFA treatment extended the survival of small tumor-bearing mice. They survived at least 5 months longer than the controls; however, mice with larger tumors only had a slight therapeutic effect after RFA. Collectively, we performed RFA in murine HCCs and observed a significant therapeutic effect in small tumor-bearing mice. The quick recovery of tumor-bearing mice receiving RFA mimics observations in human subjects. This platform provides us a unique opportunity to study RFA in HCC treatment.
Collapse
Affiliation(s)
- Xiaoqiang Qi
- a Department of Surgery ; Division of Surgical Oncology; Medical University of South Carolina ; Charleston , SC USA.,b Hollings Cancer Center; Medical University of South Carolina ; Charleston , SC USA
| | - Guangfu Li
- a Department of Surgery ; Division of Surgical Oncology; Medical University of South Carolina ; Charleston , SC USA.,b Hollings Cancer Center; Medical University of South Carolina ; Charleston , SC USA
| | - Dai Liu
- a Department of Surgery ; Division of Surgical Oncology; Medical University of South Carolina ; Charleston , SC USA.,b Hollings Cancer Center; Medical University of South Carolina ; Charleston , SC USA
| | - Anjan Motamarry
- d Department of Pathology and Laboratory Medicine; Medical University of South Carolina ; Charleston , SC USA
| | - Xiangwei Huang
- a Department of Surgery ; Division of Surgical Oncology; Medical University of South Carolina ; Charleston , SC USA.,b Hollings Cancer Center; Medical University of South Carolina ; Charleston , SC USA
| | - A Marissa Wolfe
- c Department of Comparative Medicine; Medical University of South Carolina ; Charleston , SC USA
| | - Kristi L Helke
- c Department of Comparative Medicine; Medical University of South Carolina ; Charleston , SC USA.,d Department of Pathology and Laboratory Medicine; Medical University of South Carolina ; Charleston , SC USA
| | - Dieter Haemmerich
- e Department of Pediatrics ; Medical University of South Carolina ; Charleston , SC USA
| | - Kevin F Staveley-O'Carroll
- a Department of Surgery ; Division of Surgical Oncology; Medical University of South Carolina ; Charleston , SC USA.,b Hollings Cancer Center; Medical University of South Carolina ; Charleston , SC USA
| | - Eric T Kimchi
- a Department of Surgery ; Division of Surgical Oncology; Medical University of South Carolina ; Charleston , SC USA.,b Hollings Cancer Center; Medical University of South Carolina ; Charleston , SC USA
| |
Collapse
|
18
|
CONSIGLIERI LUISA. ANALYTICAL SOLUTIONS IN THE MODELING OF THE LOCAL RF ABLATION. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416500718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coupled mathematical models for the radiofrequency (RF) ablation performed in biomedical sciences have been developed based on the bioheat transfer theory. The heat exchange problem is important to be analytically studied in order to control the size of the necrosis zone caused by RF ablation. This lesion size in the tissue may be predicted by the knowledge of the internal tissue temperature. We propose an analytical solution for the Pennes heat transfer equation in bi- and tri-region domains, applicable to the RF ablation of cancerigeneous tissue — a clinical relevant problem. The model consists of two partial differential equations describing the spatio-temporal interactions between the electric and thermic effects. The aim is to find simple algebraic expressions of analytical solutions that may allow to generate quantitative results which in turn may be interpreted (including uncertainties). The dependence of the temperature as function of the electrothermal parameters in both diseased and surrounding healthy tissues is pointed out. Two cases, namely the tumor–tissue and tumor–tissue–skin systems, are graphically computed, and important findings include the fact that the presence of tissue with smaller value parameters protects somehow healthy cells. Moreover, the graphical representations are conducted to highlight the link of the profile of current density distribution in the physiological problem with the (neither oval nor circular) shape of the temperature isoclinic lines.
Collapse
|
19
|
A review of radiofrequency ablation: Large target tissue necrosis and mathematical modelling. Phys Med 2016; 32:961-71. [PMID: 27461969 DOI: 10.1016/j.ejmp.2016.07.092] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/06/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
Radiofrequency ablation (RFA) is an effective clinical method for tumour ablation with minimum intrusiveness. However, the use of RFA is mostly restricted to small tumours, especially those <3cm in diameter. This paper discusses the state-of-the-art of RFA, drawn from experimental and clinical results, for large tumours (i.e. ⩾3cm in diameter). In particular, the paper analyses clinical results related to target tissue necrosis (TTN) and mathematical modelling of the RFA procedure to understand the mechanism whereby the TTN is limited to under 3cm with RFA. This paper also discusses a strategy of controlling of the temperature of target tissue in the RFA procedure with the state-of-art device, which has the potential to increase the size of TTN. This paper ends with a discussion of some future ideas to solve the so-called 3-cm problem with RFA.
Collapse
|
20
|
Zhang B, Moser MAJ, Zhang EM, Luo Y, Zhang W. Numerical analysis of the relationship between the area of target tissue necrosis and the size of target tissue in liver tumours with pulsed radiofrequency ablation. Int J Hyperthermia 2015; 31:715-25. [PMID: 26360111 DOI: 10.3109/02656736.2015.1058429] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Radiofrequency ablation (RFA) is currently restricted to the treatment of target tissues with a small size (<3 cm in diameter). To overcome this problem with RFA, some phenomena need to be understood first. The study presented in this paper investigated the relationship between the area of target tissue necrosis (TTN) and the size of target tissue in pulsed radiofrequency ablation (PRFA). MATERIALS AND METHODS Liver tumour, one of the common targets of RFA in clinical practice, was used as the target tissue in this study. Two types of pulsed RF power supply methods (half-square and half-sine) and three target tissues with different sizes (25 mm, 30 mm and 35 mm in diameter) were studied using finite element modelling. The finite element model (FEM) was validated by using an in vitro experiment with porcine liver tissue. The first roll-off occurrence or 720 s, whichever occurs first, was chosen as the ablation termination criterion in this study. RESULTS For each target tissue size, the largest TTN area was obtained using the maximum voltage applied (MVA) without roll-off occurrence. In this study, target tissues with a 25 mm diameter can be ablated cleanly but target tissues with 30-mm and 35-mm failed to be ablated. CONCLUSIONS The half-square PRFA could achieve a larger TTN area than the half-sine PRFA. The MVA decreases with an increase in the target tissue diameter in both the half-square PRFA and the half-sine PRFA. The findings of this study are in agreement with the clinical results that lesions (≥ 3 cm in diameter) have less favourable results from RFA.
Collapse
Affiliation(s)
- Bing Zhang
- a Division of Biomedical Engineering , University of Saskatchewan , Saskatoon , Canada
| | - Michael A J Moser
- b Department of Surgery , University of Saskatchewan , Saskatoon , Canada
| | - Edwin M Zhang
- c Department of Radiology and Diagnostic Imaging , University of Alberta , Edmonton , Canada
| | - Yigang Luo
- b Department of Surgery , University of Saskatchewan , Saskatoon , Canada
| | - Wenjun Zhang
- a Division of Biomedical Engineering , University of Saskatchewan , Saskatoon , Canada .,d Complex and Intelligent Systems Centre, School of Mechanical and Power Engineering, East China University of Science and Technology , Shanghai , China , and.,e Department of Mechanical Engineering , University of Saskatchewan , Saskatoon , Saskatchewan , Canada
| |
Collapse
|
21
|
Zhang B, Moser MAJ, Zhang EM, Luo Y, Zhang H, Zhang W. Study of the relationship between the target tissue necrosis volume and the target tissue size in liver tumours using two-compartment finite element RFA modelling. Int J Hyperthermia 2015; 30:593-602. [PMID: 25430990 DOI: 10.3109/02656736.2014.984000] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the relationship between the target tissue necrosis volume and the target tissue size during the radiofrequency ablation (RFA) procedure. MATERIALS AND METHODS The target tissues with four different sizes (dxy = 20, 25, 30 and 35 mm) were modelled using a two-compartment radiofrequency ablation model. Different voltages were applied to seek the maximum target tissue necrosis volume for each target tissue size. The first roll-off occurrence or the standard ablation time (12 min) was taken as the sign for the termination of the RFA procedure. RESULTS Four different maximum voltages without the roll-off occurrence were found for the four different sizes of target tissues (dxy = 20, 25, 30 and 35 mm), and they were 36.6, 35.4, 33.9 and 32.5 V, respectively. The target tissues with diameters of 20, 25 mm can be cleanly ablated at their own maximum voltages applied (MVA) but the same finding was not found for the 35-mm target tissue. For the target tissue with diameter of 30 mm, the 50 °C isothermal contour (IT50) result showed that the target tissue can be cleanly ablated, but the same result did not show in the Arrhenius damage model result. Furthermore, two optimal RFA protocols with a minimal thermal damage to the healthy tissues were found for the target tissues with diameters of 20 and 25 mm, respectively. CONCLUSIONS The study suggests that target tissues of different sizes should be treated with different RFA protocols. The maximum target tissue volume was achieved with the MVA without the roll-off occurrence for each target tissue size when a constant RF power supply was used.
Collapse
Affiliation(s)
- Bing Zhang
- Complex and Intelligent Systems Centre, School of Mechanical and Power Engineering, East China University Science and Technology , Shanghai , China
| | | | | | | | | | | |
Collapse
|
22
|
Chauhan M, Jeong WC, Kim HJ, Kwon OI, Woo EJ. Radiofrequency ablation lesion detection using MR-based electrical conductivity imaging: A feasibility study ofex vivoliver experiments. Int J Hyperthermia 2013; 29:643-52. [DOI: 10.3109/02656736.2013.842265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Zhang B, Moser M, Zhang E, Zhang WJ. Radiofrequency ablation technique in the treatment of liver tumours: review and future issues. J Med Eng Technol 2013; 37:150-9. [PMID: 23360198 DOI: 10.3109/03091902.2012.754510] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thermal ablation is increasingly being used for treatment of liver tumours. Among the techniques of thermal ablation, radiofrequency ablation (RF) is undoubtedly being used most frequently because of its advantages, such as morbidity and mortality rates, effective tumour ablation, as well as being less time-consuming. This paper presents the state of the art of RF ablation technique. This includes the theoretical development, experimental study and clinical application of the radiofrequency ablation technique. First, it introduces the principle of this technique. Second, it shows the development of this technique and valuable achievements. These achievements include the device, strategy of operation and extension to other diseases. Third, it concludes future issues to be addressed in order to further advance this technique.
Collapse
Affiliation(s)
- B Zhang
- Department of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
24
|
Prakash P, Salgaonkar VA, Clif Burdette E, Diederich CJ. Multiple applicator hepatic ablation with interstitial ultrasound devices: theoretical and experimental investigation. Med Phys 2013; 39:7338-49. [PMID: 23231283 DOI: 10.1118/1.4765459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To evaluate multiple applicator implant configurations of interstitial ultrasound devices for large volume ablation of liver tumors. METHODS A 3D bioacoustic-thermal model using the finite element method was implemented to assess multiple applicator implant configurations for thermal ablation with interstitial ultrasound energy. Interstitial applicators consist of linear arrays of up to four 10 mm-long tubular ultrasound transducers, each under separate and dynamic power control, enclosed within a water-cooled delivery catheter (2.4 mm OD). The authors considered parallel implants with two and three applicators (clustered configuration), spaced 2-3 cm apart, to simulate open surgical placement. In addition, the authors considered two applicator implants with applicators converging and diverging at angles of ∼20°, 30°, and 45° to simulate percutaneous placement. Heating experiments (10-15 min) were performed and compared against simulations employing the same experimental parameters. To estimate the performance of parallel, multiple applicator configurations in an in vivo setting, simulations were performed taking into account a range of blood perfusion levels (0, 5, 12, and 15 kg m(-3) s(-1)) that may occur in tumors of varying vascularity. The impact of tailoring the power supplied to individual transducer elements along the length of applicators is explored for applicators inserted in non-parallel (converging and diverging) configurations. Thermal dose (t(43) > 240 min) and temperature thresholds (T > 52 °C) were used to define the ablation zones, with dynamic changes to tissue acoustic and thermal properties incorporated within the model. RESULTS Experiments in ex vivo bovine liver yielded ablation zones ranging between 4.0-5.6 cm × 3.2-4.9 cm, in cross section. Ablation zone dimensions predicted by simulations with similar parameters to the experiments were in close agreement (within 5 mm). Simulations of in vivo heating showed that 15 min heating and interapplicator spacing less than 3 cm are required to obtain contiguous, complete ablation zones. The ability to create complete ablation zone profiles for nonparallel implants was illustrated by tailoring applied power levels along the length of applicators. CONCLUSIONS Parallel implants consisting of three interstitial ultrasound applicators in a triangular configuration yield complete ablation zones measuring up to 6.2 cm × 5.7 cm after 15 min heating. At larger interapplicator spacing, the level of blood perfusion in the tumor may yield indentations along the periphery of the ablation zone. Tailoring applied power along the length of the applicator can accommodate for nonparallel implants, without compromising safety.
Collapse
Affiliation(s)
- Punit Prakash
- Department of Radiation Oncology, University of California, San Francisco, CA, USA.
| | | | | | | |
Collapse
|
25
|
Mustafa T, Zhang Y, Watanabe F, Karmakar A, Asar MP, Little R, Hudson MK, Xu Y, Biris AS. Iron oxide nanoparticle-based radio-frequency thermotherapy for human breast adenocarcinoma cancer cells. Biomater Sci 2013; 1:870-880. [DOI: 10.1039/c3bm60015g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Watanabe H, Yamazaki N, Kobayashi Y, Miyashita T, Ohdaira T, Hashizume M, Fujie MG. Estimation of intraoperative blood flow during liver RF ablation using a finite element method-based biomechanical simulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:7441-5. [PMID: 22256059 DOI: 10.1109/iembs.2011.6091745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Radiofrequency ablation is increasingly being used for liver cancer because it is a minimally invasive treatment method. However, it is difficult for the operators to precisely control the formation of coagulation zones because of the cooling effect of capillary vessels. To overcome this limitation, we have proposed a model-based robotic ablation system using a real-time numerical simulation to analyze temperature distributions in the target organ. This robot can determine the adequate amount of electric power supplied to the organ based on real-time temperature information reflecting the cooling effect provided by the simulator. The objective of this study was to develop a method to estimate the intraoperative rate of blood flow in the target organ to determine temperature distribution. In this paper, we propose a simulation-based method to estimate the rate of blood flow. We also performed an in vitro study to validate the proposed method by estimating the rate of blood flow in a hog liver. The experimental results revealed that the proposed method can be used to estimate the rate of blood flow in an organ.
Collapse
Affiliation(s)
- Hiroki Watanabe
- Graduate School of Science and Engineering, Waseda University, Japan.
| | | | | | | | | | | | | |
Collapse
|