1
|
Kurmanavičiūtė D, Kataja H, Parkkonen L. Comparing MEG and EEG measurement set-ups for a brain-computer interface based on selective auditory attention. PLoS One 2025; 20:e0319328. [PMID: 40209163 PMCID: PMC11984968 DOI: 10.1371/journal.pone.0319328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/30/2025] [Indexed: 04/12/2025] Open
Abstract
Auditory attention modulates auditory evoked responses to target vs. non-target sounds in electro- and magnetoencephalographic (EEG/MEG) recordings. Employing whole-scalp MEG recordings and offline classification algorithms has been shown to enable high accuracy in tracking the target of auditory attention. Here, we investigated the decrease in accuracy when moving from the whole-scalp MEG to lower channel count EEG recordings and when training the classifier only from the initial or middle part of the recording instead of extracting training trials throughout the recording. To this end, we recorded simultaneous MEG (306 channels) and EEG (64 channels) in 18 healthy volunteers while presented with concurrent streams of spoken "Yes"/"No" words and instructed to attend to one of them. We then trained support vector machine classifiers to predict the target of attention from unaveraged trials of MEG/EEG. Classifiers were trained on 204 MEG gradiometers or on EEG with 64, 30, nine or three channels with trials extracted randomly across or only from the beginning of the recording. The highest classification accuracy, 73.2% on average across the participants for one-second trials, was obtained with MEG when the training trials were randomly extracted throughout the recording. With EEG, the accuracy was 69%, 69%, 66%, and 61% when using 64, 30, nine, and three channels, respectively. When training the classifiers with the same amount of data but extracted only from the beginning of the recording, the accuracy dropped by 11%-units on average, causing the result from the three-channel EEG to fall below the chance level. The combination of five consecutive trials partially compensated for this drop such that it was one to 5%-units. Although moving from whole-scalp MEG to EEG reduces classification accuracy, usable auditory-attention-based brain-computer interfaces can be implemented with a small set of optimally placed EEG channels.
Collapse
Affiliation(s)
| | - Hanna Kataja
- Department of Neuroscience and Biomedical Engineering, Aalto University, Finland
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Finland
- Aalto NeuroImaging, Aalto University, Finland
| |
Collapse
|
2
|
Guttmann-Flury E, Sheng X, Zhu X. Dataset combining EEG, eye-tracking, and high-speed video for ocular activity analysis across BCI paradigms. Sci Data 2025; 12:587. [PMID: 40199863 PMCID: PMC11978869 DOI: 10.1038/s41597-025-04861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
In Brain-Computer Interface (BCI) research, the detailed study of blinks is crucial. They can be considered as noise, affecting the efficiency and accuracy of decoding users' cognitive states and intentions, or as potential features, providing valuable insights into users' behavior and interaction patterns. We introduce a large dataset capturing electroencephalogram (EEG) signals, eye-tracking, high-speed camera recordings, as well as subjects' mental states and characteristics, to provide a multifactor analysis of eye-related movements. Four paradigms - motor imagery, motor execution, steady-state visually evoked potentials, and P300 spellers - are selected due to their capacity to evoke various sensory-motor responses and potential influence on ocular activity. This online-available dataset contains over 46 hours of data from 31 subjects across 63 sessions, totaling 2520 trials for each of the first three paradigms, and 5670 for P300. This multimodal and multi-paradigms dataset is expected to allow the development of algorithms capable of efficiently handling eye-induced artifacts and enhancing task-specific classification. Furthermore, it offers the opportunity to evaluate the cross-paradigm robustness involving the same participants.
Collapse
Affiliation(s)
- Eva Guttmann-Flury
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P. R. China.
| | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P. R. China
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Thenmozhi T, Helen R, Mythili S. Classification of motor imagery EEG with ensemble RNCA model. Behav Brain Res 2025; 479:115345. [PMID: 39586499 DOI: 10.1016/j.bbr.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/14/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Motor Imagery (MI) based brain-computer interface (BCI) systems are used for regaining the motor functions of neurophysiologically affected persons. But the performance of MI tasks is degraded due to the presence of redundant EEG channels. Hence, a novel ensemble regulated neighborhood component analysis (ERNCA) method provides a perfect identification of neural region that stimulate motor movements. Domains of statistical, frequency, spatial and transform-based features narrowed down the misclassification rate. The gradient boosting method selects the relevant features thereby reduces the computational complexity. Finally, Bayesian optimized ensemble classifier finetuned the classification accuracies of 97.22 % and 91.62 % for Datasets IIIa and IVa respectively. This approach is further strengthened by analyzing real-time data with the accuracy of 93.75 %. This method qualifies out of four benchmark methods with significant percent of improvement in accuracy for these three datasets. As per the spatial distribution of refined EEG channels, majority of the brain's motor functions concentrates on frontal and central cortex regions of brain.
Collapse
Affiliation(s)
- T Thenmozhi
- Department of Artificial Intelligence and Data science, Velammal College of Engineering and Technology, Madurai, India.
| | - R Helen
- Department of Medical Electronics, Saveetha Engineering College, Chennai, India.
| | - S Mythili
- Department of Biomedical Engineering, PSNA College of Engineering and Technology, Dindigul, India.
| |
Collapse
|
4
|
Özkahraman A, Ölmez T, Dokur Z. Performance Improvement with Reduced Number of Channels in Motor Imagery BCI System. SENSORS (BASEL, SWITZERLAND) 2024; 25:120. [PMID: 39796911 PMCID: PMC11723053 DOI: 10.3390/s25010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Classifying Motor Imaging (MI) Electroencephalogram (EEG) signals is of vital importance for Brain-Computer Interface (BCI) systems, but challenges remain. A key challenge is to reduce the number of channels to improve flexibility, portability, and computational efficiency, especially in multi-class scenarios where more channels are needed for accurate classification. This study demonstrates that combining Electrooculogram (EOG) channels with a reduced set of EEG channels is more effective than relying on a large number of EEG channels alone. EOG channels provide useful information for MI signal classification, countering the notion that they only introduce eye-related noise. The study uses advanced deep learning techniques, including multiple 1D convolution blocks and depthwise-separable convolutions, to optimize classification accuracy. The findings in this study are tested on two datasets: dataset 1, the BCI Competition IV Dataset IIa (4-class MI), and dataset 2, the Weibo dataset (7-class MI). The performance for dataset 1, utilizing 3 EEG and 3 EOG channels (6 channels total), is of 83% accuracy, while dataset 2, with 3 EEG and 2 EOG channels (5 channels total), achieves an accuracy of 61%, demonstrating the effectiveness of the proposed channel reduction method and deep learning model.
Collapse
Affiliation(s)
- Ali Özkahraman
- Department of Electronics and Communication Engineering, Istanbul Technical University, 34467 Istanbul, Istanbul, Turkey
- Department of Electrical and Electronics Engineering, Iskenderun Technical University, 31200 Iskenderun, Hatay, Turkey
| | - Tamer Ölmez
- Department of Electronics and Communication Engineering, Istanbul Technical University, 34467 Istanbul, Istanbul, Turkey
| | - Zümray Dokur
- Department of Electronics and Communication Engineering, Istanbul Technical University, 34467 Istanbul, Istanbul, Turkey
| |
Collapse
|
5
|
Mikhaylov D, Saeed M, Husain Alhosani M, F. Al Wahedi Y. Comparison of EEG Signal Spectral Characteristics Obtained with Consumer- and Research-Grade Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:8108. [PMID: 39771843 PMCID: PMC11679099 DOI: 10.3390/s24248108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Electroencephalography (EEG) has emerged as a pivotal tool in both research and clinical practice due to its non-invasive nature, cost-effectiveness, and ability to provide real-time monitoring of brain activity. Wearable EEG technology opens new avenues for consumer applications, such as mental health monitoring, neurofeedback training, and brain-computer interfaces. However, there is still much to verify and re-examine regarding the functionality of these devices and the quality of the signal they capture, particularly as the field evolves rapidly. In this study, we recorded the resting-state brain activity of healthy volunteers via three consumer-grade EEG devices, namely PSBD Headband Pro, PSBD Headphones Lite, and Muse S Gen 2, and compared the spectral characteristics of the signal obtained with that recorded via the research-grade Brain Product amplifier (BP) with the mirroring montages. The results showed that all devices exhibited higher mean power in the low-frequency bands, which are characteristic of dry-electrode technology. PSBD Headband proved to match BP most precisely among the other examined devices. PSBD Headphones displayed a moderate correspondence with BP and signal quality issues in the central group of electrodes. Muse demonstrated the poorest signal quality, with extremely low alignment with BP. Overall, this study underscores the importance of considering device-specific design constraints and emphasizes the need for further validation to ensure the reliability and accuracy of wearable EEG devices.
Collapse
Affiliation(s)
- Dmitry Mikhaylov
- Abu Dhabi Maritime Academy, Abu Dhabi P.O. Box 54477, United Arab Emirates; (M.S.)
| | | | | | | |
Collapse
|
6
|
Meng M, Xu B, Ma Y, Gao Y, Luo Z. STGAT-CS: spatio-temporal-graph attention network based channel selection for MI-based BCI. Cogn Neurodyn 2024; 18:3663-3678. [PMID: 39712131 PMCID: PMC11655804 DOI: 10.1007/s11571-024-10154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 12/24/2024] Open
Abstract
Brain-computer interface (BCI) based on the motor imagery paradigm typically utilizes multi-channel electroencephalogram (EEG) to ensure accurate capture of physiological phenomena. However, excessive channels often contain redundant information and noise, which can significantly degrade BCI performance. Although there have been numerous studies on EEG channel selection, most of them require manual feature extraction, and the extracted features are difficult to fully represent the effective information of EEG signals. In this paper, we propose a spatio-temporal-graph attention network for channel selection (STGAT-CS) of EEG signals. We consider the EEG channels and their inter-channel connectivity as a graph and treat the channel selection problem as a node classification problem on the graph. We leverage the multi-head attention mechanism of graph attention network to dynamically capture topological relationships between nodes and update node features accordingly. Additionally, we introduce one-dimensional convolution to automatically extract temporal features from each channel in the original EEG signal, thereby obtaining more comprehensive spatiotemporal characteristics. In the classification tasks of the BCI Competition III Dataset IVa and BCI Competition IV Dataset I, STGAT-CS achieved average accuracies of 91.5% and 85.4% respectively, demonstrating the effectiveness of the proposed method.
Collapse
Affiliation(s)
- Ming Meng
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China
| | - Bin Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China
| | - Yuliang Ma
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China
| | - Yunyuan Gao
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China
| | - Zhizeng Luo
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang China
| |
Collapse
|
7
|
Wang L, Wang J, Su H, Zhang X, Zhang L, Kang X. A zero precision loss framework for EEG channel selection: enhancing efficiency and maintaining interpretability. Comput Methods Biomech Biomed Engin 2024:1-16. [PMID: 39269692 DOI: 10.1080/10255842.2024.2401918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
The brain-computer interface (BCI) systems based on motor imagery typically rely on a large number of electrode channels to acquire information. The rational selection of electroencephalography (EEG) channel combinations is crucial for optimizing computational efficiency and enhancing practical applicability. However, evaluating all potential channel combinations individually is impractical. This study aims to explore a strategy for quickly achieving a balance between maximizing channel reduction and minimizing precision loss. To this end, we developed a spatio-temporal attention perception network named STAPNet. Based on the channel contributions adaptively generated by its subnetwork, we propose an extended step bi-directional search strategy that includes variable ratio channel selection (VRCS) and strided greedy channel selection (SGCS), designed to enhance global search capabilities and accelerate the optimization process. Experimental results show that on the High Gamma and BCI Competition IV 2a public datasets, the framework respectively achieved average maximum accuracies of 91.47% and 84.17%. Under conditions of zero precision loss, the average number of channels was reduced by a maximum of 87.5%. Additionally, to investigate the impact of neural information loss due to channel reduction on the interpretation of complex brain functions, we employed a heatmap visualization algorithm to verify the universal importance and complete symmetry of the selected optimal channel combination across multiple datasets. This is consistent with the brain's cooperative mechanism when processing tasks involving both the left and right hands.
Collapse
Affiliation(s)
- Lu Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Junkongshuai Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Haolong Su
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Xueze Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Lihua Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Xiaoyang Kang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu City, China
| |
Collapse
|
8
|
Yuan G, Wang T, Ju W, Fu S. A portable affective computing system for identifying mate preference. Sci Rep 2024; 14:17735. [PMID: 39085370 PMCID: PMC11292018 DOI: 10.1038/s41598-024-68772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
Recognizing an individual's preference state for potential romantic partners based on electroencephalogram (EEG) signals holds significant practical value in enhancing matchmaking success rates and preventing romance fraud. Despite some progress has been made in this field, challenges such as high-dimensional feature space and channel redundancy limited the technology's practical application. The aim of this study is to explore the most discriminative EEG features and channels, in order to enhance the recognition performance of the system, while maximizing the portable and practical value of EEG-based systems for recognizing romantic attraction. To achieve this goal, we first conducted an interesting simulated dating experiment to collect the necessary data. Next, EEG features were extracted from various dimensions, including band power and asymmetry index features. Then, we introduced a novel method for EEG feature and channel selection that combines the sequential forward selection (SFS) algorithm with the frequency-based feature subset integration (FFSI) algorithm. Finally, we used the random forest classifier (RFC) to determine a person's preference state for potential romantic partners. Experimental results indicate that the optimal feature subset, selected using the SFS-FFSI method, attained an average classification accuracy of 88.42%. Notably, these features were predominantly sourced from asymmetry index features of electrodes situated in the frontal, parietal, and occipital lobes.
Collapse
Affiliation(s)
- Guangjie Yuan
- School of Psychology, Qufu Normal University, Shandong, China.
- College of Electronic and Information Engineering, Southwest University, Chongqing, China.
| | - Tao Wang
- School of Psychology, Qufu Normal University, Shandong, China
| | - Wei Ju
- School of Psychology, Qufu Normal University, Shandong, China
| | - Sai Fu
- Faculty of Education, Southwest University, Chongqing, China.
| |
Collapse
|
9
|
Luo Y, Mu W, Wang L, Wang J, Wang P, Gan Z, Zhang L, Kang X. An EEG channel selection method for motor imagery based on Fisher score and local optimization. J Neural Eng 2024; 21:036030. [PMID: 38842111 DOI: 10.1088/1741-2552/ad504a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Objective. Multi-channel electroencephalogram (EEG) technology in brain-computer interface (BCI) research offers the advantage of enhanced spatial resolution and system performance. However, this also implies that more time is needed in the data processing stage, which is not conducive to the rapid response of BCI. Hence, it is a necessary and challenging task to reduce the number of EEG channels while maintaining decoding effectiveness.Approach. In this paper, we propose a local optimization method based on the Fisher score for within-subject EEG channel selection. Initially, we extract the common spatial pattern characteristics of EEG signals in different bands, calculate Fisher scores for each channel based on these characteristics, and rank them accordingly. Subsequently, we employ a local optimization method to finalize the channel selection.Main results. On the BCI Competition IV Dataset IIa, our method selects an average of 11 channels across four bands, achieving an average accuracy of 79.37%. This represents a 6.52% improvement compared to using the full set of 22 channels. On our self-collected dataset, our method similarly achieves a significant improvement of 24.20% with less than half of the channels, resulting in an average accuracy of 76.95%.Significance. This research explores the importance of channel combinations in channel selection tasks and reveals that appropriately combining channels can further enhance the quality of channel selection. The results indicate that the model selected a small number of channels with higher accuracy in two-class motor imagery EEG classification tasks. Additionally, it improves the portability of BCI systems through channel selection and combinations, offering the potential for the development of portable BCI systems.
Collapse
Affiliation(s)
- Yangjie Luo
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Wei Mu
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Lu Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Junkongshuai Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Pengchao Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
| | - Zhongxue Gan
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
- Ji Hua Laboratory, Foshan, People's Republic of China
| | - Lihua Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
- Ji Hua Laboratory, Foshan, People's Republic of China
| | - Xiaoyang Kang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai, People's Republic of China
- Ji Hua Laboratory, Foshan, People's Republic of China
- Yiwu Research Institute of Fudan University, Yiwu City, People's Republic of China
- Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Huang Z, Wei Q. Tensor decomposition-based channel selection for motor imagery-based brain-computer interfaces. Cogn Neurodyn 2024; 18:877-892. [PMID: 39534365 PMCID: PMC11551095 DOI: 10.1007/s11571-023-09940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/29/2023] [Indexed: 11/16/2024] Open
Abstract
The number of electrode channels in a brain-computer interface (BCI) affects not only its classification performance, but also its convenience in practical applications. Despite many studies on channel selection in motor imagery (MI)-based BCI systems, they consist in matrix analysis of EEG signals, which inevitably loses the interactive information among multiple domains such as space, time and frequency. In this paper, a tensor decomposition-based channel selection (TCS) method is employed for MI BCIs. A three-way tensor is yielded by wavelet transform of a single-trial EEG signal and decomposed into three factor matrices by a regularized canonical polyadic decomposition (CPD). The channel factor matrix is used for channel selection and the important channels are selected by calculating the correlation between channels. Regularized common spatial pattern (RCSP) is employed for feature extraction and support vector machine (SVM) for classification. The proposed TCS-RCSP algorithm was evaluated on three BCI data sets and compared with the RCSP with all channels (AC-RCSP) and the RCSP with selected channels by correlation-based channel selection method (CCS-RCSP). The results indicate that TCS-RCSP achieved significantly better overall accuracy than AC-RCSP (94.4% vs. 86.3%) with ρ < 0.01 and CCS-RCSP (94.4% vs. 90.2%) with ρ < 0.05, proving the efficacy of the proposed algorithm for classifying MI tasks.
Collapse
Affiliation(s)
- Ziwei Huang
- Department of Electronic Information Engineering, School of Information Engineering, Nanchang University, Nanchang, 330031 Jiangxi China
| | - Qingguo Wei
- Department of Electronic Information Engineering, School of Information Engineering, Nanchang University, Nanchang, 330031 Jiangxi China
| |
Collapse
|
11
|
Shiam AA, Hassan KM, Islam MR, Almassri AMM, Wagatsuma H, Molla MKI. Motor Imagery Classification Using Effective Channel Selection of Multichannel EEG. Brain Sci 2024; 14:462. [PMID: 38790441 PMCID: PMC11119243 DOI: 10.3390/brainsci14050462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Electroencephalography (EEG) is effectively employed to describe cognitive patterns corresponding to different tasks of motor functions for brain-computer interface (BCI) implementation. Explicit information processing is necessary to reduce the computational complexity of practical BCI systems. This paper presents an entropy-based approach to select effective EEG channels for motor imagery (MI) classification in brain-computer interface (BCI) systems. The method identifies channels with higher entropy scores, which is an indication of greater information content. It discards redundant or noisy channels leading to reduced computational complexity and improved classification accuracy. High entropy means a more disordered pattern, whereas low entropy means a less disordered pattern with less information. The entropy of each channel for individual trials is calculated. The weight of each channel is represented by the mean entropy of the channel over all the trials. A set of channels with higher mean entropy are selected as effective channels for MI classification. A limited number of sub-band signals are created by decomposing the selected channels. To extract the spatial features, the common spatial pattern (CSP) is applied to each sub-band space of EEG signals. The CSP-based features are used to classify the right-hand and right-foot MI tasks using a support vector machine (SVM). The effectiveness of the proposed approach is validated using two publicly available EEG datasets, known as BCI competition III-IV(A) and BCI competition IV-I. The experimental results demonstrate that the proposed approach surpasses cutting-edge techniques.
Collapse
Affiliation(s)
- Abdullah Al Shiam
- Department of Computer Science and Engineering, Sheikh Hasina University, Netrokona 2400, Bangladesh;
| | - Kazi Mahmudul Hassan
- Department of Computer Science and Engineering, Jatiya Kabi Kazi Nazrul Islam University, Trishal, Mymensingh 2224, Bangladesh;
| | - Md. Rabiul Islam
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Ahmed M. M. Almassri
- Department of Intelligent Robotics, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan;
| | - Hiroaki Wagatsuma
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 808-0196, Japan;
| | - Md. Khademul Islam Molla
- Department of Computer Science and Engineering, The University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
12
|
Schreiner L, Jordan M, Sieghartsleitner S, Kapeller C, Pretl H, Kamada K, Asman P, Ince NF, Miller KJ, Guger C. Mapping of the central sulcus using non-invasive ultra-high-density brain recordings. Sci Rep 2024; 14:6527. [PMID: 38499709 PMCID: PMC10948849 DOI: 10.1038/s41598-024-57167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
Brain mapping is vital in understanding the brain's functional organization. Electroencephalography (EEG) is one of the most widely used brain mapping approaches, primarily because it is non-invasive, inexpensive, straightforward, and effective. Increasing the electrode density in EEG systems provides more neural information and can thereby enable more detailed and nuanced mapping procedures. Here, we show that the central sulcus can be clearly delineated using a novel ultra-high-density EEG system (uHD EEG) and somatosensory evoked potentials (SSEPs). This uHD EEG records from 256 channels with an inter-electrode distance of 8.6 mm and an electrode diameter of 5.9 mm. Reconstructed head models were generated from T1-weighted MRI scans, and electrode positions were co-registered to these models to create topographical plots of brain activity. EEG data were first analyzed with peak detection methods and then classified using unsupervised spectral clustering. Our topography plots of the spatial distribution from the SSEPs clearly delineate a division between channels above the somatosensory and motor cortex, thereby localizing the central sulcus. Individual EEG channels could be correctly classified as anterior or posterior to the central sulcus with 95.2% accuracy, which is comparable to accuracies from invasive intracranial recordings. Our findings demonstrate that uHD EEG can resolve the electrophysiological signatures of functional representation in the brain at a level previously only seen from surgically implanted electrodes. This novel approach could benefit numerous applications, including research, neurosurgical mapping, clinical monitoring, detection of conscious function, brain-computer interfacing (BCI), rehabilitation, and mental health.
Collapse
Affiliation(s)
- Leonhard Schreiner
- g.Tec Medical Engineering GmbH, Schiedlberg, Austria.
- Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria.
| | | | - Sebastian Sieghartsleitner
- g.Tec Medical Engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | - Harald Pretl
- Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria
| | | | - Priscella Asman
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Nuri F Ince
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, USA
| | | |
Collapse
|
13
|
Deng H, Li M, Zuo H, Zhou H, Qi E, Wu X, Xu G. Personalized motor imagery prediction model based on individual difference of ERP. J Neural Eng 2024; 21:016027. [PMID: 38359457 DOI: 10.1088/1741-2552/ad29d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
Objective. Motor imagery-based brain-computer interaction (MI-BCI) is a novel method of achieving human and external environment interaction that can assist individuals with motor disorders to rehabilitate. However, individual differences limit the utility of the MI-BCI. In this study, a personalized MI prediction model based on the individual difference of event-related potential (ERP) is proposed to solve the MI individual difference.Approach.A novel paradigm named action observation-based multi-delayed matching posture task evokes ERP during a delayed matching posture task phase by retrieving picture stimuli and videos, and generates MI electroencephalogram through action observation and autonomous imagery in an action observation-based motor imagery phase. Based on the correlation between the ERP and MI, a logistic regression-based personalized MI prediction model is built to predict each individual's suitable MI action. 32 subjects conducted the MI task with or without the help of the prediction model to select the MI action. Then classification accuracy of the MI task is used to evaluate the proposed model and three traditional MI methods.Main results.The personalized MI prediction model successfully predicts suitable action among 3 sets of daily actions. Under suitable MI action, the individual's ERP amplitude and event-related desynchronization (ERD) intensity are the largest, which helps to improve the accuracy by 14.25%.Significance.The personalized MI prediction model that uses the temporal ERP features to predict the classification accuracy of MI is feasible for improving the individual's MI-BCI performance, providing a new personalized solution for the individual difference and practical BCI application.
Collapse
Affiliation(s)
- Haodong Deng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, 300132 Tianjin, People's Republic of China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, 300132 Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, 300132 Tianjin, People's Republic of China
| | - Mengfan Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, 300132 Tianjin, People's Republic of China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, 300132 Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, 300132 Tianjin, People's Republic of China
| | - Haoxin Zuo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, 300132 Tianjin, People's Republic of China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, 300132 Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, 300132 Tianjin, People's Republic of China
| | - Huihui Zhou
- Peng Cheng Laboratory, 518000 Shenzhen, People's Republic of China
| | - Enming Qi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, 300132 Tianjin, People's Republic of China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, 300132 Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, 300132 Tianjin, People's Republic of China
| | - Xue Wu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, 300132 Tianjin, People's Republic of China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, 300132 Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, 300132 Tianjin, People's Republic of China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, 300132 Tianjin, People's Republic of China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, 300132 Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, 300132 Tianjin, People's Republic of China
| |
Collapse
|
14
|
Moaveninejad S, D'Onofrio V, Tecchio F, Ferracuti F, Iarlori S, Monteriù A, Porcaro C. Fractal Dimension as a discriminative feature for high accuracy classification in motor imagery EEG-based brain-computer interface. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107944. [PMID: 38064955 DOI: 10.1016/j.cmpb.2023.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND OBJECTIVE The brain-computer interface (BCI) technology acquires human brain electrical signals, which can be effectively and successfully used to control external devices, potentially supporting subjects suffering from motor impairments in the interaction with the environment. To this aim, BCI systems must correctly decode and interpret neurophysiological signals reflecting the intention of the subjects to move. Therefore, the accurate classification of single events in motor tasks represents a fundamental challenge in ensuring efficient communication and control between users and BCIs. Movement-associated changes in electroencephalographic (EEG) sensorimotor rhythms, such as event-related desynchronization (ERD), are well-known features of discriminating motor tasks. Fractal dimension (FD) can be used to evaluate the complexity and self-similarity in brain signals, potentially providing complementary information to frequency-based signal features. METHODS In the present work, we introduce FD as a novel feature for subject-independent event classification, and we test several machine learning (ML) models in behavioural tasks of motor imagery (MI) and motor execution (ME). RESULTS Our results show that FD improves the classification accuracy of ML compared to ERD. Furthermore, unilateral hand movements have higher classification accuracy than bilateral movements in both MI and ME tasks. CONCLUSIONS These results provide further insights into subject-independent event classification in BCI systems and demonstrate the potential of FD as a discriminative feature for EEG signals.
Collapse
Affiliation(s)
| | | | - Franca Tecchio
- Institute of Cognitive Sciences and Technologies (ISCT) - National Research Council (CNR), 00185 Rome, Italy
| | - Francesco Ferracuti
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Sabrina Iarlori
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Andrea Monteriù
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Camillo Porcaro
- Department of Neuroscience, University of Padova, 35128 Padua, Italy; Padova Neuroscience Center (PNC), University of Padova, 35131 Padua, Italy; Institute of Cognitive Sciences and Technologies (ISCT) - National Research Council (CNR), 00185 Rome, Italy; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
15
|
Cai S, Schultz T, Li H. Brain Topology Modeling With EEG-Graphs for Auditory Spatial Attention Detection. IEEE Trans Biomed Eng 2024; 71:171-182. [PMID: 37432835 DOI: 10.1109/tbme.2023.3294242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
OBJECTIVE Despite recent advances, the decoding of auditory attention from brain signals remains a challenge. A key solution is the extraction of discriminative features from high-dimensional data, such as multi-channel electroencephalography (EEG). However, to our knowledge, topological relationships between individual channels have not yet been considered in any study. In this work, we introduced a novel architecture that exploits the topology of the human brain to perform auditory spatial attention detection (ASAD) from EEG signals. METHODS We propose EEG-Graph Net, an EEG-graph convolutional network, which employs a neural attention mechanism. This mechanism models the topology of the human brain in terms of the spatial pattern of EEG signals as a graph. In the EEG-Graph, each EEG channel is represented by a node, while the relationship between two EEG channels is represented by an edge between the respective nodes. The convolutional network takes the multi-channel EEG signals as a time series of EEG-graphs and learns the node and edge weights from the contribution of the EEG signals to the ASAD task. The proposed architecture supports the interpretation of the experimental results by data visualization. RESULTS We conducted experiments on two publicly available databases. The experimental results showed that EEG-Graph Net significantly outperforms the state-of-the-art methods in terms of decoding performance. In addition, the analysis of the learned weight patterns provides insights into the processing of continuous speech in the brain and confirms findings from neuroscientific studies. CONCLUSION We showed that modeling brain topology with EEG-graphs yields highly competitive results for auditory spatial attention detection. SIGNIFICANCE The proposed EEG-Graph Net is more lightweight and accurate than competing baselines and provides explanations for the results. Also, the architecture can be easily transferred to other brain-computer interface (BCI) tasks.
Collapse
|
16
|
Tong L, Qian Y, Peng L, Wang C, Hou ZG. A learnable EEG channel selection method for MI-BCI using efficient channel attention. Front Neurosci 2023; 17:1276067. [PMID: 37928726 PMCID: PMC10622956 DOI: 10.3389/fnins.2023.1276067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction During electroencephalography (EEG)-based motor imagery-brain-computer interfaces (MI-BCIs) task, a large number of electrodes are commonly used, and consume much computational resources. Therefore, channel selection is crucial while ensuring classification accuracy. Methods This paper proposes a channel selection method by integrating the efficient channel attention (ECA) module with a convolutional neural network (CNN). During model training process, the ECA module automatically assigns the channel weights by evaluating the relative importance for BCI classification accuracy of every channel. Then a ranking of EEG channel importance can be established so as to select an appropriate number of channels to form a channel subset from the ranking. In this paper, the ECA module is embedded into a commonly used network for MI, and comparative experiments are conducted on the BCI Competition IV dataset 2a. Results and discussion The proposed method achieved an average accuracy of 75.76% with all 22 channels and 69.52% with eight channels in a four-class classification task, outperforming other state-of-the-art EEG channel selection methods. The result demonstrates that the proposed method provides an effective channel selection approach for EEG-based MI-BCI.
Collapse
Affiliation(s)
- Lina Tong
- China University of Mining and Technology-Beijing, Beijing, China
| | - Yihui Qian
- China University of Mining and Technology-Beijing, Beijing, China
| | - Liang Peng
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zeng-Guang Hou
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
| |
Collapse
|
17
|
Chen X, An J, Wu H, Li S, Liu B, Wu D. Front-End Replication Dynamic Window (FRDW) for Online Motor Imagery Classification. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3906-3914. [PMID: 37792658 DOI: 10.1109/tnsre.2023.3321640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Motor imagery (MI) is a classical paradigm in electroencephalogram (EEG) based brain-computer interfaces (BCIs). Online accurate and fast decoding is very important to its successful applications. This paper proposes a simple yet effective front-end replication dynamic window (FRDW) algorithm for this purpose. Dynamic windows enable the classification based on a test EEG trial shorter than those used in training, improving the decision speed; front-end replication fills a short test EEG trial to the length used in training, improving the classification accuracy. Within-subject and cross-subject online MI classification experiments on three public datasets, with three different classifiers and three different data augmentation approaches, demonstrated that FRDW can significantly increase the information transfer rate in MI decoding. Additionally, FR can also be used in training data augmentation. FRDW helped win national champion of the China BCI Competition in 2022.
Collapse
|
18
|
Liang W, Jin J, Daly I, Sun H, Wang X, Cichocki A. Novel channel selection model based on graph convolutional network for motor imagery. Cogn Neurodyn 2023; 17:1283-1296. [PMID: 37786654 PMCID: PMC10542066 DOI: 10.1007/s11571-022-09892-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022] Open
Abstract
Multi-channel electroencephalography (EEG) is used to capture features associated with motor imagery (MI) based brain-computer interface (BCI) with a wide spatial coverage across the scalp. However, redundant EEG channels are not conducive to improving BCI performance. Therefore, removing irrelevant channels can help improve the classification performance of BCI systems. We present a new method for identifying relevant EEG channels. Our method is based on the assumption that useful channels share related information and that this can be measured by inter-channel connectivity. Specifically, we treat all candidate EEG channels as a graph and define channel selection as the problem of node classification on a graph. Then we design a graph convolutional neural network (GCN) model for channels classification. Channels are selected based on the outputs of our GCN model. We evaluate our proposed GCN-based channel selection (GCN-CS) method on three MI datasets. On three datasets, GCN-CS achieves performance improvements by reducing the number of channels. Specifically, we achieve classification accuracies of 79.76% on Dataset 1, 89.14% on Dataset 2 and 87.96% on Dataset 3, which outperform competing methods significantly.
Collapse
Affiliation(s)
- Wei Liang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 China
| | - Jing Jin
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 China
- Shenzhen Research Institute of East China University of Technology, Shenzhen, 518063 China
| | - Ian Daly
- Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Hao Sun
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 China
| | - Xingyu Wang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 China
| | - Andrzej Cichocki
- Skolkovo Institute of Science and Technology, Moscow, Russia 143026
- Systems Research Institute of Polish Academy of Science, Warsaw, Poland
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
19
|
Miao Z, Zhao M, Zhang X, Ming D. LMDA-Net:A lightweight multi-dimensional attention network for general EEG-based brain-computer interfaces and interpretability. Neuroimage 2023; 276:120209. [PMID: 37269957 DOI: 10.1016/j.neuroimage.2023.120209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023] Open
Abstract
Electroencephalography (EEG)-based brain-computer interfaces (BCIs) pose a challenge for decoding due to their low spatial resolution and signal-to-noise ratio. Typically, EEG-based recognition of activities and states involves the use of prior neuroscience knowledge to generate quantitative EEG features, which may limit BCI performance. Although neural network-based methods can effectively extract features, they often encounter issues such as poor generalization across datasets, high predicting volatility, and low model interpretability. To address these limitations, we propose a novel lightweight multi-dimensional attention network, called LMDA-Net. By incorporating two novel attention modules designed specifically for EEG signals, the channel attention module and the depth attention module, LMDA-Net is able to effectively integrate features from multiple dimensions, resulting in improved classification performance across various BCI tasks. LMDA-Net was evaluated on four high-impact public datasets, including motor imagery (MI) and P300-Speller, and was compared with other representative models. The experimental results demonstrate that LMDA-Net outperforms other representative methods in terms of classification accuracy and predicting volatility, achieving the highest accuracy in all datasets within 300 training epochs. Ablation experiments further confirm the effectiveness of the channel attention module and the depth attention module. To facilitate an in-depth understanding of the features extracted by LMDA-Net, we propose class-specific neural network feature interpretability algorithms that are suitable for evoked responses and endogenous activities. By mapping the output of the specific layer of LMDA-Net to the time or spatial domain through class activation maps, the resulting feature visualizations can provide interpretable analysis and establish connections with EEG time-spatial analysis in neuroscience. In summary, LMDA-Net shows great potential as a general decoding model for various EEG tasks.
Collapse
Affiliation(s)
- Zhengqing Miao
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xin Zhang
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, China; Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Dong Ming
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, China; Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
20
|
Degirmenci M, Yuce YK, Perc M, Isler Y. Statistically significant features improve binary and multiple Motor Imagery task predictions from EEGs. Front Hum Neurosci 2023; 17:1223307. [PMID: 37497042 PMCID: PMC10366537 DOI: 10.3389/fnhum.2023.1223307] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
In recent studies, in the field of Brain-Computer Interface (BCI), researchers have focused on Motor Imagery tasks. Motor Imagery-based electroencephalogram (EEG) signals provide the interaction and communication between the paralyzed patients and the outside world for moving and controlling external devices such as wheelchair and moving cursors. However, current approaches in the Motor Imagery-BCI system design require effective feature extraction methods and classification algorithms to acquire discriminative features from EEG signals due to the non-linear and non-stationary structure of EEG signals. This study investigates the effect of statistical significance-based feature selection on binary and multi-class Motor Imagery EEG signal classifications. In the feature extraction process performed 24 different time-domain features, 15 different frequency-domain features which are energy, variance, and entropy of Fourier transform within five EEG frequency subbands, 15 different time-frequency domain features which are energy, variance, and entropy of Wavelet transform based on five EEG frequency subbands, and 4 different Poincare plot-based non-linear parameters are extracted from each EEG channel. A total of 1,364 Motor Imagery EEG features are supplied from 22 channel EEG signals for each input EEG data. In the statistical significance-based feature selection process, the best one among all possible combinations of these features is tried to be determined using the independent t-test and one-way analysis of variance (ANOVA) test on binary and multi-class Motor Imagery EEG signal classifications, respectively. The whole extracted feature set and the feature set that contain statistically significant features only are classified in this study. We implemented 6 and 7 different classifiers in multi-class and binary (two-class) classification tasks, respectively. The classification process is evaluated using the five-fold cross-validation method, and each classification algorithm is tested 10 times. These repeated tests provide to check the repeatability of the results. The maximum of 61.86 and 47.36% for the two-class and four-class scenarios, respectively, are obtained with Ensemble Subspace Discriminant among all these classifiers using selected features including only statistically significant features. The results reveal that the introduced statistical significance-based feature selection approach improves the classifier performances by achieving higher classifier performances with fewer relevant components in Motor Imagery task classification. In conclusion, the main contribution of the presented study is two-fold evaluation of non-linear parameters as an alternative to the commonly used features and the prediction of multiple Motor Imagery tasks using statistically significant features.
Collapse
Affiliation(s)
- Murside Degirmenci
- Department of Biomedical Technologies, Izmir Katip Celebi University, İzmir, Türkiye
| | - Yilmaz Kemal Yuce
- Department of Computer Engineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Alma Mater Europaea, Maribor, Slovenia
- Complexity Science Hub Vienna, Vienna, Austria
- Department of Physics, Kyung Hee University, Seoul, Republic of Korea
| | - Yalcin Isler
- Department of Biomedical Engineering, Izmir Katip Celebi University, İzmir, Türkiye
| |
Collapse
|
21
|
Hu L, Hong W, Liu L. MSATNet: multi-scale adaptive transformer network for motor imagery classification. Front Neurosci 2023; 17:1173778. [PMID: 37389361 PMCID: PMC10303110 DOI: 10.3389/fnins.2023.1173778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Motor imagery brain-computer interface (MI-BCI) can parse user motor imagery to achieve wheelchair control or motion control for smart prostheses. However, problems of poor feature extraction and low cross-subject performance exist in the model for motor imagery classification tasks. To address these problems, we propose a multi-scale adaptive transformer network (MSATNet) for motor imagery classification. Therein, we design a multi-scale feature extraction (MSFE) module to extract multi-band highly-discriminative features. Through the adaptive temporal transformer (ATT) module, the temporal decoder and multi-head attention unit are used to adaptively extract temporal dependencies. Efficient transfer learning is achieved by fine-tuning target subject data through the subject adapter (SA) module. Within-subject and cross-subject experiments are performed to evaluate the classification performance of the model on the BCI Competition IV 2a and 2b datasets. The MSATNet outperforms benchmark models in classification performance, reaching 81.75 and 89.34% accuracies for the within-subject experiments and 81.33 and 86.23% accuracies for the cross-subject experiments. The experimental results demonstrate that the proposed method can help build a more accurate MI-BCI system.
Collapse
Affiliation(s)
- Lingyan Hu
- School of Information and Engineering, Nanchang University, Nanchang, Jiangxi, China
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Weijie Hong
- School of Qianhu, Nanchang University, Nanchang, Jiangxi, China
| | - Lingyu Liu
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, China
| |
Collapse
|
22
|
García-Murillo DG, Álvarez-Meza AM, Castellanos-Dominguez CG. KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification. Diagnostics (Basel) 2023; 13:diagnostics13061122. [PMID: 36980430 PMCID: PMC10046910 DOI: 10.3390/diagnostics13061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
This paper uses EEG data to introduce an approach for classifying right and left-hand classes in Motor Imagery (MI) tasks. The Kernel Cross-Spectral Functional Connectivity Network (KCS-FCnet) method addresses these limitations by providing richer spatial-temporal-spectral feature maps, a simpler architecture, and a more interpretable approach for EEG-driven MI discrimination. In particular, KCS-FCnet uses a single 1D-convolutional-based neural network to extract temporal-frequency features from raw EEG data and a cross-spectral Gaussian kernel connectivity layer to model channel functional relationships. As a result, the functional connectivity feature map reduces the number of parameters, improving interpretability by extracting meaningful patterns related to MI tasks. These patterns can be adapted to the subject’s unique characteristics. The validation results prove that introducing KCS-FCnet shallow architecture is a promising approach for EEG-based MI classification with the potential for real-world use in brain–computer interface systems.
Collapse
|
23
|
Nagarajan A, Robinson N, Guan C. Relevance-based channel selection in motor imagery brain-computer interface. J Neural Eng 2023; 20. [PMID: 36548997 DOI: 10.1088/1741-2552/acae07] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective.Channel selection in the electroencephalogram (EEG)-based brain-computer interface (BCI) has been extensively studied for over two decades, with the goal being to select optimal subject-specific channels that can enhance the overall decoding efficacy of the BCI. With the emergence of deep learning (DL)-based BCI models, there arises a need for fresh perspectives and novel techniques to conduct channel selection. In this regard, subject-independent channel selection is relevant, since DL models trained using cross-subject data offer superior performance, and the impact of inherent inter-subject variability of EEG characteristics on subject-independent DL training is not yet fully understood.Approach.Here, we propose a novel methodology for implementing subject-independent channel selection in DL-based motor imagery (MI)-BCI, using layer-wise relevance propagation (LRP) and neural network pruning. Experiments were conducted using Deep ConvNet and 62-channel MI data from the Korea University EEG dataset.Main Results.Using our proposed methodology, we achieved a 61% reduction in the number of channels without any significant drop (p = 0.09) in subject-independent classification accuracy, due to the selection of highly relevant channels by LRP. LRP relevance-based channel selections provide significantly better accuracies compared to conventional weight-based selections while using less than 40% of the total number of channels, with differences in accuracies ranging from 5.96% to 1.72%. The performance of the adapted sparse-LRP model using only 16% of the total number of channels is similar to that of the adapted baseline model (p = 0.13). Furthermore, the accuracy of the adapted sparse-LRP model using only 35% of the total number of channels exceeded that of the adapted baseline model by 0.53% (p = 0.81). Analyses of channels chosen by LRP confirm the neurophysiological plausibility of selection, and emphasize the influence of motor, parietal, and occipital channels in MI-EEG classification.Significance.The proposed method addresses a traditional issue in EEG-BCI decoding, while being relevant and applicable to the latest developments in the field of BCI. We believe that our work brings forth an interesting and important application of model interpretability as a problem-solving technique.
Collapse
Affiliation(s)
- Aarthy Nagarajan
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Neethu Robinson
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
24
|
DGAFF: Deep genetic algorithm fitness Formation for EEG Bio-Signal channel selection. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Syrov N, Yakovlev L, Miroshnikov A, Kaplan A. Beyond passive observation: feedback anticipation and observation activate the mirror system in virtual finger movement control via P300-BCI. Front Hum Neurosci 2023; 17:1180056. [PMID: 37213933 PMCID: PMC10192585 DOI: 10.3389/fnhum.2023.1180056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023] Open
Abstract
Action observation (AO) is widely used as a post-stroke therapy to activate sensorimotor circuits through the mirror neuron system. However, passive observation is often considered to be less effective and less interactive than goal-directed movement observation, leading to the suggestion that observation of goal-directed actions may have stronger therapeutic potential, as goal-directed AO has been shown to activate mechanisms for monitoring action errors. Some studies have also suggested the use of AO as a form of Brain-computer interface (BCI) feedback. In this study, we investigated the potential for observation of virtual hand movements within a P300-based BCI as a feedback system to activate the mirror neuron system. We also explored the role of feedback anticipation and estimation mechanisms during movement observation. Twenty healthy subjects participated in the study. We analyzed event-related desynchronization and synchronization (ERD/S) of sensorimotor EEG rhythms and Error-related potentials (ErrPs) during observation of virtual hand finger flexion presented as feedback in the P300-BCI loop and compared the dynamics of ERD/S and ErrPs during observation of correct feedback and errors. We also analyzed these EEG markers during passive AO under two conditions: when subjects anticipated the action demonstration and when the action was unexpected. A pre-action mu-ERD was found both before passive AO and during action anticipation within the BCI loop. Furthermore, a significant increase in beta-ERS was found during AO within incorrect BCI feedback trials. We suggest that the BCI feedback may exaggerate the passive-AO effect, as it engages feedback anticipation and estimation mechanisms as well as movement error monitoring simultaneously. The results of this study provide insights into the potential of P300-BCI with AO-feedback as a tool for neurorehabilitation.
Collapse
Affiliation(s)
- Nikolay Syrov
- V. Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- *Correspondence: Nikolay Syrov,
| | - Lev Yakovlev
- V. Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Andrei Miroshnikov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alexander Kaplan
- V. Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
26
|
Maniruzzaman M, Hasan MAM, Asai N, Shin J. Optimal Channels and Features Selection Based ADHD Detection From EEG Signal Using Statistical and Machine Learning Techniques. IEEE ACCESS 2023; 11:33570-33583. [DOI: 10.1109/access.2023.3264266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Md. Maniruzzaman
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan
| | - Md. Al Mehedi Hasan
- Department of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
| | - Nobuyoshi Asai
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan
| | - Jungpil Shin
- School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan
| |
Collapse
|
27
|
An Adaptive EEG Classification Algorithm Based on CSSD and ELM_Kernel for Small Training Samples. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4509612. [PMID: 36619242 PMCID: PMC9812636 DOI: 10.1155/2022/4509612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022]
Abstract
Rehabilitation technologies based on brain-computer interface (BCI) have become a promising approach for patients with dyskinesia to regain movement. In BCI experiment, there is often a necessary stage of calibration measurement before the feedback applications. To reduce the time required for initial training, it is of great importance to have a method which can learn to classify electroencephalogram (EEG) signals with a little amount of training data. In this paper, the novel combination of feature extraction and classification algorithm is proposed for classification of EEG signals with a small number of training samples. For feature extraction, the motor imagery EEG signals are pre-processed, and a relative distance criterion is defined to select the optimal combination of channels. Subsequently, common spatial subspace decomposition (CSSD) algorithm and extreme learning machine with kernel (ELM_Kernel) algorithm are used to perform the types of tasks classification of motor imagery EEG signals. Simulation results demonstrate that the proposed method produces a high average classification accuracy of 99.1% on BCI Competition III dataset IVa and 76.92% on BCI Competition IV dataset IIa outperforming state-of-the-art algorithms and obtains a good classification accuracy.
Collapse
|
28
|
Ma Y, Gong A, Nan W, Ding P, Wang F, Fu Y. Personalized Brain-Computer Interface and Its Applications. J Pers Med 2022; 13:46. [PMID: 36675707 PMCID: PMC9861730 DOI: 10.3390/jpm13010046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Brain-computer interfaces (BCIs) are a new technology that subverts traditional human-computer interaction, where the control signal source comes directly from the user's brain. When a general BCI is used for practical applications, it is difficult for it to meet the needs of different individuals because of the differences among individual users in physiological and mental states, sensations, perceptions, imageries, cognitive thinking activities, and brain structures and functions. For this reason, it is necessary to customize personalized BCIs for specific users. So far, few studies have elaborated on the key scientific and technical issues involved in personalized BCIs. In this study, we will focus on personalized BCIs, give the definition of personalized BCIs, and detail their design, development, evaluation methods and applications. Finally, the challenges and future directions of personalized BCIs are discussed. It is expected that this study will provide some useful ideas for innovative studies and practical applications of personalized BCIs.
Collapse
Affiliation(s)
- Yixin Ma
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, China
| | - Anmin Gong
- School of Information Engineering, Chinese People’s Armed Police Force Engineering University, Xian 710086, China
| | - Wenya Nan
- Department of Psychology, College of Education, Shanghai Normal University, Shanghai 200234, China
| | - Peng Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, China
| | - Fan Wang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunfa Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
29
|
Joucla C, Gabriel D, Ortega JP, Haffen E. Three simple steps to improve the interpretability of EEG-SVM studies. J Neurophysiol 2022; 128:1375-1382. [PMID: 36169205 DOI: 10.1152/jn.00221.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Machine-learning systems that classify electroencephalography (EEG) data offer important perspectives for the diagnosis and prognosis of a wide variety of neurological and psychiatric conditions, but their clinical adoption remains low. We propose here that much of the difficulties translating EEG-machine-learning research to the clinic result from consistent inaccuracies in their technical reporting, which severely impair the interpretability of their often-high claims of performance. Taking example from a major class of machine-learning algorithms used in EEG research, the support-vector machine (SVM), we highlight three important aspects of model development (normalization, hyperparameter optimization, and cross-validation) and show that, while these three aspects can make or break the performance of the system, they are left entirely undocumented in a shockingly vast majority of the research literature. Providing a more systematic description of these aspects of model development constitute three simple steps to improve the interpretability of EEG-SVM research and, in fine, its clinical adoption.
Collapse
Affiliation(s)
- Coralie Joucla
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive (LINC), Université de Bourgogne Franche-Comté, Besançon, France.,FEMTO-ST Institute (CNRS/Université de Bourgogne Franche Comté), Besançon, France
| | - Damien Gabriel
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive (LINC), Université de Bourgogne Franche-Comté, Besançon, France.,Hôpital Universitaire CHRU, Besançon, France
| | - Juan-Pablo Ortega
- Division of Mathematical Sciences, Nanyang Technological University, Singapore
| | - Emmanuel Haffen
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive (LINC), Université de Bourgogne Franche-Comté, Besançon, France.,Hôpital Universitaire CHRU, Besançon, France.,Clinical Psychiatry, Hôpital Universitaire CHRU, Besançon, France
| |
Collapse
|
30
|
EEG Channel Selection Techniques in Motor Imagery Applications: A Review and New Perspectives. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120726. [PMID: 36550932 PMCID: PMC9774545 DOI: 10.3390/bioengineering9120726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/25/2022]
Abstract
Communication, neuro-prosthetics, and environmental control are just a few applications for disabled persons who use robots and manipulators that use brain-computer interface (BCI) systems. The brain's motor imagery (MI) signal is an essential input for a brain-related task in BCI applications. Due to their noninvasive, portability, and cost-effectiveness, electroencephalography (EEG) signals are the most widely used input in BCI systems. The EEG data are often collected from more than 100 different locations in the brain; channel selection techniques are critical for selecting the optimum channels for a given application. However, when analyzing EEG data, the principal purpose of channel selection is to reduce computational complexity, improve classification accuracy by avoiding overfitting, and reduce setup time. Several channel selection assessment algorithms, both with and without classification-based methods, extracted appropriate channel subsets using defined criteria. Therefore, based on the exhaustive analysis of the EEG channel selection, this manuscript analyses several existing studies to reduce the number of noisy channels and improve system performance. We review several existing works to find the most promising MI-based EEG channel selection algorithms and associated classification methodologies on various datasets. Moreover, we focus on channel selection methods that choose fewer channels with great precision. Finally, our main finding is that a smaller channel set, typically 10-30% of total channels, provided excellent performance compared to other existing studies.
Collapse
|
31
|
Syrov N, Yakovlev L, Nikolaeva V, Kaplan A, Lebedev M. Mental Strategies in a P300-BCI: Visuomotor Transformation Is an Option. Diagnostics (Basel) 2022; 12:2607. [PMID: 36359454 PMCID: PMC9689852 DOI: 10.3390/diagnostics12112607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2023] Open
Abstract
Currently, P300-BCIs are mostly used for spelling tasks, where the number of commands is equal to the number of stimuli that evoke event-related potentials (ERPs). Increasing this number slows down the BCI operation because each stimulus has to be presented several times for better classification. Furthermore, P300 spellers typically do not utilize potentially useful imagery-based approaches, such as the motor imagery successfully practiced in motor rehabilitation. Here, we tested a P300-BCI with a motor-imagery component. In this BCI, the number of commands was increased by adding mental strategies instead of increasing the number of targets. Our BCI had only two stimuli and four commands. The subjects either counted target appearances mentally or imagined hand movements toward the targets. In this design, the motor-imagery paradigm enacted a visuomotor transformation known to engage cortical and subcortical networks participating in motor control. The operation of these networks suffers in neurological conditions such as stroke, so we view this BCI as a potential tool for the rehabilitation of patients. As an initial step toward the development of this clinical method, sixteen healthy participants were tested. Consistent with our expectation that mental strategies would result in distinct EEG activities, ERPs were different depending on whether subjects counted stimuli or imagined movements. These differences were especially clear in the late ERP components localized in the frontal and centro-parietal regions. We conclude that (1) the P300 paradigm is suitable for enacting visuomotor transformations and (2) P300-based BCIs with multiple mental strategies could be used in applications where the number of possible outputs needs to be increased while keeping the number of targets constant. As such, our approach adds to both the development of versatile BCIs and clinical approaches to rehabilitation.
Collapse
Affiliation(s)
- Nikolay Syrov
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Lev Yakovlev
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Varvara Nikolaeva
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Alexander Kaplan
- Baltic Center for Neurotechnology and Artificial Intellect, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Laboratory for Neurophysiology and Neuro-Computer Interfaces, Human and Animal Physiology Department, School of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mikhail Lebedev
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|
32
|
Lee HS, Schreiner L, Jo SH, Sieghartsleitner S, Jordan M, Pretl H, Guger C, Park HS. Individual finger movement decoding using a novel ultra-high-density electroencephalography-based brain-computer interface system. Front Neurosci 2022; 16:1009878. [PMID: 36340769 PMCID: PMC9627315 DOI: 10.3389/fnins.2022.1009878] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Brain-Computer Interface (BCI) technology enables users to operate external devices without physical movement. Electroencephalography (EEG) based BCI systems are being actively studied due to their high temporal resolution, convenient usage, and portability. However, fewer studies have been conducted to investigate the impact of high spatial resolution of EEG on decoding precise body motions, such as finger movements, which are essential in activities of daily living. Low spatial sensor resolution, as found in common EEG systems, can be improved by omitting the conventional standard of EEG electrode distribution (the international 10-20 system) and ordinary mounting structures (e.g., flexible caps). In this study, we used newly proposed flexible electrode grids attached directly to the scalp, which provided ultra-high-density EEG (uHD EEG). We explored the performance of the novel system by decoding individual finger movements using a total of 256 channels distributed over the contralateral sensorimotor cortex. Dense distribution and small-sized electrodes result in an inter-electrode distance of 8.6 mm (uHD EEG), while that of conventional EEG is 60 to 65 mm on average. Five healthy subjects participated in the experiment, performed single finger extensions according to a visual cue, and received avatar feedback. This study exploits mu (8-12 Hz) and beta (13-25 Hz) band power features for classification and topography plots. 3D ERD/S activation plots for each frequency band were generated using the MNI-152 template head. A linear support vector machine (SVM) was used for pairwise finger classification. The topography plots showed regular and focal post-cue activation, especially in subjects with optimal signal quality. The average classification accuracy over subjects was 64.8 (6.3)%, with the middle versus ring finger resulting in the highest average accuracy of 70.6 (9.4)%. Further studies are required using the uHD EEG system with real-time feedback and motor imagery tasks to enhance classification performance and establish the basis for BCI finger movement control of external devices.
Collapse
Affiliation(s)
- Hyemin S. Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Leonhard Schreiner
- g.tec Medical Engineering GmbH, Schiedlberg, Upper Austria, Austria
- Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria
| | - Seong-Hyeon Jo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | | | - Michael Jordan
- g.tec Medical Engineering GmbH, Schiedlberg, Upper Austria, Austria
| | - Harald Pretl
- Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria
| | - Christoph Guger
- g.tec Medical Engineering GmbH, Schiedlberg, Upper Austria, Austria
| | - Hyung-Soon Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
33
|
A new common spatial pattern-based unified channels algorithm for driver’s fatigue EEG signals classification. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
34
|
Ji Y, Dong SY. Deep learning-based self-induced emotion recognition using EEG. Front Neurosci 2022; 16:985709. [PMID: 36188460 PMCID: PMC9523358 DOI: 10.3389/fnins.2022.985709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Emotion recognition from electroencephalogram (EEG) signals requires accurate and efficient signal processing and feature extraction. Deep learning technology has enabled the automatic extraction of raw EEG signal features that contribute to classifying emotions more accurately. Despite such advances, classification of emotions from EEG signals, especially recorded during recalling specific memories or imagining emotional situations has not yet been investigated. In addition, high-density EEG signal classification using deep neural networks faces challenges, such as high computational complexity, redundant channels, and low accuracy. To address these problems, we evaluate the effects of using a simple channel selection method for classifying self-induced emotions based on deep learning. The experiments demonstrate that selecting key channels based on signal statistics can reduce the computational complexity by 89% without decreasing the classification accuracy. The channel selection method with the highest accuracy was the kurtosis-based method, which achieved accuracies of 79.03% and 79.36% for the valence and arousal scales, respectively. The experimental results show that the proposed framework outperforms conventional methods, even though it uses fewer channels. Our proposed method can be beneficial for the effective use of EEG signals in practical applications.
Collapse
|
35
|
Song M, Jeong H, Kim J, Jang SH, Kim J. An EEG-based asynchronous MI-BCI system to reduce false positives with a small number of channels for neurorehabilitation: A pilot study. Front Neurorobot 2022; 16:971547. [PMID: 36172602 PMCID: PMC9510756 DOI: 10.3389/fnbot.2022.971547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Many studies have used motor imagery-based brain–computer interface (MI-BCI) systems for stroke rehabilitation to induce brain plasticity. However, they mainly focused on detecting motor imagery but did not consider the effect of false positive (FP) detection. The FP could be a threat to patients with stroke as it can induce wrong-directed brain plasticity that would result in adverse effects. In this study, we proposed a rehabilitative MI-BCI system that focuses on rejecting the FP. To this end, we first identified numerous electroencephalogram (EEG) signals as the causes of the FP, and based on the characteristics of the signals, we designed a novel two-phase classifier using a small number of EEG channels, including the source of the FP. Through experiments with eight healthy participants and nine patients with stroke, our proposed MI-BCI system showed 71.76% selectivity and 13.70% FP rate by using only four EEG channels in the patient group with stroke. Moreover, our system can compensate for day-to-day variations for prolonged session intervals by recalibration. The results suggest that our proposed system, a practical approach for the clinical setting, could improve the therapeutic effect of MI-BCI by reducing the adverse effect of the FP.
Collapse
Affiliation(s)
- Minsu Song
- Department of Medical Device, Korea Institute of Machinery and Materials, Daegu, South Korea
| | - Hojun Jeong
- School of Mechanical Engineering, Sungkyunkwan University, Gyeonggi-do, South Korea
| | - Jongbum Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Sung-Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jonghyun Kim
- School of Mechanical Engineering, Sungkyunkwan University, Gyeonggi-do, South Korea
- *Correspondence: Jonghyun Kim
| |
Collapse
|
36
|
Kim HS, Ahn MH, Min BK. Deep-Learning-Based Automatic Selection of Fewest Channels for Brain-Machine Interfaces. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:8668-8680. [PMID: 33635816 DOI: 10.1109/tcyb.2021.3052813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to the development of convenient brain-machine interfaces (BMIs), the automatic selection of a minimum channel (electrode) set has attracted increasing interest because the decrease in the number of channels increases the efficiency of BMIs. This study proposes a deep-learning-based technique to automatically search for the minimum number of channels applicable to general BMI paradigms using a compact convolutional neural network for electroencephalography (EEG)-based BMIs. For verification, three types of BMI paradigms are assessed: 1) the typical P300 auditory oddball; 2) the new top-down steady-state visually evoked potential; and 3) the endogenous motor imagery. We observe that the optimized minimal EEG-channel sets are automatically selected in all three cases. Their decoding accuracies using the minimal channels are statistically equivalent to (or even higher than) those based on all channels. The brain areas of the selected channel set are neurophysiologically interpretable for all of these cognitive task paradigms. This study shows that the minimal EEG channel set can be automatically selected, irrespective of the types of BMI paradigms or EEG input features using a deep-learning approach, which also contributes to their portability.
Collapse
|
37
|
Xu F, Li J, Dong G, Li J, Chen X, Zhu J, Hu J, Zhang Y, Yue S, Wen D, Leng J. EEG decoding method based on multi-feature information fusion for spinal cord injury. Neural Netw 2022; 156:135-151. [DOI: 10.1016/j.neunet.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
|
38
|
Execution and perception of upper limb exoskeleton for stroke patients: a systematic review. INTEL SERV ROBOT 2022. [DOI: 10.1007/s11370-022-00435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
39
|
Shi B, Yue Z, Yin S, Wang W, Yu H, Huang Z, Wang J. Adaptive binary multi-objective harmony search algorithm for channel selection and cross-subject generalization in motor imagery-based BCI. J Neural Eng 2022; 19. [PMID: 35772393 DOI: 10.1088/1741-2552/ac7d73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Multi-channel EEG data containing redundant information and noise may result in low classification accuracy and high computational complexity, which limits the practicality of motor imagery-based BCI systems. Therefore, channel selection can improve BCI performance and contribute to user convenience. Additionally, cross-subject generalization is a key topic in the channel selection of motor imagery-based BCI. APPROACH In this study, an adaptive binary multi-objective harmony search (ABMOHS) algorithm is proposed to select the optimal set of channels. Furthermore, a new adaptive crosssubject generalization model (ACGM) is proposed. Three public motor imagery datasets were used to validate the effectiveness of the proposed method. MAIN RESULTS The Wilcoxon signed-rank test was performed on the test accuracies, and the results indicated that the ABMOHS method significantly outperformed all channels (p<0.001), the C3-Cz-C4 channels (p<0.001), and 20 channels (p<0.001) in the sensorimotor cortex. The ABMOHS algorithm based on Fisher's linear discriminant analysis (FLDA) and support vector machine (SVM) classifiers greatly reduces the number of selected channels, especially for larger channel sizes (Dataset 2), and obtains a comparative classification performance. Although there was no significant difference in test classification performance between ABMOHS and non-dominated sorting genetic algorithm II (NSGA-II) when FLDA and SVM were used, ABMOHS required less computational time than NSGA-II. Furthermore, the number of channels obtained by ABMOHS algorithm were significantly smaller than those obtained by CSP-Rank and correlation-based channel selection algorithm (CCS). Additionally, the generalization of ACGM to untrained subjects shows that the mean test classification accuracy of ACGM created by a small sample of trained subjects is significantly better than that of Special-16 and Special-32. SIGNIFICANCE The proposed method can reduce the calibration time in the training phase and improve the practicability of MI-BCI.
Collapse
Affiliation(s)
- Bin Shi
- School of Mechanical Engineering, Xi'an Jiaotong University, Institute of Robotics and Intelligent System, Xi'an, 710049, CHINA
| | - Zan Yue
- Xi'an Jiaotong University, Institute of Robotics and Intelligent System, Xi'an, Shaanxi, 710049, CHINA
| | - Shuai Yin
- Xi'an Jiaotong University, Institute of Robotics and Intelligent System, Xi'an, Shaanxi, 710049, CHINA
| | - Weizhen Wang
- Institute of Robotics and Intelligent Systems, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049, CHINA
| | - Haoyong Yu
- Department of Bioengineering Faculty of Engineering, National University of Singapore, 5 Engineering Drive 1, E6, National University of Singapore, Singapore, 117608, SINGAPORE
| | - Zhen Huang
- Panyu Center Hospital, Department of Rehabilitation Medicine, Guangzhou, 511400, CHINA
| | - Jing Wang
- Xian Jiaotong University, Institute of Robotics and Intelligent Systems, Xi'an, Shaanxi, 710049, CHINA
| |
Collapse
|
40
|
Sadatnejad K, Lotte F. Riemannian channel selection for BCI with between-session non-stationarity reduction capabilities. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1158-1171. [PMID: 35420985 DOI: 10.1109/tnsre.2022.3167262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Between-session non-stationarity is a major challenge of current Brain-Computer Interfaces (BCIs) that affects system performance. In this paper, we investigate the use of channel selection for reducing between-session non-stationarity with Riemannian BCI classifiers. We use the Riemannian geometry framework of covariance matrices due to its robustness and promising performances. Current Riemannian channel selection methods do not consider between-session non-stationarity and are usually tested on a single session. Here, we propose a new channel selection approach that specifically considers non-stationarity effects and is assessed on multi-session BCI data sets. METHODS We remove the least significant channels using a sequential floating backward selection search strategy. Our contributions include: 1) quantifying the non-stationarity effects on brain activity in multi-class problems by different criteria in a Riemannian framework and 2) a method to predict whether BCI performance can improve using channel selection. RESULTS We evaluate the proposed approaches on three multi-session and multi-class mental tasks (MT)-based BCI datasets. They could lead to significant improvements in performance as compared to using all channels for datasets affected by between-session non-stationarity and to significant superiority to the state-of-the-art Riemannian channel selection methods over all datasets, notably when selecting small channel set sizes. CONCLUSION Reducing non-stationarity by channel selection could significantly improve Riemannian BCI classification accuracy. SIGNIFICANCE Our proposed channel selection approach contributes to make Riemannian BCI classifiers more robust to between-session non-stationarities.
Collapse
|
41
|
Yu J, Li C, Lou K, Wei C, Liu Q. Embedding decomposition for artifacts removal in EEG signals. J Neural Eng 2022; 19. [PMID: 35378524 DOI: 10.1088/1741-2552/ac63eb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/04/2022] [Indexed: 11/12/2022]
Abstract
Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to eliminate or weaken the influence of artifacts. However, most of them rely on prior experience for analysis. Here, we propose an deep learning framework to separate neural signal and artifacts in the embedding space and reconstruct the denoised signal, which is called DeepSeparator. DeepSeparator employs an encoder to extract and amplify the features in the raw EEG, a module called decomposer to extract the trend, detect and suppress artifact and a decoder to reconstruct the denoised signal. Besides, DeepSeparator can extract the artifact, which largely increases the model interpretability. The proposed method is tested with a semi-synthetic EEG dataset and a real task-related EEG dataset, suggesting that DeepSeparator outperforms the conventional models in both EOG and EMG artifact removal. DeepSeparator can be extended to multi-channel EEG and data with any arbitrary length. It may motivate future developments and application of deep learning-based EEG denoising. The code for DeepSeparator is available at https://github.com/ncclabsustech/DeepSeparator.
Collapse
Affiliation(s)
- Junjie Yu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Chenyi Li
- The Chinese University of Hong Kong - Shenzhen, Shenzhen, China, Shenzhen, Guangdong, 518172, CHINA
| | - Kexin Lou
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Chen Wei
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China, Shenzhen, 518055, CHINA
| | - Quanying Liu
- Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China, Shenzhen, 518055, CHINA
| |
Collapse
|
42
|
Maghsoudi A, Shalbaf A. Hand Motor Imagery Classification Using Effective Connectivity and Hierarchical Machine Learning in EEG Signals. J Biomed Phys Eng 2022; 12:161-170. [PMID: 35433527 PMCID: PMC8995751 DOI: 10.31661/jbpe.v0i0.1264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
Background Motor Imagery (MI) Brain Computer Interface (BCI) directly links central nervous system to a computer or a device. Most MI-BCI structures rely on features of a single channel of Electroencephalogram (EEG). However, to provide more valuable features, the relationships among EEG channels in the form of effective brain connectivity analysis must be considered. Objective This study aims to identify a set of robust and discriminative effective connectivity features from EEG signals and to develop a hierarchical machine learning structure for discrimination of left and right hand MI task effectively. Material and Methods In this analytical study, we estimated effective connectivity using Granger Causality (GC) methods namely, Generalized Partial Directed Coherence (GPDC), Directed Transfer Function (DTF) and direct Directed Transfer Function (dDTF). These measures determine the transient causal relation between different brain areas. Then a feature subset selection method based on Kruskal-Wallis test was performed to choose most significant directed causal connection between channels. Moreover, the minimal-redundancy-maximal-relevance feature selection method is applied to discard non-significance features. Finally, support vector machine method is used for classification. Results The maximum value of the classification accuracies using GC methods over different frequency bands in 29 subjects in 60 trial is approximately 84% in Mu (8-12 Hz) - Beta1 (12 - 15 Hz) frequency band using GPDC method. Conclusion This new hierarchical automated BCI system could be applied for discrimination of left and right hand MI tasks from EEG signal, effectively.
Collapse
Affiliation(s)
- Arash Maghsoudi
- PhD, Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Shalbaf
- PhD, Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Thenmozhi T, Helen R. Feature Selection Using Extreme Gradient Boosting Bayesian Optimization to upgrade the Classification Performance of Motor Imagery signals for BCI. J Neurosci Methods 2022; 366:109425. [PMID: 34838951 DOI: 10.1016/j.jneumeth.2021.109425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND A motor imagery (MI) based brain computer interface (BCI) is a challenging nonmuscular connection system used to independently perform movement-related tasks. It is gaining increasing prominence in helping paralyzed individuals communicate with the real world. Achieving better classification accuracy is the major concern in the field of motor imagery-based BCI. To upgrade the classification performance, relevant features play a vital role. The relevant features can be selected by the extreme gradient Bayesian optimization (XGBO) method. METHODS In this paper, a combination of time-, frequency-, and spatial-related MI features are extracted to design a reliable MI-BCI system. The proposed method incorporates the XGBO algorithm for feature selection and the random forest for the classification of EEG signals. The potency of the proposed system was investigated using two public EEG datasets (BCI Competition III dataset IIIa and dataset IVa). A novel XGBO algorithm increases the accuracy and reduces the time consumption by reducing the dimensionality of features. The proposed algorithm selects the minimum number of features that increase the computational efficacy for MI-based BCI systems. COMPARISON WITH EXISTING METHODS The proposed method is compared with ANOVA, sequential forward selection, recursive feature elimination, and LASSO methods and the accuracy rate is increased with the lowest computation time. RESULTS The proposed method achieves mean accuracies of 94.44% and 88.72% and classification errors of 5.56% and 11.28% for Datasets IIIa and IVa, respectively. It outperforms four state-of-art methods with 0.87% and 0.59% increases in the accuracy for Datasets IIIa and IVa, respectively.
Collapse
Affiliation(s)
- T Thenmozhi
- Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai 625015, India.
| | - R Helen
- Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai 625015, India.
| |
Collapse
|
44
|
Su E, Cai S, Xie L, Li H, Schultz T. STAnet: A Spatiotemporal Attention Network for Decoding Auditory Spatial Attention from EEG. IEEE Trans Biomed Eng 2022; 69:2233-2242. [PMID: 34982671 DOI: 10.1109/tbme.2022.3140246] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Humans are able to localize the source of a sound. This enables them to direct attention to a particular speaker in a cocktail party. Psycho-acoustic studies show that the sensory cortices of the human brain respond to the location of sound sources differently, and the auditory attention itself is a dynamic and temporally based brain activity. In this work, we seek to build a computational model which uses both spatial and temporal information manifested in EEG signals for auditory spatial attention detection (ASAD). METHODS We propose an end-to-end spatiotemporal attention network, denoted as STAnet, to detect auditory spatial attention from EEG. The STAnet is designed to assign differentiated weights dynamically to EEG channels through a spatial attention mechanism, and to temporal patterns in EEG signals through a temporal attention mechanism. RESULTS We report the ASAD experiments on two publicly available datasets. The STAnet outperforms other competitive models by a large margin under various experimental conditions. Its attention decision for 1-second decision window outperforms that of the state-of-the-art techniques for 10-second decision window. Experimental results also demonstrate that the STAnet achieves competitive performance on EEG signals ranging from 64 to as few as 16 channels. CONCLUSION This study provides evidence suggesting that efficient low-density EEG online decoding is within reach. SIGNIFICANCE This study also marks an important step towards the practical implementation of ASAD in real life applications.
Collapse
|
45
|
Mohammadi E, Daneshmand PG, Khorzooghi SMSM. Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification. JOURNAL OF MEDICAL SIGNALS & SENSORS 2022; 12:40-47. [PMID: 35265464 PMCID: PMC8804596 DOI: 10.4103/jmss.jmss_74_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/25/2020] [Accepted: 01/25/2021] [Indexed: 11/04/2022]
Abstract
Background Advances in the medical applications of brain-computer interface, like the motor imagery systems, are highly contributed to making the disabled live better. One of the challenges with such systems is to achieve high classification accuracy. Methods A highly accurate classification algorithm with low computational complexity is proposed here to classify different motor imageries and execution tasks. An experimental study is performed on two electroencephalography datasets (Iranian Brain-Computer Interface competition [iBCIC] dataset and the world BCI Competition IV dataset 2a) to validate the effectiveness of the proposed method. For lower complexity, the common spatial pattern is applied to decrease the 64 channel signal to four components, in addition to increase the class separability. From these components, first, some features are extracted in the time and time-frequency domains, and next, the best linear combination of these is selected by adopting the stepwise linear discriminant analysis (LDA) method, which are then applied in training and testing the classifiers including LDA, random forest, support vector machine, and K nearest neighbors. The classification strategy is of majority voting among the results of the binary classifiers. Results The experimental results indicate that the proposed algorithm accuracy is much higher than that of the winner of the first iBCIC. As to dataset 2a of the world BCI competition IV, the obtained results for subjects 6 and 9 outperform their counterparts. Moreover, this algorithm yields a mean kappa value of 0.53, which is higher than that of the second winner of the competition. Conclusion The results indicate that this method is able to classify motor imagery and execution tasks in both effective and automatic manners.
Collapse
Affiliation(s)
- Ehsan Mohammadi
- Medical Image and Signal Processing Research Centre, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Ghaderi Daneshmand
- Department of Biomedical Engineering, Student Research Committee, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
46
|
Xie L, Lu C, Liu Z, Yan L, Xu T. Studying critical frequency bands and channels for EEG-based automobile sound recognition with machine learning. APPLIED ACOUSTICS 2022; 185:108389. [DOI: 10.1016/j.apacoust.2021.108389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
|
47
|
Ferracuti F, Iarlori S, Mansour Z, Monteriù A, Porcaro C. Comparing between Different Sets of Preprocessing, Classifiers, and Channels Selection Techniques to Optimise Motor Imagery Pattern Classification System from EEG Pattern Recognition. Brain Sci 2021; 12:57. [PMID: 35053801 PMCID: PMC8774038 DOI: 10.3390/brainsci12010057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
The ability to control external devices through thought is increasingly becoming a reality. Human beings can use the electrical signals of their brain to interact or change the surrounding environment and more. The development of this technology called brain-computer interface (BCI) will increasingly allow people with motor disabilities to communicate or use assistive devices to walk, manipulate objects and communicate. Using data from the PhysioNet database, this study implemented a pattern classification system for use in a BCI on 109 healthy volunteers during real movement activities and motor imagery recorded by 64-channels electroencephalography (EEG) system. Different classifiers such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Decision Trees (TREE) were applied on different combinations of EEG channels. Starting from two channels (C3, C4 and CP3 and CP4) positioned on the contralateral and ipsilateral sensorimotor cortex, the Region of Interest (RoI) centred on C3/Cp3 and C4/Cp4 and, finally, a data-driven automatic channels selection was tested to explore the best channel combination able to increase the classification accuracy. The results showed that the proposed automatic channels selection was able to significantly improve the performance of each classifier achieving 98% of accuracy for classification of real and imagined hand movement (sensitivity = 97%, specificity = 99%, AUC = 0.99) by SVM. While the accuracy of the classification between the imagery of hand and foot movements was 91% (sensitivity = 87%, specificity = 86%, AUC = 0.93) also with SVM. In the proposed approach, the data-driven automatic channels selection outperforms classical a priori channel selection models such as C3/C4, Cp3/Cp4, or RoIs around those channels with the utmost accuracy to help remove the boundaries of human communication and improve the quality of life of people with disabilities.
Collapse
Affiliation(s)
- Francesco Ferracuti
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.F.); (S.I.); (Z.M.); (A.M.)
| | - Sabrina Iarlori
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.F.); (S.I.); (Z.M.); (A.M.)
| | - Zahra Mansour
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.F.); (S.I.); (Z.M.); (A.M.)
| | - Andrea Monteriù
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.F.); (S.I.); (Z.M.); (A.M.)
| | - Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, 35128 Padova, Italy
- Institute of Cognitive Sciences and Technologies (ISCT)—National Research Council (CNR), 00185 Rome, Italy
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
48
|
Xiao R, Huang Y, Xu R, Wang B, Wang X, Jin J. Coefficient-of-variation-based channel selection with a new testing framework for MI-based BCI. Cogn Neurodyn 2021; 16:791-803. [PMID: 35847541 PMCID: PMC9279536 DOI: 10.1007/s11571-021-09752-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 11/29/2022] Open
Abstract
In the motor-imagery (MI) based brain computer interface (BCI), multi-channel electroencephalogram (EEG) is often used to ensure the complete capture of physiological phenomena. With the redundant information and noise, EEG signals cannot be easily converted into separable features through feature extraction algorithms. Channel selection algorithms are proposed to address the issue, in which the filtering technique is widely used with the advantages of low computational cost and strong practicability. In this study, we proposed several improved methods for filtering channel selection algorithm. Specifically, based on the coefficient of variation and inter-class distance, a novel channel classification method was designed, which divided channels into different categories based on their contribution to feature extraction process. Then a filtering channel selection algorithm was proposed according to the previous classification method. Moreover, a new testing framework for filtering channel selection algorithms was proposed, which can better reflect the generalization ability of the algorithm. Experimental results indicated that the proposed channel classification method is effective, and the proposed testing framework is better than the original one. Meanwhile, the proposed channel selection algorithm achieved the accuracy of 87.7% and 81.7% in two BCI competition datasets, respectively, which was superior to competing algorithms.
Collapse
|
49
|
Jin J, Xiao R, Daly I, Miao Y, Wang X, Cichocki A. Internal Feature Selection Method of CSP Based on L1-Norm and Dempster-Shafer Theory. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:4814-4825. [PMID: 32833646 DOI: 10.1109/tnnls.2020.3015505] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The common spatial pattern (CSP) algorithm is a well-recognized spatial filtering method for feature extraction in motor imagery (MI)-based brain-computer interfaces (BCIs). However, due to the influence of nonstationary in electroencephalography (EEG) and inherent defects of the CSP objective function, the spatial filters, and their corresponding features are not necessarily optimal in the feature space used within CSP. In this work, we design a new feature selection method to address this issue by selecting features based on an improved objective function. Especially, improvements are made in suppressing outliers and discovering features with larger interclass distances. Moreover, a fusion algorithm based on the Dempster-Shafer theory is proposed, which takes into consideration the distribution of features. With two competition data sets, we first evaluate the performance of the improved objective functions in terms of classification accuracy, feature distribution, and embeddability. Then, a comparison with other feature selection methods is carried out in both accuracy and computational time. Experimental results show that the proposed methods consume less additional computational cost and result in a significant increase in the performance of MI-based BCI systems.
Collapse
|
50
|
A novel classification framework using multiple bandwidth method with optimized CNN for brain–computer interfaces with EEG-fNIRS signals. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06202-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|