1
|
Inference of Networks from Large Datasets. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
2
|
Tan S, Lü J. An evolutionary game approach for determination of the structural conflicts in signed networks. Sci Rep 2016; 6:22022. [PMID: 26915581 PMCID: PMC4768106 DOI: 10.1038/srep22022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/03/2016] [Indexed: 11/09/2022] Open
Abstract
Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks.
Collapse
Affiliation(s)
- Shaolin Tan
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
| | - Jinhu Lü
- Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Saberkari H, Bahrami S, Shamsi M, Amoshahy MJ, Ghavifekr HB, Sedaaghi MH. Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm. JOURNAL OF MEDICAL SIGNALS & SENSORS 2015; 5:182-91. [PMID: 26284175 PMCID: PMC4528357 DOI: 10.4103/2228-7477.161494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/13/2015] [Indexed: 11/29/2022]
Abstract
DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.
Collapse
Affiliation(s)
- Hamidreza Saberkari
- Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Sheyda Bahrami
- Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Mousa Shamsi
- Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | | | | | | |
Collapse
|
4
|
Abstract
The group model is a useful tool to understand broad-scale patterns of interaction in a network, but it has previously been limited in use to food webs, which contain only predator-prey interactions. Natural populations interact with each other in a variety of ways and, although most published ecological networks only include information about a single interaction type (e.g., feeding, pollination), ecologists are beginning to consider networks which combine multiple interaction types. Here we extend the group model to signed directed networks such as ecological interaction webs. As a specific application of this method, we examine the effects of including or excluding specific interaction types on our understanding of species roles in ecological networks. We consider all three currently available interaction webs, two of which are extended plant-mutualist networks with herbivores and parasitoids added, and one of which is an extended intertidal food web with interactions of all possible sign structures (+/+, -/0, etc.). Species in the extended food web grouped similarly with all interactions, only trophic links, and only nontrophic links. However, removing mutualism or herbivory had a much larger effect in the extended plant-pollinator webs. Species removal even affected groups that were not directly connected to those that were removed, as we found by excluding a small number of parasitoids. These results suggest that including additional species in the network provides far more information than additional interactions for this aspect of network structure. Our methods provide a useful framework for simplifying networks to their essential structure, allowing us to identify generalities in network structure and better understand the roles species play in their communities.
Collapse
Affiliation(s)
- Elizabeth L. Sander
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - J. Timothy Wootton
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Stefano Allesina
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, United States of America
- Computation Institute, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Stavrakas V, Melas IN, Sakellaropoulos T, Alexopoulos LG. Network reconstruction based on proteomic data and prior knowledge of protein connectivity using graph theory. PLoS One 2015; 10:e0128411. [PMID: 26020784 PMCID: PMC4447287 DOI: 10.1371/journal.pone.0128411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/27/2015] [Indexed: 12/12/2022] Open
Abstract
Modeling of signal transduction pathways is instrumental for understanding cells’ function. People have been tackling modeling of signaling pathways in order to accurately represent the signaling events inside cells’ biochemical microenvironment in a way meaningful for scientists in a biological field. In this article, we propose a method to interrogate such pathways in order to produce cell-specific signaling models. We integrate available prior knowledge of protein connectivity, in a form of a Prior Knowledge Network (PKN) with phosphoproteomic data to construct predictive models of the protein connectivity of the interrogated cell type. Several computational methodologies focusing on pathways’ logic modeling using optimization formulations or machine learning algorithms have been published on this front over the past few years. Here, we introduce a light and fast approach that uses a breadth-first traversal of the graph to identify the shortest pathways and score proteins in the PKN, fitting the dependencies extracted from the experimental design. The pathways are then combined through a heuristic formulation to produce a final topology handling inconsistencies between the PKN and the experimental scenarios. Our results show that the algorithm we developed is efficient and accurate for the construction of medium and large scale signaling networks. We demonstrate the applicability of the proposed approach by interrogating a manually curated interaction graph model of EGF/TNFA stimulation against made up experimental data. To avoid the possibility of erroneous predictions, we performed a cross-validation analysis. Finally, we validate that the introduced approach generates predictive topologies, comparable to the ILP formulation. Overall, an efficient approach based on graph theory is presented herein to interrogate protein–protein interaction networks and to provide meaningful biological insights.
Collapse
Affiliation(s)
- Vassilis Stavrakas
- Department of Mechanical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou 15780, Greece
| | - Ioannis N. Melas
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Theodore Sakellaropoulos
- Department of Mechanical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou 15780, Greece
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou 15780, Greece
- * E-mail:
| |
Collapse
|
6
|
Katsigiannis S, Zacharia E, Maroulis D. Grow-cut based automatic cDNA microarray image segmentation. IEEE Trans Nanobioscience 2014; 14:138-45. [PMID: 25438323 DOI: 10.1109/tnb.2014.2369961] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complementary DNA (cDNA) microarray is a well-established tool for simultaneously studying the expression level of thousands of genes. Segmentation of microarray images is one of the main stages in a microarray experiment. However, it remains an arduous and challenging task due to the poor quality of images. Images suffer from noise, artifacts, and uneven background, while spots depicted on images can be poorly contrasted and deformed. In this paper, an original approach for the segmentation of cDNA microarray images is proposed. First, a preprocessing stage is applied in order to reduce the noise levels of the microarray image. Then, the grow-cut algorithm is applied separately to each spot location, employing an automated seed selection procedure, in order to locate the pixels belonging to spots. Application on datasets containing synthetic and real microarray images shows that the proposed algorithm performs better than other previously proposed methods. Moreover, in order to exploit the independence of the segmentation task for each separate spot location, both a multithreaded CPU and a graphics processing unit (GPU) implementation were evaluated.
Collapse
|
7
|
Melas IN, Samaga R, Alexopoulos LG, Klamt S. Detecting and removing inconsistencies between experimental data and signaling network topologies using integer linear programming on interaction graphs. PLoS Comput Biol 2013; 9:e1003204. [PMID: 24039561 PMCID: PMC3764019 DOI: 10.1371/journal.pcbi.1003204] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/16/2013] [Indexed: 01/27/2023] Open
Abstract
Cross-referencing experimental data with our current knowledge of signaling network topologies is one central goal of mathematical modeling of cellular signal transduction networks. We present a new methodology for data-driven interrogation and training of signaling networks. While most published methods for signaling network inference operate on Bayesian, Boolean, or ODE models, our approach uses integer linear programming (ILP) on interaction graphs to encode constraints on the qualitative behavior of the nodes. These constraints are posed by the network topology and their formulation as ILP allows us to predict the possible qualitative changes (up, down, no effect) of the activation levels of the nodes for a given stimulus. We provide four basic operations to detect and remove inconsistencies between measurements and predicted behavior: (i) find a topology-consistent explanation for responses of signaling nodes measured in a stimulus-response experiment (if none exists, find the closest explanation); (ii) determine a minimal set of nodes that need to be corrected to make an inconsistent scenario consistent; (iii) determine the optimal subgraph of the given network topology which can best reflect measurements from a set of experimental scenarios; (iv) find possibly missing edges that would improve the consistency of the graph with respect to a set of experimental scenarios the most. We demonstrate the applicability of the proposed approach by interrogating a manually curated interaction graph model of EGFR/ErbB signaling against a library of high-throughput phosphoproteomic data measured in primary hepatocytes. Our methods detect interactions that are likely to be inactive in hepatocytes and provide suggestions for new interactions that, if included, would significantly improve the goodness of fit. Our framework is highly flexible and the underlying model requires only easily accessible biological knowledge. All related algorithms were implemented in a freely available toolbox SigNetTrainer making it an appealing approach for various applications. Cellular signal transduction is orchestrated by communication networks of signaling proteins commonly depicted on signaling pathway maps. However, each cell type may have distinct variants of signaling pathways, and wiring diagrams are often altered in disease states. The identification of truly active signaling topologies based on experimental data is therefore one key challenge in systems biology of cellular signaling. We present a new framework for training signaling networks based on interaction graphs (IG). In contrast to complex modeling formalisms, IG capture merely the known positive and negative edges between the components. This basic information, however, already sets hard constraints on the possible qualitative behaviors of the nodes when perturbing the network. Our approach uses Integer Linear Programming to encode these constraints and to predict the possible changes (down, neutral, up) of the activation levels of the involved players for a given experiment. Based on this formulation we developed several algorithms for detecting and removing inconsistencies between measurements and network topology. Demonstrated by EGFR/ErbB signaling in hepatocytes, our approach delivers direct conclusions on edges that are likely inactive or missing relative to canonical pathway maps. Such information drives the further elucidation of signaling network topologies under normal and pathological phenotypes.
Collapse
Affiliation(s)
| | - Regina Samaga
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
8
|
|
9
|
Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways. PLoS One 2012; 7:e50085. [PMID: 23226239 PMCID: PMC3511450 DOI: 10.1371/journal.pone.0050085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.
Collapse
|