1
|
Schneidereit D, Bauer J, Mnuskina S, Nübler S, Cacciani N, Mühlberg A, Kreiss L, Ritter P, Schürmann S, Larsson L, Friedrich O. CAS3D: 3D quantitative morphometry on Second Harmonic Generation image volumes from single skeletal muscle fibers. Comput Biol Med 2024; 178:108618. [PMID: 38925088 DOI: 10.1016/j.compbiomed.2024.108618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
The CAS3D image processing method intuitively applies a combination of Fourier space and real space 3D analysis algorithms to volumetric images of single skeletal muscle fiber Myosin II Second Harmonic Generation (SHG) XYZ image data. Our developed tool automatically quantifies the myofibrillar orientation in muscle samples by determining the cosine angle sum of intensity gradients in 3D (CAS3D) while determining the mean sarcomere length (SL) and sample orientation. The expected CAS3D values could be reproduced from ideal artificial data sets. Applied random noise in artificial images lowers the detected CAS3D value, and for noise levels below 20%, the correlation can be approximated by a linear function with a slope of -0.006 CAS3D/noise%. The deviations in SL and orientation detection were determined on ideal and noisy artificial data sets and were statistically indistinguishable from 0 (null hypothesis t-test P > 0.1). The software was applied to a previously published data set of single skeletal muscle fiber volumetric SHG image data from a rat intensive care unit (ICU) model of ventilator-induced diaphragm dysfunction (VIDD) with treatment regimens involving the small anti-inflammatory molecules BGP-15, vamorolone, or prednisolone. Our method reliably reproduced the results of the previous work and improved the standard deviation of the cosine angle sum detection in all sample groups from a mean of 0.03 to 0.008. This improvement is achieved by applying analysis algorithms to the whole volumetric images in 3D in contrast to the previously common method of slice-wise XY analysis.
Collapse
Affiliation(s)
- Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander Universität Erlangen-Nürnberg, Paul-Gordan-Strasse 3, 91052 Erlangn, Germany.
| | - Julian Bauer
- Institute of Medical Biotechnology, Friedrich-Alexander Universität Erlangen-Nürnberg, Paul-Gordan-Strasse 3, 91052 Erlangn, Germany
| | - Sofia Mnuskina
- Institute of Medical Biotechnology, Friedrich-Alexander Universität Erlangen-Nürnberg, Paul-Gordan-Strasse 3, 91052 Erlangn, Germany
| | - Stefanie Nübler
- Medical Faculty, IPASUM, Friedrich-Alexander Universität Erlangen-Nürnberg, Kochstrasse 19, 91054 Erlangen, Germany
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavaegen 30, 17164 Stockholm, Sweden
| | - Alexander Mühlberg
- Institute of Medical Biotechnology, Friedrich-Alexander Universität Erlangen-Nürnberg, Paul-Gordan-Strasse 3, 91052 Erlangn, Germany
| | - Lucas Kreiss
- Institute of Medical Biotechnology, Friedrich-Alexander Universität Erlangen-Nürnberg, Paul-Gordan-Strasse 3, 91052 Erlangn, Germany
| | - Paul Ritter
- Institute of Medical Biotechnology, Friedrich-Alexander Universität Erlangen-Nürnberg, Paul-Gordan-Strasse 3, 91052 Erlangn, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander Universität Erlangen-Nürnberg, Paul-Gordan-Strasse 3, 91052 Erlangn, Germany
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavaegen 30, 17164 Stockholm, Sweden
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander Universität Erlangen-Nürnberg, Paul-Gordan-Strasse 3, 91052 Erlangn, Germany
| |
Collapse
|
2
|
Mühlberg A, Ritter P, Langer S, Goossens C, Nübler S, Schneidereit D, Taubmann O, Denzinger F, Nörenberg D, Haug M, Schürmann S, Horstmeyer R, Maier AK, Goldmann WH, Friedrich O, Kreiss L. SEMPAI: a Self-Enhancing Multi-Photon Artificial Intelligence for Prior-Informed Assessment of Muscle Function and Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206319. [PMID: 37582656 PMCID: PMC10558688 DOI: 10.1002/advs.202206319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/30/2023] [Indexed: 08/17/2023]
Abstract
Deep learning (DL) shows notable success in biomedical studies. However, most DL algorithms work as black boxes, exclude biomedical experts, and need extensive data. This is especially problematic for fundamental research in the laboratory, where often only small and sparse data are available and the objective is knowledge discovery rather than automation. Furthermore, basic research is usually hypothesis-driven and extensive prior knowledge (priors) exists. To address this, the Self-Enhancing Multi-Photon Artificial Intelligence (SEMPAI) that is designed for multiphoton microscopy (MPM)-based laboratory research is presented. It utilizes meta-learning to optimize prior (and hypothesis) integration, data representation, and neural network architecture simultaneously. By this, the method allows hypothesis testing with DL and provides interpretable feedback about the origin of biological information in 3D images. SEMPAI performs multi-task learning of several related tasks to enable prediction for small datasets. SEMPAI is applied on an extensive MPM database of single muscle fibers from a decade of experiments, resulting in the largest joint analysis of pathologies and function for single muscle fibers to date. It outperforms state-of-the-art biomarkers in six of seven prediction tasks, including those with scarce data. SEMPAI's DL models with integrated priors are superior to those without priors and to prior-only approaches.
Collapse
Affiliation(s)
- Alexander Mühlberg
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Paul Ritter
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Simon Langer
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Chloë Goossens
- Clinical Division and Laboratory of Intensive Care MedicineKU LeuvenUZ Herestraat 49 – P.O. box 7003Leuven3000Belgium
| | - Stefanie Nübler
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Dominik Schneidereit
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Oliver Taubmann
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Felix Denzinger
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Dominik Nörenberg
- Department of Radiology and Nuclear MedicineUniversity Medical Center MannheimMedical Faculty MannheimTheodor‐Kutzer‐Ufer 1–368167MannheimGermany
| | - Michael Haug
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Sebastian Schürmann
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
| | - Roarke Horstmeyer
- Computational Optics LabDepartment of Biomedical EngineeringDuke University101 Science DrDurhamNC27708USA
| | - Andreas K. Maier
- Pattern Recognition LabDepartment of Computer ScienceFriedrich‐Alexander University Erlangen‐NurembergMartensstr. 391058ErlangenGermany
| | - Wolfgang H. Goldmann
- Biophysics GroupDepartment of PhysicsFriedrich‐Alexander University Erlangen‐NurembergHenkestr. 9191052ErlangenGermany
| | - Oliver Friedrich
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
| | - Lucas Kreiss
- Institute of Medical BiotechnologyDepartment of Chemical and Biological EngineeringFriedrich‐Alexander University Erlangen‐NurembergPaul‐Gordan‐Str. 391052ErlangenGermany
- Erlangen Graduate School in Advanced Optical TechnologiesPaul‐Gordan‐Str. 691052ErlangenGermany
- Computational Optics LabDepartment of Biomedical EngineeringDuke University101 Science DrDurhamNC27708USA
| |
Collapse
|
3
|
Mnuskina S, Bauer J, Wirth-Hücking A, Schneidereit D, Nübler S, Ritter P, Cacciani N, Li M, Larsson L, Friedrich O. Single fibre cytoarchitecture in ventilator-induced diaphragm dysfunction (VIDD) assessed by quantitative morphometry second harmonic generation imaging: Positive effects of BGP-15 chaperone co-inducer and VBP-15 dissociative corticosteroid treatment. Front Physiol 2023; 14:1207802. [PMID: 37440999 PMCID: PMC10333583 DOI: 10.3389/fphys.2023.1207802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Ventilator-induced diaphragm dysfunction (VIDD) is a common sequela of intensive care unit (ICU) treatment requiring mechanical ventilation (MV) and neuromuscular blockade (NMBA). It is characterised by diaphragm weakness, prolonged respirator weaning and adverse outcomes. Dissociative glucocorticoids (e.g., vamorolone, VBP-15) and chaperone co-inducers (e.g., BGP-15) previously showed positive effects in an ICU-rat model. In limb muscle critical illness myopathy, preferential myosin loss prevails, while myofibrillar protein post-translational modifications are more dominant in VIDD. It is not known whether the marked decline in specific force (force normalised to cross-sectional area) is a pure consequence of altered contractility signaling or whether diaphragm weakness also has a structural correlate through sterical remodeling of myofibrillar cytoarchitecture, how quickly it develops, and to which extent VBP-15 or BGP-15 may specifically recover myofibrillar geometry. To address these questions, we performed label-free multiphoton Second Harmonic Generation (SHG) imaging followed by quantitative morphometry in single diaphragm muscle fibres from healthy rats subjected to five or 10 days of MV + NMBA to simulate ICU treatment without underlying confounding pathology (like sepsis). Rats received daily treatment of either Prednisolone, VBP-15, BGP-15 or none. Myosin-II SHG signal intensities, fibre diameters (FD) as well as the parameters of myofibrillar angular parallelism (cosine angle sum, CAS) and in-register of adjacent myofibrils (Vernier density, VD) were computed from SHG images. ICU treatment caused a decline in FD at day 10 as well as a significant decline in CAS and VD from day 5. Vamorolone effectively recovered FD at day 10, while BGP-15 was more effective at day 5. BGP-15 was more effective than VBP-15 in recovering CAS at day 10 although not to control levels. In-register VD levels were restored at day 10 by both compounds. Our study is the first to provide quantitative insights into VIDD-related myofibrillar remodeling unravelled by SHG imaging, suggesting that both VBP-15 and BGP-15 can effectively ameliorate the structure-related dysfunction in VIDD.
Collapse
Affiliation(s)
- Sofia Mnuskina
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Julian Bauer
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anette Wirth-Hücking
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Schneidereit
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Nübler
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Paul Ritter
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meishan Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
- Viron Molecular Medicine Institute, Boston, MA, United States
| | - Oliver Friedrich
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- School of Medical Sciences, University of New South Wales, Kensington Campus, Sydney, NSW, Australia
| |
Collapse
|
4
|
Schneidereit D, Nübler S, Friedrich O. Second Harmonic Generation Morphometry of Muscle Cytoarchitecture in Living Cells. Methods Mol Biol 2023; 2644:267-285. [PMID: 37142928 DOI: 10.1007/978-1-0716-3052-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The architectural structure of cells is essential for the cells' function, which becomes especially apparent in the highly "structure functionally" tuned skeletal muscle cells. Here, structural changes in the microstructure can have a direct impact on performance parameters, such as isometric or tetanic force production. The microarchitecture of the actin-myosin lattice in muscle cells can be detected noninvasively in living cells and in 3D by using second harmonic generation (SHG) microscopy, forgoing the need to alter samples by introducing fluorescent probes into them. Here, we provide tools and step-by-step protocols to guide the processes of obtaining SHG microscopy image data from samples, as well as extracting characteristic values from the image data to quantify the cellular microarchitecture using characteristic patterns of myofibrillar lattice alignments.
Collapse
Affiliation(s)
- Dominik Schneidereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Stefanie Nübler
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Gineste C, Youhanna S, Vorrink SU, Henriksson S, Hernández A, Cheng AJ, Chaillou T, Buttgereit A, Schneidereit D, Friedrich O, Hultenby K, Bruton JD, Ivarsson N, Sandblad L, Lauschke VM, Westerblad H. Enzymatically dissociated muscle fibers display rapid dedifferentiation and impaired mitochondrial calcium control. iScience 2022; 25:105654. [PMID: 36479146 PMCID: PMC9720020 DOI: 10.1016/j.isci.2022.105654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/19/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cells rapidly lose their physiological phenotype upon disruption of their extracellular matrix (ECM)-intracellular cytoskeleton interactions. By comparing adult mouse skeletal muscle fibers, isolated either by mechanical dissection or by collagenase-induced ECM digestion, we investigated acute effects of ECM disruption on cellular and mitochondrial morphology, transcriptomic signatures, and Ca2+ handling. RNA-sequencing showed striking differences in gene expression patterns between the two isolation methods with enzymatically dissociated fibers resembling myopathic phenotypes. Mitochondrial appearance was grossly similar in the two groups, but 3D electron microscopy revealed shorter and less branched mitochondria following enzymatic dissociation. Repeated contractions resulted in a prolonged mitochondrial Ca2+ accumulation in enzymatically dissociated fibers, which was partially prevented by cyclophilin inhibitors. Of importance, muscle fibers of mice with severe mitochondrial myopathy show pathognomonic mitochondrial Ca2+ accumulation during repeated contractions and this accumulation was concealed with enzymatic dissociation, making this an ambiguous method in studies of native intracellular Ca2+ fluxes.
Collapse
Affiliation(s)
- Charlotte Gineste
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sabine U. Vorrink
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sara Henriksson
- Umeå Core Facility for Electron Microscopy, Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Andrés Hernández
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Arthur J. Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Thomas Chaillou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Andreas Buttgereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Joseph D. Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Niklas Ivarsson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Linda Sandblad
- Umeå Core Facility for Electron Microscopy, Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
6
|
Ritter P, Nübler S, Buttgereit A, Smith LR, Mühlberg A, Bauer J, Michael M, Kreiß L, Haug M, Barton E, Friedrich O. Myofibrillar Lattice Remodeling Is a Structural Cytoskeletal Predictor of Diaphragm Muscle Weakness in a Fibrotic mdx ( mdx Cmah-/-) Model. Int J Mol Sci 2022; 23:ijms231810841. [PMID: 36142754 PMCID: PMC9500669 DOI: 10.3390/ijms231810841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a degenerative genetic myopathy characterized by complete absence of dystrophin. Although the mdx mouse lacks dystrophin, its phenotype is milder compared to DMD patients. The incorporation of a null mutation in the Cmah gene led to a more DMD-like phenotype (i.e., more fibrosis). Although fibrosis is thought to be the major determinant of ‘structural weakness’, intracellular remodeling of myofibrillar geometry was shown to be a major cellular determinant thereof. To dissect the respective contribution to muscle weakness, we assessed biomechanics and extra- and intracellular architecture of whole muscle and single fibers from extensor digitorum longus (EDL) and diaphragm. Despite increased collagen contents in both muscles, passive stiffness in mdx Cmah−/− diaphragm was similar to wt mice (EDL muscles were twice as stiff). Isometric twitch and tetanic stresses were 50% reduced in mdx Cmah−/− diaphragm (15% in EDL). Myofibrillar architecture was severely compromised in mdx Cmah−/− single fibers of both muscle types, but more pronounced in diaphragm. Our results show that the mdx Cmah−/− genotype reproduces DMD-like fibrosis but is not associated with changes in passive visco-elastic muscle stiffness. Furthermore, detriments in active isometric force are compatible with the pronounced myofibrillar disarray of the dystrophic background.
Collapse
Affiliation(s)
- Paul Ritter
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Correspondence:
| | - Stefanie Nübler
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Andreas Buttgereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Lucas R. Smith
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95618, USA
| | - Alexander Mühlberg
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Julian Bauer
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Mena Michael
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Lucas Kreiß
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Michael Haug
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Elisabeth Barton
- College of Health & Human Performance, University of Florida, Gainesville, FL 32611, USA
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- School of Medical Sciences, University of New South Wales, Wallace Wurth Building, 18 High Str., Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Schneidereit D, Bröllochs A, Ritter P, Kreiß L, Mokhtari Z, Beilhack A, Krönke G, Ackermann JA, Faas M, Grüneboom A, Schürmann S, Friedrich O. An advanced optical clearing protocol allows label-free detection of tissue necrosis via multiphoton microscopy in injured whole muscle. Am J Cancer Res 2021; 11:2876-2891. [PMID: 33456578 PMCID: PMC7806485 DOI: 10.7150/thno.51558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/12/2020] [Indexed: 01/27/2023] Open
Abstract
Rationale: Structural remodeling or damage as a result of disease or injury is often not evenly distributed throughout a tissue but strongly depends on localization and extent of damaging stimuli. Skeletal muscle as a mechanically active organ can express signs of local or even systemic myopathic damage, necrosis, or repair. Conventionally, muscle biopsies (patients) or whole muscles (animal models) are mechanically sliced and stained to assess structural alterations histologically. Three-dimensional tissue information can be obtained by applying deep imaging modalities, e.g. multiphoton or light-sheet microscopy. Chemical clearing approaches reduce scattering, e.g. through matching refractive tissue indices, to overcome optical penetration depth limits in thick tissues. Methods: Here, we optimized a range of different clearing protocols. We find aqueous solution-based protocols employing (20-80%) 2,2'-thiodiethanol (TDE) to be advantageous over organic solvents (dibenzyl ether, cinnamate) regarding the preservation of muscle morphology, ease-of-use, hazard level, and costs. Results: Applying TDE clearing to a mouse model of local cardiotoxin (CTX)-induced muscle necrosis, a complete loss of myosin-II signals was observed in necrotic areas with little change in fibrous collagen or autofluorescence (AF) signals. The 3D aspect of myofiber integrity could be assessed, and muscle necrosis in whole muscle was quantified locally via the ratios of detected AF, forward- and backward-scattered Second Harmonic Generation (fSHG, bSHG) signals. Conclusion: TDE optical clearing is a versatile tool to study muscle architecture in conjunction with label-free multiphoton imaging in 3D in injury/myopathy models and might also be useful in studying larger biofabricated constructs in regenerative medicine.
Collapse
|
8
|
Effect of myofibril architecture on the active contraction of dystrophic muscle. A mathematical model. J Mech Behav Biomed Mater 2020; 114:104214. [PMID: 33234495 DOI: 10.1016/j.jmbbm.2020.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 11/23/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle degenerative disease caused by a mutation in the dystrophin gene. The lack of dystrophin leads to persistent inflammation, degeneration/regeneration cycles of muscle fibers, Ca2+ dysregulation, incompletely regenerated fibers, necrosis, fibrotic tissue replacement, and alterations in the fiber ultrastructure i.e., myofibril misalignment and branched fibers. This work aims to develop a comprehensive chemo-mechanical model of muscle-skeletal tissue accounting for dispersion in myofibrillar orientations, in addition to the disorders in sarcomere pattern and the fiber branching. The model results confirm a significant correlation between the myofibrillar dispersion and the reduction of isometric force in the dystrophic muscle and indicate that the reduction of contraction velocity in the dystrophic muscle seems to be associated with the local disorders in the sarcomere patterns of the myofibrils. Also, the implemented model can predict the force-velocity response to both concentric and eccentric loading. The resulting model represents an original approach to account for defects in the muscle ultrastructure caused by pathologies as DMD.
Collapse
|
9
|
Varga B, Meli AC, Radoslavova S, Panel M, Lacampagne A, Gergely C, Cazorla O, Cloitre T. Internal structure and remodeling in dystrophin-deficient cardiomyocytes using second harmonic generation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102295. [PMID: 32889047 DOI: 10.1016/j.nano.2020.102295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating disorder related to dystrophin encoding gene mutations, often associated with dilated cardiomyopathy. However, it is still unclear how dystrophin deficiency affects cardiac sarcomere remodeling and contractile dysfunction. We employed second harmonic generation (SHG) microscopy, a nonlinear optical imaging technique that allows studying contractile apparatus organization without histologic fixation and immunostaining. Images were acquired on alive DMD (mdx) and wild type cardiomyocytes at different ages and at various external calcium concentrations. An automated image processing was developed to identify individual myofibrils and extract data about their organization. We observed a structural aging-dependent remodeling in mdx cardiomyocytes affecting sarcomere sinuosity, orientation and length that could not be anticipated from standard optical imaging. These results revealed for the first time the interest of SHG to evaluate the intracellular and sarcomeric remodeling of DMD cardiac tissue in an age-dependent manner that could participate in progressive contractile dysfunction.
Collapse
Affiliation(s)
- Béla Varga
- L2C, University of Montpellier, CNRS, Montpellier, France.
| | - Albano C Meli
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Silviya Radoslavova
- L2C, University of Montpellier, CNRS, Montpellier, France; PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Mathieu Panel
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | - Csilla Gergely
- L2C, University of Montpellier, CNRS, Montpellier, France.
| | - Olivier Cazorla
- PhyMedExp, University of Montpellier, CNRS, INSERM, Montpellier, France.
| | | |
Collapse
|
10
|
Hage CH, Leclerc P, Fabert M, Bardet SM, Brevier J, Ducourthial G, Mansuryan T, Leray A, Kudlinski A, Louradour F. A readily usable two-photon fluorescence lifetime microendoscope. JOURNAL OF BIOPHOTONICS 2019; 12:e201800276. [PMID: 30548419 DOI: 10.1002/jbio.201800276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/09/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
A two-photon fluorescence lifetime (2P-FLIM) microendoscope, capable of energetic metabolism imaging through the intracellular nicotinamide adenine dinucleotide (NADH) autofluorescence, at sub-cellular resolution, is demonstrated. It exhibits readily usable characteristics such as convenient endoscope probe diameter (≈2 mm), fiber length (>5 m) and data accumulation rate (16 frames per second (fps)), leading to a FLIM refreshing rate of ≈0.1 to 1 fps depending on the sample. The spiral scanning image formation does not influence the instrument response function (IRF) characteristics of the system. Near table-top microscope performances are achieved through a comprehensive system including a home-designed spectro-temporal pulse shaper and a custom air-silica double-clad photonic crystal fiber, which enables to reach up to 40 mW of ≈100 fs pulses @ 760 nm with a 80 MHz repetition rate. A GRadient INdex (GRIN) lens provides a lateral resolution of 0.67 μm at the focus of the fiber probe. Intracellular NADH fluorescence lifetime data are finally acquired on cultured cells at 16 fps.
Collapse
Affiliation(s)
- Charles-Henri Hage
- Université de Limoges, XLIM - Pôle Photonique, UMR CNRS 7252, Limoges, France
| | - Pierre Leclerc
- Université de Limoges, XLIM - Pôle Photonique, UMR CNRS 7252, Limoges, France
| | - Marc Fabert
- Université de Limoges, XLIM - Pôle Photonique, UMR CNRS 7252, Limoges, France
| | - Sylvia M Bardet
- Université de Limoges, XLIM - Pôle Photonique, UMR CNRS 7252, Limoges, France
| | - Julien Brevier
- Université de Limoges, XLIM - Pôle Photonique, UMR CNRS 7252, Limoges, France
| | | | - Tigran Mansuryan
- Université de Limoges, XLIM - Pôle Photonique, UMR CNRS 7252, Limoges, France
| | - Aymeric Leray
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne Franche-Comté, Dijon, France
| | - Alexandre Kudlinski
- Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), Université Lille, CNRS, UMR 8523, Lille, France
| | - Frédéric Louradour
- Université de Limoges, XLIM - Pôle Photonique, UMR CNRS 7252, Limoges, France
| |
Collapse
|
11
|
Hage CH, Gomes JT, Bardet SM, Granger G, Jossent M, Lavoute L, Gaponov D, Fevrier S. Two-photon microscopy with a frequency-doubled fully fusion-spliced fiber laser at 1840 nm. OPTICS LETTERS 2018; 43:5098-5101. [PMID: 30320829 DOI: 10.1364/ol.43.005098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
We introduce a fiber-based laser system providing 130 fs pulses with 3.5 nJ energy at 920 nm at a 43 MHz repetition rate and illustrate the potential of the source for two-photon excited fluorescence microscopy of living mouse brain. The laser source is based on frequency-doubling high-energy solitons generated and frequency-shifted to 1840 nm in large mode area fibers. This simple laser system could unleash the potential of two-photon microscopy techniques in the biology laboratory where green fluorescent proteins with two-photon absorption spectrum peaking around 920 nm are routinely used.
Collapse
|
12
|
Schneidereit D, Nübler S, Prölß G, Reischl B, Schürmann S, Müller OJ, Friedrich O. Optical prediction of single muscle fiber force production using a combined biomechatronics and second harmonic generation imaging approach. LIGHT, SCIENCE & APPLICATIONS 2018; 7:79. [PMID: 30374401 PMCID: PMC6199289 DOI: 10.1038/s41377-018-0080-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 05/22/2023]
Abstract
Skeletal muscle is an archetypal organ whose structure is tuned to match function. The magnitude of order in muscle fibers and myofibrils containing motor protein polymers determines the directed force output of the summed force vectors and, therefore, the muscle's power performance on the structural level. Structure and function can change dramatically during disease states involving chronic remodeling. Cellular remodeling of the cytoarchitecture has been pursued using noninvasive and label-free multiphoton second harmonic generation (SHG) microscopy. Hereby, structure parameters can be extracted as a measure of myofibrillar order and thus are suggestive of the force output that a remodeled structure can still achieve. However, to date, the parameters have only been an indirect measure, and a precise calibration of optical SHG assessment for an exerted force has been elusive as no technology in existence correlates these factors. We engineered a novel, automated, high-precision biomechatronics system into a multiphoton microscope allows simultaneous isometric Ca2+-graded force or passive viscoelasticity measurements and SHG recordings. Using this MechaMorph system, we studied force and SHG in single EDL muscle fibers from wt and mdx mice; the latter serves as a model for compromised force and abnormal myofibrillar structure. We present Ca2+-graded isometric force, pCa-force curves, passive viscoelastic parameters and 3D structure in the same fiber for the first time. Furthermore, we provide a direct calibration of isometric force to morphology, which allows noninvasive prediction of the force output of single fibers from only multiphoton images, suggesting a potential application in the diagnosis of myopathies.
Collapse
Affiliation(s)
- Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
| | - Stefanie Nübler
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
| | - Gerhard Prölß
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), FAU Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Hage CH, Leclerc P, Brevier J, Fabert M, Le Nézet C, Kudlinski A, Héliot L, Louradour F. Towards two-photon excited endogenous fluorescence lifetime imaging microendoscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:142-156. [PMID: 29359093 PMCID: PMC5772571 DOI: 10.1364/boe.9.000142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 05/12/2023]
Abstract
In situ fluorescence lifetime imaging microscopy (FLIM) in an endoscopic configuration of the endogenous biomarker nicotinamide adenine dinucleotide (NADH) has a great potential for malignant tissue diagnosis. Moreover, two-photon nonlinear excitation provides intrinsic optical sectioning along with enhanced imaging depth. We demonstrate, for the first time to our knowledge, nonlinear endogenous FLIM in a fibered microscope with proximal detection, applied to NADH in cultured cells, as a first step to a nonlinear endomicroscope, using a double-clad microstructured fiber with convenient fiber length (> 3 m) and excitation pulse duration (≈50 fs). Fluorescence photons are collected by the fiber inner cladding and we show that its contribution to the impulse response function (IRF), which originates from its intermodal and chromatic dispersions, is small (< 600 ps) and stable for lengths up to 8 m and allows for short lifetime measurements. We use the phasor representation as a quick visualization tool adapted to the endoscopy speed requirements.
Collapse
Affiliation(s)
- C. H. Hage
- Université de Limoges, XLIM, UMR CNRS 7252, 123 Avenue A. Thomas, 87060 Limoges, France
| | - P. Leclerc
- Université de Limoges, XLIM, UMR CNRS 7252, 123 Avenue A. Thomas, 87060 Limoges, France
| | - J. Brevier
- Université de Limoges, XLIM, UMR CNRS 7252, 123 Avenue A. Thomas, 87060 Limoges, France
| | - M. Fabert
- Université de Limoges, XLIM, UMR CNRS 7252, 123 Avenue A. Thomas, 87060 Limoges, France
| | - C. Le Nézet
- Univ. Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - A. Kudlinski
- Univ. Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - L. Héliot
- Univ. Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - F. Louradour
- Université de Limoges, XLIM, UMR CNRS 7252, 123 Avenue A. Thomas, 87060 Limoges, France
| |
Collapse
|
14
|
Diermeier S, Buttgereit A, Schürmann S, Winter L, Xu H, Murphy RM, Clemen CS, Schröder R, Friedrich O. Preaged remodeling of myofibrillar cytoarchitecture in skeletal muscle expressing R349P mutant desmin. Neurobiol Aging 2017; 58:77-87. [PMID: 28715662 DOI: 10.1016/j.neurobiolaging.2017.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022]
Abstract
The majority of hereditary and acquired myopathies are clinically characterized by progressive muscle weakness. We hypothesized that ongoing derangement of skeletal muscle cytoarchitecture at the single fiber level may precede and be responsible for the progressive muscle weakness. Here, we analyzed the effects of aging in wild-type (wt) and heterozygous (het) and homozygous (hom) R349P desmin knock-in mice. The latter harbor the ortholog of the most frequently encountered human R350P desmin missense mutation. We quantitatively analyzed the subcellular cytoarchitecture of fast- and slow-twitch muscles from young, intermediate, and aged wt as well as desminopathy mice. We recorded multiphoton second harmonic generation and nuclear fluorescence signals in single muscle fibers to compare aging-related effects in all genotypes. The analysis of wt mice revealed that the myofibrillar cytoarchitecture remained stable with aging in fast-twitch muscles, whereas slow-twitch muscle fibers displayed structural derangements during aging. In contrast, the myofibrillar cytoarchitecture and nuclear density were severely compromised in fast- and slow-twitch muscle fibers of hom R349P desmin mice at all ages. Het mice only showed a clear degradation in their fiber structure in fast-twitch muscles from the adult to the presenescent age bin. Our study documents distinct signs of normal and R349P mutant desmin-related remodeling of the 3D myofibrillar architecture during aging, which provides a structural basis for the progressive muscle weakness.
Collapse
Affiliation(s)
- Stefanie Diermeier
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; SAOT, Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Buttgereit
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; SAOT, Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Lilli Winter
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Hongyang Xu
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
| | - Christoph S Clemen
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany; Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; SAOT, Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
15
|
Early signs of architectural and biomechanical failure in isolated myofibers and immortalized myoblasts from desmin-mutant knock-in mice. Sci Rep 2017; 7:1391. [PMID: 28469177 PMCID: PMC5431221 DOI: 10.1038/s41598-017-01485-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/29/2017] [Indexed: 01/25/2023] Open
Abstract
In striated muscle, desmin intermediate filaments interlink the contractile myofibrillar apparatus with mitochondria, nuclei, and the sarcolemma. The desmin network’s pivotal role in myocytes is evident since mutations in the human desmin gene cause severe myopathies and cardiomyopathies. Here, we investigated skeletal muscle pathology in myofibers and myofibrils isolated from young hetero- and homozygous R349P desmin knock-in mice, which carry the orthologue of the most frequent human desmin missense mutation R350P. We demonstrate that mutant desmin alters myofibrillar cytoarchitecture, markedly disrupts the lateral sarcomere lattice and distorts myofibrillar angular axial orientation. Biomechanical assessment revealed a high predisposition to stretch-induced damage in fiber bundles of R349P mice. Notably, Ca2+-sensitivity and passive myofibrillar tension were decreased in heterozygous fiber bundles, but increased in homozygous fiber bundles compared to wildtype mice. In a parallel approach, we generated and subsequently subjected immortalized heterozygous R349P desmin knock-in myoblasts to magnetic tweezer experiments that revealed a significantly increased sarcolemmal lateral stiffness. Our data suggest that mutated desmin already markedly impedes myocyte structure and function at pre-symptomatic stages of myofibrillar myopathies.
Collapse
|
16
|
Paesen R, Smolders S, Vega JMDH, Eijnde BO, Hansen D, Ameloot M. Fully automated muscle quality assessment by Gabor filtering of second harmonic generation images. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:26003. [PMID: 26848544 DOI: 10.1117/1.jbo.21.2.026003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
Although structural changes on the sarcomere level of skeletal muscle are known to occur due to various pathologies, rigorous studies of the reduced sarcomere quality remain scarce. This can possibly be explained by the lack of an objective tool for analyzing and comparing sarcomere images across biological conditions. Recent developments in second harmonic generation (SHG) microscopy and increasing insight into the interpretation of sarcomere SHG intensity profiles have made SHG microscopy a valuable tool to study microstructural properties of sarcomeres. Typically, sarcomere integrity is analyzed by fitting a set of manually selected, one-dimensional SHG intensity profiles with a supramolecular SHG model. To circumvent this tedious manual selection step, we developed a fully automated image analysis procedure to map the sarcomere disorder for the entire image at once. The algorithm relies on a single-frequency wavelet-based Gabor approach and includes a newly developed normalization procedure allowing for unambiguous data interpretation. The method was validated by showing the correlation between the sarcomere disorder, quantified by the M-band size obtained from manually selected profiles, and the normalized Gabor value ranging from 0 to 1 for decreasing disorder. Finally, to elucidate the applicability of our newly developed protocol, Gabor analysis was used to study the effect of experimental autoimmune encephalomyelitis on the sarcomere regularity. We believe that the technique developed in this work holds great promise for high-throughput, unbiased, and automated image analysis to study sarcomere integrity by SHG microscopy.
Collapse
Affiliation(s)
- Rik Paesen
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - Sophie Smolders
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | | | - Bert O Eijnde
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, BelgiumbHasselt University, REVAL-Rehabilitation Research Center, Agoralaan Building A, 3590 Diepenbeek, Belgium
| | - Dominique Hansen
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, BelgiumbHasselt University, REVAL-Rehabilitation Research Center, Agoralaan Building A, 3590 Diepenbeek, Belgium
| | - Marcel Ameloot
- Hasselt University, Biomedical Research Institute, Agoralaan Building C, 3590 Diepenbeek, Belgium
| |
Collapse
|
17
|
Georgiev T, Zapiec B, Förderer M, Fink RHA, Vogel M. Colocalization properties of elementary Ca(2+) release signals with structures specific to the contractile filaments and the tubular system of intact mouse skeletal muscle fibers. J Struct Biol 2015; 192:366-375. [PMID: 26431893 DOI: 10.1016/j.jsb.2015.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/26/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022]
Abstract
Ca(2+) regulates several important intracellular processes. We combined second harmonic generation (SHG) and two photon excited fluorescence microscopy (2PFM) to simultaneously record the SHG signal of the myosin filaments and localized elementary Ca(2+) release signals (LCSs). We found LCSs associated with Y-shaped structures of the myosin filament pattern (YMs), so called verniers, in intact mouse skeletal muscle fibers under hypertonic treatment. Ion channels crucial for the Ca(2+) regulation are located in the tubular system, a system that is important for Ca(2+) regulation and excitation-contraction coupling. We investigated the tubular system of intact, living mouse skeletal muscle fibers using 2PFM and the fluorescent Ca(2+) indicator Fluo-4 dissolved in the external solution or the membrane dye di-8-ANEPPS. We simultaneously measured the SHG signal from the myosin filaments of the skeletal muscle fibers. We found that at least a subset of the YMs observed in SHG images are closely juxtaposed with Y-shaped structures of the transverse tubules (YTs). The distances of corresponding YMs and YTs yield values between 1.3 μm and 4.1 μm including pixel uncertainty with a mean distance of 2.52±0.10 μm (S.E.M., n=41). Additionally, we observed that some of the linear-shaped areas in the tubular system are colocalized with linear-shaped areas in the SHG images.
Collapse
Affiliation(s)
- Tihomir Georgiev
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
| | - Bolek Zapiec
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; Max Planck Research Unit for Neurogenetics, 60438 Frankfurt am Main, Germany
| | - Moritz Förderer
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Rainer H A Fink
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Martin Vogel
- Medical Biophysics, Institute of Physiology and Pathophysiology, Ruprecht Karls Universität, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany; Max Planck Research Unit for Neurogenetics, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Recher G, Coumailleau P, Rouède D, Tiaho F. Structural origin of the drastic modification of second harmonic generation intensity pattern occurring in tail muscles of climax stages xenopus tadpoles. J Struct Biol 2015; 190:1-10. [PMID: 25770062 DOI: 10.1016/j.jsb.2015.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/08/2015] [Accepted: 03/04/2015] [Indexed: 01/27/2023]
Abstract
Second harmonic generation (SHG) microscopy is a powerful tool for studying submicron architecture of muscles tissues. Using this technique, we show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of premetamorphic xenopus tadpole tail muscles is converted to double frequency (2f) sarcomeric SHG-IP in metamorphic climax stages due to massive physiological muscle proteolysis. This conversion was found to rise from 7% in premetamorphic muscles to about 97% in fragmented muscular apoptotic bodies. Moreover a 66% conversion was also found in non-fragmented metamorphic tail muscles. Also, a strong correlation between predominant 2f sarcomeric SHG-IPs and myofibrillar misalignment is established with electron microscopy. Experimental and theoretical results demonstrate the higher sensitivity and the supra resolution power of SHG microscopy over TPEF to reveal 3D myofibrillar misalignment. From this study, we suggest that 2f sarcomeric SHG-IP could be used as signature of triad defect and disruption of excitation-contraction coupling. As the mechanism of muscle proteolysis is similar to that found in mdx mouse muscles, we further suggest that xenopus tadpole tail resorption at climax stages could be used as an alternative or complementary model of Duchene muscular dystrophy.
Collapse
Affiliation(s)
- Gaëlle Recher
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Pascal Coumailleau
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France
| | - Denis Rouède
- IPR, CNRS, UMR-CNRS UR1-6251, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France
| | - François Tiaho
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France.
| |
Collapse
|
19
|
Garcia-Canadilla P, Gonzalez-Tendero A, Iruretagoyena I, Crispi F, Torre I, Amat-Roldan I, Bijnens BH, Gratacos E. Automated cardiac sarcomere analysis from second harmonic generation images. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:056010. [PMID: 24853145 DOI: 10.1117/1.jbo.19.5.056010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
Automatic quantification of cardiac muscle properties in tissue sections might provide important information related to different types of diseases. Second harmonic generation (SHG) imaging provides a stain-free microscopy approach to image cardiac fibers that, combined with our methodology of the automated measurement of the ultrastructure of muscle fibers, computes a reliable set of quantitative image features (sarcomere length, A-band length, thick-thin interaction length, and fiber orientation). We evaluated the performance of our methodology in computer-generated muscle fibers modeling some artifacts that are present during the image acquisition. Then, we also evaluated it by comparing it to manual measurements in SHG images from cardiac tissue of fetal and adult rabbits. The results showed a good performance of our methodology at high signal-to-noise ratio of 20 dB. We conclude that our automated measurements enable reliable characterization of cardiac fiber tissues to systematically study cardiac tissue in a wide range of conditions.
Collapse
Affiliation(s)
- Patricia Garcia-Canadilla
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, SpainbUniversitat Pompeu
| | - Anna Gonzalez-Tendero
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, Spain
| | - Igor Iruretagoyena
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, Spain
| | - Fatima Crispi
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, Spain
| | - Iratxe Torre
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, Spain
| | - Ivan Amat-Roldan
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, Spain
| | - Bart H Bijnens
- Universitat Pompeu Fabra, PhySense, DTIC, Barcelona 08018, SpaincICREA, Barcelona 08010, Spain
| | - Eduard Gratacos
- University of Barcelona, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona 08028, Spain
| |
Collapse
|
20
|
Buttgereit A, Weber C, Garbe CS, Friedrich O. From chaos to split-ups--SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle. J Pathol 2013; 229:477-85. [PMID: 23132094 DOI: 10.1002/path.4136] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 11/08/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a common inherited muscle disease showing chronic inflammation and progressive muscle weakness. Absent dystrophin renders sarcolemma more Ca(2+) -permeable, disturbs signalling and triggers inflammation. Sustained degeneration/regeneration cycles render muscle cytoarchitecture susceptible to remodelling. Quantitative morphometry was introduced in living cells using second-harmonic generation (SHG) microscopy of myosin. As the time course of cellular remodelling is not known, we used SHG microscopy in mdx muscle fibres over a wide age range for three-dimensional (3D) rendering and detection of verniers and cosine angle sums (CASs). Wild-type (wt) and transgenic mini-dystrophin mice (MinD) were also studied. Vernier densities (VDs) declined in wt and MinD fibres until adulthood, while in mdx fibres, VDs remained significantly elevated during the life span. CAS values were close to unity in adult wt and MinD fibres, in agreement with tight regular myofibril orientation, while always smaller in mdx fibres. Using SHG 3D morphometry, we identified two types of altered ultrastructure: branched fibres and a novel, previously undetected 'chaotic' fibre type, both of which can be classified by distinct CAS and VD combinations. We present a novel model of tissue remodelling in dystrophic progression with age that involves the transition from normal to chaotic to branched fibres. Our model predicts a ~50% contribution of altered cytoarchitecture to progressive force loss with age. We also provide an improved automated image algorithm that is suitable for future ageing studies in human myopathies.
Collapse
Affiliation(s)
- Andreas Buttgereit
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nuremberg,Paul-Gordan-Strasse 3, Erlangen, Germany.
| | | | | | | |
Collapse
|
21
|
Liu W, Raben N, Ralston E. Quantitative evaluation of skeletal muscle defects in second harmonic generation images. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:26005. [PMID: 23377006 PMCID: PMC3564230 DOI: 10.1117/1.jbo.18.2.026005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.
Collapse
Affiliation(s)
- Wenhua Liu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Light Imaging Section, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
22
|
Tan KK, Tang KZ, Putra AS, Pu X, Huang S, Lee TH, Ng SC, Tan LG. An auto-perfusing umbilical cord blood collection instrument. ISA TRANSACTIONS 2012; 51:420-429. [PMID: 22342030 DOI: 10.1016/j.isatra.2012.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 12/30/2011] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
In this paper, the development of an automated umbilical cord blood (UCB) collection instrument, comprising of mechanical, electronics and control components, is provided in detail. UCB from the placenta provides a rich source of highly proliferative cells for many clinical uses as it contains rich Hematopoietic Stem Cells (HSCs) which yield many benefits over traditional sources such as the bone marrow and periphery blood. Current collection of UCB uses a syringe to extract blood from placenta, which is highly limited in volume and cell numbers. This paper will present the development of an automated UCB collection instrument to yield improved performance which comprised four subsystems. First, a placenta handling system is designed to produce air pressure which can realize the emulation of the uterus compression on the placenta. Second, an auto-medium injector system is presented to enable perfusion automatically. Third, a time window widening system is developed which generates vibrations during the perfusion phase and helps the exposed end of the cord cool down to a low temperature. Finally, a control platform is used to integrate all systems working together, hosting the control algorithms which operate the instrument automatically.
Collapse
Affiliation(s)
- K K Tan
- Department of Electrical & Computer Engineering, National University of Singapore, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|