1
|
Shi X, Zhao F, Feng L, Liu Y, Zhou X. Predicting the high intensity focused ultrasound focus in vivo using acoustic radiation force imaging. Med Phys 2025; 52:1728-1745. [PMID: 39660763 DOI: 10.1002/mp.17564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND One big challenge in the noninvasive high-intensity focused ultrasound (HIFU) surgery is that the location and shape of its focus is unpredictable at the preoperative stage due to the complexity of sound wave propagation. The Acoustic Radiation Force Impulse (ARFI) imaging is a potential solution to this problem, but artifacts resulting from shear wave propagation remain to be solved. PURPOSE In this study, we proposed avoiding those artefacts by applying the ARFI technique at a high imaging frame rate within a very short time before the shear waves start to propagate. METHODS Using single transmission with a convex imaging probe, two ultrafast imaging modalities (the diverging wave and the wide beam), were developed in the ARFI framework, and their reliabilities were validated on a nylon string phantom by the centroid tracking method borrowed from ultrasound localization microscopy (ULM). The proposed ARFI method was tested on a clinically equivalent HIFU system under different acoustic radiation intensities by in-vitro, ex-vivo and in-vivo experiments. In three experimental scenarios, we delivered short HIFU stimulation pulses at varying acoustic powers to induce tissue motion within the focal region. At each experimental site, both diverging wave and wide-beam imaging techniques were employed for motion estimation. Based on the focus prediction derived from the motion estimation, HIFU ablation treatment was performed. The treated samples were then incised to examine the damaged areas. Additionally, ultrasound B-mode images were acquired before and after the procedure and saved for analysis. RESULTS Quantitative analysis showed that the ARFI with wide beam imaging was able to predict the HIFU focus preoperatively, only with 1 to 3 mm of errors in focal central location, and less than 23% of percentage errors in focal area in most cases. However, the diverging wave imaging failed to predict the HIFU focus due to its low signal-to-noise ratio. CONCLUSIONS In conclusion, the inherent shear wave artefacts in ARFI for predicting the HIFU focus can be successfully avoided by carefully designing the imaging strategy and its working sequence. This ARFI technique was validated through a series of experiments on a clinically equivalent HIFU system, which demonstrated its capability in assisting surgical planning.
Collapse
Affiliation(s)
- Xinwang Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Fenglong Zhao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Lian Feng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yijing Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaowei Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- NMPA Key Laboratory for Quality Evaluation of Ultrasonic Surgical Equipment, Wuhan, China
| |
Collapse
|
2
|
Yin C, Su H, Xie Y, Tu J, Zhang D, Kong X, Guo X. Estimating in vivo power deposition density in thermotherapies based on ultrasound thermal strain imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:606-617. [PMID: 39878497 DOI: 10.1121/10.0034880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
In thermal therapies, accurate estimation of in-tissue power deposition density (PDD) is essential for predicting temperature distributions over time or regularizing temperature imaging. Based on our previous work on ultrasound thermometry, namely, multi-thread thermal strain imaging (MT-TSI), this work develops an in vivo PDD estimation method. Specifically, by combining the TSI model infinitesimal echo strain filter with the bio-heat transfer theory (the Pennes equation), a finite-difference time-domain model is established to allow online extraction of the PDD. An alternating-direction implicit method is adopted to ensure numerical stability and computational efficiency in implementing the model. Based on simulations, the accuracy and effectiveness of the model are examined by comparing a preset PDD distribution with the estimated one. Then, TSI results are obtained from ultrasound data acquired in in vivo experiments; with the PDD estimated from that, TSI distributions are then "predicted" using a validated numerical procedure. The two TSI results are compared to verify the self-consistency of the proposed method. A simplified and more efficient protocol for obtaining an "equivalent spherical PDD" is also discussed.
Collapse
Affiliation(s)
- Chuhao Yin
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- School of Integrated Circuits, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Huajin Su
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yuting Xie
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiangqing Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Nguyen M, Agarwal A, Kumaradas JC, Kolios MC, Peyman G, Tavakkoli JJ. Real-time non-invasive control of ultrasound hyperthermia using high-frequency ultrasonic backscattered energy in ex vivotissue and in vivoanimal studies. Phys Med Biol 2024; 69:215001. [PMID: 39392296 DOI: 10.1088/1361-6560/ad7f19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Objective.A reliable, calibrated, non-invasive thermometry method is essential for thermal therapies to monitor and control the treatment. Ultrasound (US) is an effective thermometry modality due to its relatively high sensitivity to temperature changes, and fast data acquisition and processing capabilities.Approach.In this work, the change in backscattered energy (CBE) was used to control the tissue temperature non-invasively using a real-time proportional-integral-derivative (PID) controller. A clinical high-frequency US scanner was used to acquire radio-frequency echo data fromex vivoporcine tissue samples andin vivomice hind leg tissue while the tissue was treated with mild hyperthermia by a focused US applicator. The PID controller maintained the focal temperature at approximately 40 °C for about 4 min.Main results.The results show that the US thermometry based on CBE estimated by a high-frequency US scanner can produce 2D temperature maps of a localized heating region and to estimate the focal temperature during mild hyperthermia treatments. The CBE estimated temperature varied by an average of ±0.85 °C and ±0.97 °C, compared to a calibrated thermocouple, inex vivoandin vivostudies, respectively. The mean absolute deviations of CBE thermometry during the controlled hyperthermia treatment were ±0.45 °C and ±0.54 °C inex vivoandin vivo,respectively.Significance.It is concluded that non-invasive US thermometry via backscattered energies at high frequencies can be used for real-time monitoring and control of hyperthermia treatments with acceptable accuracy. This provides a foundation for an US mediated drug delivery system.
Collapse
Affiliation(s)
- Michael Nguyen
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Ayushi Agarwal
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - J Carl Kumaradas
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Gholam Peyman
- Basic Medical Science, University of Arizona, Phoenix Campus, Phoenix, AZ, United States of America
- College of Optical Sciences, University of Arizona, Tucson Campus, Tucson, AZ, United States of America
- Cancer Rx Inc., Sun City, AZ, United States of America
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Feng L, Shi X, Zhou F, Chen Y, Zhou X. Technical note: Evaluation of the acoustic radiation force imaging for predicting HIFU focus with in vitro and ex vivo experiments. Med Phys 2023; 50:5449-5459. [PMID: 37345709 DOI: 10.1002/mp.16565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND High-intensity focused ultrasound (HIFU) is currently used for the treatment of various diseases, but it still lacks a reliable technique in the preoperative stage to accurately place its "energy blade" onto diseased targets. Acoustic radiation force imaging (ARFI) was recently introduced to tackle this issue, but its applicability and limitations were not clear. PURPOSE The aim of this study was to evaluate the performance of ARFI method in prediction of HIFU focal location at the preoperative stage. METHODS A point spread function (PSF) localization method, which was borrowed from the ultrasound super resolution field, was used to validate the core autocorrelation-based motion estimation algorithm in the ARFI procedure. Accuracy of the ARFI method for estimating the HIFU focus were tested with in vitro and ex vivo experiments with a clinically equivalent HIFU system. Comparisons were made between the estimated focal locations and those of the damaged area after the testing objects were cut open. RESULTS Results showed that the PSF localization was able to serve as a validating method for motion detection only when the tissue displacement was large. With the ARFI method, location of the HIFU focus could be accurately predicted by a 2D motion map preoperatively, and the axial spatial errors were less than 0.5 mm. However, the derived 2D motion maps can only be valuable when the acoustic stimulation in ARFI were strong enough, which was probably due to the fact that the HIFU focal locations were at large depths and the ultrasound imaging signal had low signal to noise ratio. CONCLUSION The ARFI method was indeed an accurate technique for preoperatively predicting HIFU focus in vitro and ex vivo. If clinical applications were to be considered, particularly in deep tissues, efforts might need to be made to improve ability of the ultrasound motion estimation technique.
Collapse
Affiliation(s)
- Lian Feng
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xinwang Shi
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Fang Zhou
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yanhua Chen
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaowei Zhou
- State Key Laboratory of Ultrasound Engineering in Medicine, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Kaur T, Sharma D. Expansion of thermometry in magnetic hyperthermia cancer therapy: antecedence and aftermath. Nanomedicine (Lond) 2022; 17:1607-1623. [PMID: 36318111 DOI: 10.2217/nnm-2022-0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Magnetic hyperthermia cancer therapy (MHCT) is a promising antitumor therapy based on the generation of heat by magnetic nanoparticles under the influence of an alternating-current magnetic field. However, an often-overlooked factor hindering the translation of MHCT to clinics is the inability to accurately monitor temperature, thereby leading to erroneous thermal control. It is significant to address 'thermometry' during magnetic hyperthermia because numerous factors are affected by the magnetic fields employed, rendering traditional thermometry methods unsuitable for temperature estimation. Currently, there is a dearth of literature describing appropriate techniques for thermometry during MHCT. This review offers a general outline of the various modes of conventional thermometry as well as cutting-edge techniques operating at cellular/nanoscale levels (nanothermometry) as prospective thermometers for MHCT in the future.
Collapse
Affiliation(s)
- Tashmeen Kaur
- Institute of Nano Science & Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Deepika Sharma
- Institute of Nano Science & Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| |
Collapse
|
6
|
Yin C, Wang G, Xie Y, Tu J, Sun W, Kong X, Guo X, Zhang D. Separated Respiratory Phases for In Vivo Ultrasonic Thermal Strain Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1219-1229. [PMID: 35130155 DOI: 10.1109/tuffc.2022.3149287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thermal strain imaging (TSI) uses echo shifts in ultrasonic B-scan images to estimate changes in temperature which is of great values for thermotherapies. However, for in vivo applications, it is difficult to overcome the artifacts and errors arising from physiological motions. Here, a respiration separated TSI (RS-TSI) method is proposed, which can be considered as carrying out TSI in each of the exhalation and inhalation phases and then combining the results. Normalized cross correlation (NXcorr) coefficient between RF images along the timeline are used to extract the respiratory frequency, after which reference frames are selected to identify the exhalation and inhalation phases, and the two phases are divided quasi-periodically. RF images belonging to both phases are selected by applying NXcorr thresholds, and motion compensation together with a second frame selection helps to obtain two finely matched image sequences. After TSI calculations for each phase, the two processes are merged into one through extrapolation and interphase averaging. Compared to TSI based on dynamic frame selection (DFS), RS-TSI ensures that frames are selected during both the exhalation and inhalation phases while setting the frame selection range according to the respiratory frequency helps to improve motion compensation. The temporal intervals of TSI output are approximately half that employing DFS.
Collapse
|
7
|
Zhou X, Wang Y, Li Y, Zhao Y, Shan T, Gong X, Li F, Tang MX, Wang Z. Acoustic beam mapping for guiding HIFU therapy in vivo using sub-therapeutic sound pulse and passive beamforming. IEEE Trans Biomed Eng 2021; 69:1663-1673. [PMID: 34752379 DOI: 10.1109/tbme.2021.3126734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Although HIFU has been successfully applied in various clinical applications in the past two decades for the ablation of many types of tumors, one bottleneck in its wider applications is the lack of a reliable and affordable strategy to guide the therapy. This study aims at estimating the therapeutic beam path at the pre-treatment stage to guide the therapeutic procedure. METHODS An incident beam mapping technique using passive beamforming was proposed based on a clinical HIFU system and an ultrasound imaging research system. An optimization model was created to map the cross-like beam pattern by maximizing the total energy within the mapped area. This beam mapping technique was validated by comparing the estimated focal region with the HIFU-induced actual focal region (damaged region) through simulation, in-vitro, ex-vivo and in-vivo experiments. RESULTS The results of this study showed that the proposed technique was, to a large extent, tolerant of sound speed inhomogeneities, being able to estimate the focal location with errors of 0.15 mm and 0.93 mm under in-vitro and ex-vivo situations respectively, and slightly over 1 mm under the in-vivo situation. It should be noted that the corresponding errors were 6.8 mm, 3.2 mm, and 9.9 mm respectively when the conventional geometrical method was used. CONCLUSION This beam mapping technique can be very helpful in guiding the HIFU therapy and can be easily applied in clinical environments with an ultrasound-guided HIFU system. SIGNIFICANCE The technique is non-invasive and can potentially be adapted to other ultrasound-related beam manipulating applications.
Collapse
|
8
|
Shaswary E, Assi H, Yang C, Kumaradas JC, Kolios MC, Peyman G, Tavakkoli J. Noninvasive calibrated tissue temperature estimation using backscattered energy of acoustic harmonics. ULTRASONICS 2021; 114:106406. [PMID: 33691235 DOI: 10.1016/j.ultras.2021.106406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/20/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE A real-time and non-invasive thermometry technique is essential in thermal therapies to monitor and control the treatment. Ultrasound is an attractive thermometry modality due to its relatively high sensitivity to change in temperature and fast data acquisition and processing capabilities. A temperature-sensitive acoustic parameter is required for ultrasound thermometry in order to track the changes in that parameter during the treatment. Currently, the main ultrasound thermometry methods are based on variation in the attenuation coefficient, the change in backscattered energy of the signal (CBE), the backscattered radio-frequency (RF) echo-shift due to change in the speed of sound and thermal expansion of the medium, and change in the amplitudes of the acoustic harmonics. In this work, an ultrasound thermometry method based on second harmonic CBE (CBEh2) and combined fundamental and second harmonic CBE (CBEcomb) is used to produce 2D temperature maps, detect localized heated region generated by low intensity focused ultrasound (LIFU), and control temperature in the heated region. MATERIALS AND METHODS Ex vivo pork muscle tissue samples were exposed to localized LIFU heating source and 2D temperature maps were produced from the RF data acquired by a 4.2 MHz linear array probe using a Verasonics Vantage™ ultrasound scanner (Verasonics Inc., Redmond, WA) after the exposure. Calibrated needle thermocouples were also placed in the ex vivo tissue sample close to the LIFU focal zone for temperature calibration purposes. The estimated temperature maps were the established echo-shift technique. A tissue motion compensation algorithm was also used to reduce the susceptibility to motion artifacts. RESULTS 2D temperature maps were generated using CBE of acoustic harmonic and echo-shift techniques. The results show a direct correlation between the CBE of acoustic harmonics and focal tissue temperature for a range of temperatures from 37 °C (baseline) to 47 °C. CONCLUSIONS The findings of this study show that the CBE of acoustic harmonics technique can be used to noninvasively estimate temperature change in tissue in the hyperthermia temperature range.
Collapse
Affiliation(s)
- Elyas Shaswary
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Hisham Assi
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Celina Yang
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada
| | - J Carl Kumaradas
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Gholam Peyman
- Basic Medical Science, University of Arizona, Phoenix Campus, AZ, USA; College of Optical Sciences, University of Arizona, Tucson Campus, AZ, USA; Cancer Rx Inc., Sun City, AZ, USA
| | - Jahan Tavakkoli
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Yin C, Wang G, Yang K, Tu J, Guo X, Zhang D. Thermal strain imaging in vivo using interpolated IQ-images. ULTRASONICS 2021; 110:106292. [PMID: 33152656 DOI: 10.1016/j.ultras.2020.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Thermal strain imaging (TSI) is a promising technique for ultrasonic thermometry, especially in the applications of thermal therapies. The accuracy of TSI is dependent on the sampling rate and line density of B-Scan images, and the prevalent IQ-demodulated ultrasound data outputted from low- and middle-end machines are therefore insufficient. Here, the feasibility of using interpolated IQ images for TSI (based on the "infinitesimal echo strain filter" model) is studied through in vivo experiments targeting the perirenal fat of pigs. It is demonstrated that, axial interpolations, especially those using the zero-padding algorithm, can recover the capabilities of the low-sampling-rate complex IQ images in TSI, and make their performances comparable to those of RF/IQ complex images with higher sample rate. Meanwhile, interpolations along the lateral direction can increase the line density of IQ images, reduce TSI errors, and reveal more details in the temperature maps. In the experiments, the variation in the thermometry coefficient (the k-value) is well below 3%. The findings here bring down the requirement of high sampling rate as well as high line density of US images in TSI, making it possible to be applied on common US machines.
Collapse
Affiliation(s)
- Chuhao Yin
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Guanzhu Wang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Kexin Yang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructure, Nanjing University, Nanjing 210093, China; The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080, China.
| |
Collapse
|
10
|
Barrere V, Melodelima D, Catheline S, Giammarinaro B. Imaging of Thermal Effects during High-Intensity Ultrasound Treatment in Liver by Passive Elastography: A Preliminary Feasibility in Vitro Study. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1968-1977. [PMID: 32493631 DOI: 10.1016/j.ultrasmedbio.2020.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
High-intensity focused ultrasound is a non-invasive modality for thermal ablation of tissues through locally increased temperature. Thermal lesions can be monitored by elastography, following the changes in the elastic properties of the tissue as reflected by the shear-wave velocity. Most studies on ultrasound elastography use shear waves created by acoustic radiation force. However, in the human body, the natural noise resulting from cardiac activity or arterial pulsatility can be used to characterize elasticity through noise-correlation techniques, in the method known as passive elastography. The objective of this study was to investigate the feasibility of monitoring high-intensity ultrasound treatments of liver tissue using passive elastography. Bovine livers were heated to 80°C using a high-intensity planar transducer and imaged with a high-frame-rate ultrasound imaging device. The dynamics of lesion formation are captured through tissue stiffening and lesion expansion.
Collapse
Affiliation(s)
- Victor Barrere
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| | - Stefan Catheline
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France.
| | - Bruno Giammarinaro
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France
| |
Collapse
|
11
|
Raiko J, Koskensalo K, Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox. Temperature (Austin) 2020; 7:363-388. [PMID: 33251282 PMCID: PMC7678923 DOI: 10.1080/23328940.2020.1769006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
Noninvasive imaging methods of internal body temperature are in high demand in both clinical medicine and physiological research. Thermography and thermometry can be used to assess tissue temperature during thermal therapies: ablative and hyperthermia treatments to ensure adequate temperature rise in target tissues but also to avoid collateral damage by heating healthy tissues. In research use, measurement of internal body temperature enables us the production of thermal maps on muscles, internal organs, and other tissues of interest. The most used methods for noninvasive imaging of internal body temperature are based on different parameters acquired with magnetic resonance imaging, ultrasound, computed tomography, microwave radiometry, photoacoustic imaging, and near-infrared spectroscopy. In the current review, we examine the aforementioned imaging methods, their use in estimating internal body temperature in vivo with their advantages and disadvantages, and the physical phenomena the thermography or thermometry modalities are based on.
Collapse
Affiliation(s)
- Juho Raiko
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kalle Koskensalo
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Teija Sainio
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| |
Collapse
|
12
|
Zhang S, Wu S, Shang S, Qin X, Jia X, Li D, Cui Z, Xu T, Niu G, Bouakaz A, Wan M. Detection and Monitoring of Thermal Lesions Induced by Microwave Ablation Using Ultrasound Imaging and Convolutional Neural Networks. IEEE J Biomed Health Inform 2020; 24:965-973. [DOI: 10.1109/jbhi.2019.2939810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Maraghechi B, Kolios MC, Tavakkoli J. Feasibility of detecting change in backscattered energy of acoustic harmonics in locally heated tissues. Int J Hyperthermia 2019; 36:964-974. [DOI: 10.1080/02656736.2019.1660001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Borna Maraghechi
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael C. Kolios
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Jahan Tavakkoli
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Ebbini ES, Simon C, Liu D. Real-time Ultrasound Thermography and Thermometry. IEEE SIGNAL PROCESSING MAGAZINE 2018; 35:166-174. [PMID: 30283214 PMCID: PMC6167021 DOI: 10.1109/msp.2017.2773338] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
15
|
Podkowa A, Miller RJ, Motl RW, Fish R, Oelze ML. Focused Ultrasound Treatment of Cervical Lymph Nodes in Rats with EAE: A Pilot Study. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2957-2964. [PMID: 27639434 DOI: 10.1016/j.ultrasmedbio.2016.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/18/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
In this pilot study, focused ultrasound (FUS) was used to produce hyperthermia in cervical lymph nodes of rats having experimental autoimmune encephalomyelitis (EAE) to alleviate symptoms associated with EAE. EAE was induced in dark agouti rats, and EAE scores were recorded over 21 d. At the onset of EAE symptoms, rats were treated with FUS to induce temperatures of 43-44°C for 20 min in the superficial cervical lymph nodes. An EAE remittance score was tallied for all rats, defined as the maximum EAE score observed minus the minimum EAE score observed after the maximum EAE was reached. On average, the peak remittance score for FUS-treated rats was 1.14 ± 0.48 versus 0.33 ± 0.27 for sham-treated rats. These differences were statistically significant (p = 0.037). Therefore, FUS treatment of cervical lymph nodes in rats with EAE resulted in a significant reduction in EAE score.
Collapse
Affiliation(s)
- Anthony Podkowa
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rita J Miller
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert W Motl
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Raymond Fish
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael L Oelze
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
16
|
Ghoshal G, Kemmerer JP, Karunakaran C, Miller RJ, Oelze ML. Quantitative Ultrasound for Monitoring High-Intensity Focused Ultrasound Treatment In Vivo. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1234-42. [PMID: 26780790 PMCID: PMC5551400 DOI: 10.1109/tuffc.2016.2517644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The success of any minimally invasive treatment procedure can be enhanced significantly if combined with a robust noninvasive imaging modality that can monitor therapy in real time. Quantitative ultrasound (QUS) imaging has been widely investigated for monitoring various treatment responses such as chemotherapy, radiation, and thermal therapy. Previously, we demonstrated the feasibility of using spectral-based QUS parameters to monitor high-intensity focused ultrasound (HIFU) treatment of in situ tumors in euthanized rats [Ultrasonic Imaging 36(4), 239-255, 2014]. In the present study, we examined the use of spectral-based QUS parameters to monitor HIFU treatment of in vivo rat mammary adenocarcinoma tumors (MAT) where significant tissue motion was present. HIFU was applied to tumors in rats using a single-element transducer. During the off part of the HIFU duty cycle, ultrasound backscatter was recorded from the tumors using a linear array co-aligned with the HIFU focus. A total of 10 rats were treated with HIFU in this study with an additional sham-treated rat. Spectral parameters from the backscatter coefficient, i.e., effective scatterer diameter (ESD) and effective acoustic concentration (EAC), were estimated. The changes of each parameter during treatment were compared with a temperature profile recorded by a fine-needle thermocouple inserted into the tumor a few millimeters behind the focus of the HIFU transducer. The mean ESD changed from 121 ±6 to [Formula: see text], and the EAC changed from 33 ±2 to [Formula: see text] during HIFU exposure as the temperature increased on average from 38.7 ±1.0 (°)C to 64.2 ±2.7 (°)C. The changes in ESD and EAC were linearly correlated with the changes in tissue temperature during the treatment. When HIFU was turned off, the ESD increased from 81 ±8 to [Formula: see text] and the EAC dropped from 46 ±3 to 36±2 dB/cm(3) as the temperature decreased from 64.2 ±2.7 (°)C to 45 ±2.7 (°)C. QUS was demonstrated in vivo to track temperature elevations caused by HIFU exposure.
Collapse
|
17
|
Sarvazyan AP, Tsyuryupa SN, Calhoun M, Utter A. Acoustical Method of Whole-Body Hydration Status Monitoring. ACOUSTICAL PHYSICS 2016; 62:514-522. [PMID: 29353987 PMCID: PMC5773122 DOI: 10.1134/s1063771016040175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.
Collapse
Affiliation(s)
| | | | - M Calhoun
- Appalachian State University, Boone, NC, 28608-2071, USA
| | - A Utter
- Appalachian State University, Boone, NC, 28608-2071, USA
| |
Collapse
|
18
|
Schooneveldt G, Bakker A, Balidemaj E, Chopra R, Crezee J, Geijsen ED, Hartmann J, Hulshof MC, Kok HP, Paulides MM, Sousa-Escandon A, Stauffer PR, Maccarini PF. Thermal dosimetry for bladder hyperthermia treatment. An overview. Int J Hyperthermia 2016; 32:417-33. [DOI: 10.3109/02656736.2016.1156170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Haritonova A, Liu D, Ebbini ES. In Vivo application and localization of transcranial focused ultrasound using dual-mode ultrasound arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:2031-42. [PMID: 26670845 PMCID: PMC4683405 DOI: 10.1109/tuffc.2014.006882] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Focused ultrasound (FUS) has been proposed for a variety of transcranial applications, including neuromodulation, tumor ablation, and blood-brain barrier opening. A flurry of activity in recent years has generated encouraging results demonstrating its feasibility in these and other applications. To date, monitoring of FUS beams has been primarily accomplished using MR guidance, where both MR thermography and elastography have been used. The recent introduction of real-time dual-mode ultrasound array (DMUA) systems offers a new paradigm in transcranial focusing. In this paper, we present first experimental results of ultrasound-guided transcranial FUS (tFUS) application in a rodent brain, both ex vivo and in vivo. DMUA imaging is used for visualization of the treatment region for placement of the focal spot within the brain. This includes the detection and localization of pulsating blood vessels at or near the target point(s). In addition, DMUA imaging is used to monitor and localize the FUS-tissue interactions in real time. In particular, a concave (40 mm radius of curvature), 32-element, 3.5-MHz DMUA prototype was used for imaging and tFUS application in ex vivo and in vivo rat models. The ex vivo experiments were used to evaluate the point spread function of the transcranial DMUA imaging at various points within the brain. In addition, DMUA-based transcranial ultrasound thermography measurements were compared with thermocouple measurements of subtherapeutic tFUS heating in rat brain ex vivo. The ex vivo setting was also used to demonstrate the capability of DMUA to produce localized thermal lesions. The in vivo experiments were designed to demonstrate the ability of the DMUA to apply, monitor, and localize subtherapeutic tFUS patterns that could be beneficial in transient blood-brain barrier opening. The results show that although the DMUA focus is degraded due to the propagation through the skull, it still produces localized heating effects within a sub-millimeter volume. In addition, DMUA transcranial echo data from brain tissue allow for reliable estimation of temperature change.
Collapse
Affiliation(s)
- Alyona Haritonova
- Department of Biomedical Engineering, University of Minnesota Twin Cities
| | - Dalong Liu
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities
| | - Emad S. Ebbini
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities
| |
Collapse
|
20
|
Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study. PLoS One 2015. [PMID: 26244783 DOI: 10.1371/journal.pone.0134938.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mild hyperthermia has been successfully employed to induce reversible physiological changes that can directly treat cancer and enhance local drug delivery. In this approach, temperature monitoring is essential to avoid undesirable biological effects that result from thermal damage. For thermal therapies, Magnetic Resonance Imaging (MRI) has been employed to control real-time Focused Ultrasound (FUS) therapies. However, combined ultrasound imaging and therapy systems offer the benefits of simple, low-cost devices that can be broadly applied. To facilitate such technology, ultrasound thermometry has potential to reliably monitor temperature. Control of mild hyperthermia was previously achieved using a proportional-integral-derivative (PID) controller based on thermocouple measurements. Despite accurate temporal control of heating, this method is limited by the single position at which the temperature is measured. Ultrasound thermometry techniques based on exploiting the thermal dependence of acoustic parameters (such as longitudinal velocity) can be extended to create thermal maps and allow an accurate monitoring of temperature with good spatial resolution. However, in vivo applications of this technique have not been fully developed due to the high sensitivity to tissue motion. Here, we propose a motion compensation method based on the acquisition of multiple reference frames prior to treatment. The technique was tested in the presence of 2-D and 3-D physiological-scale motion and was found to provide effective real-time temperature monitoring. PID control of mild hyperthermia in presence of motion was then tested with ultrasound thermometry as feedback and temperature was maintained within 0.3°C of the requested value.
Collapse
|
21
|
Foiret J, Ferrara KW. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study. PLoS One 2015; 10:e0134938. [PMID: 26244783 PMCID: PMC4526517 DOI: 10.1371/journal.pone.0134938] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/16/2015] [Indexed: 11/19/2022] Open
Abstract
Mild hyperthermia has been successfully employed to induce reversible physiological changes that can directly treat cancer and enhance local drug delivery. In this approach, temperature monitoring is essential to avoid undesirable biological effects that result from thermal damage. For thermal therapies, Magnetic Resonance Imaging (MRI) has been employed to control real-time Focused Ultrasound (FUS) therapies. However, combined ultrasound imaging and therapy systems offer the benefits of simple, low-cost devices that can be broadly applied. To facilitate such technology, ultrasound thermometry has potential to reliably monitor temperature. Control of mild hyperthermia was previously achieved using a proportional-integral-derivative (PID) controller based on thermocouple measurements. Despite accurate temporal control of heating, this method is limited by the single position at which the temperature is measured. Ultrasound thermometry techniques based on exploiting the thermal dependence of acoustic parameters (such as longitudinal velocity) can be extended to create thermal maps and allow an accurate monitoring of temperature with good spatial resolution. However, in vivo applications of this technique have not been fully developed due to the high sensitivity to tissue motion. Here, we propose a motion compensation method based on the acquisition of multiple reference frames prior to treatment. The technique was tested in the presence of 2-D and 3-D physiological-scale motion and was found to provide effective real-time temperature monitoring. PID control of mild hyperthermia in presence of motion was then tested with ultrasound thermometry as feedback and temperature was maintained within 0.3°C of the requested value.
Collapse
Affiliation(s)
- Josquin Foiret
- Department of Biomedical Engineering, University of California Davis, Davis, CA, United States of America
| | - Katherine W. Ferrara
- Department of Biomedical Engineering, University of California Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Ebbini ES, ter Haar G. Ultrasound-guided therapeutic focused ultrasound: current status and future directions. Int J Hyperthermia 2015; 31:77-89. [PMID: 25614047 DOI: 10.3109/02656736.2014.995238] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This paper reviews ultrasound imaging methods for the guidance of therapeutic focused ultrasound (USgFUS), with emphasis on real-time preclinical methods. Guidance is interpreted in the broadest sense to include pretreatment planning, siting of the FUS focus, real-time monitoring of FUS-tissue interactions, and real-time control of exposure and damage assessment. The paper begins with an overview and brief historical background of the early methods used for monitoring FUS-tissue interactions. Current imaging methods are described, and discussed in terms of sensitivity and specificity of the localisation of the FUS effects in both therapeutic and sub-therapeutic modes. Thermal and non-thermal effects are considered. These include cavitation-enhanced heating, tissue water boiling and cavitation. Where appropriate, USgFUS methods are compared with similar methods implemented using other guidance modalities, e.g. magnetic resonance imaging. Conclusions are drawn regarding the clinical potential of the various guidance methods, and the feasibility and current status of real-time implementation.
Collapse
Affiliation(s)
- Emad S Ebbini
- Electrical and Computer Engineering, University of Minnesota Twin Cities , Minneapolis, Minnesota , USA and
| | | |
Collapse
|